Weighted Hölder Continuity of
 Hyperbolic Harmonic Bloch functions

Guangbin Ren and U. Kähler

Abstract

Characterizations of weighted Hölder continuity and weighted Lipschitz continuity are obtained for the hyperbolic Bloch functions on the unit ball of \mathbb{R}^{n}. Similar results are extended to hyperbolic little Bloch and Besov spaces.

Keywords: Hyperbolic Bloch space, hyperbolic Besov spaces, invariant Laplacian
AMS subject classification: Primary 42A35, secondary 32A50

1. Introduction

Let \mathbb{B} be the unit ball in \mathbb{R}^{n} with $n \geq 2, d \nu$ the normalized measure on \mathbb{B} and $d \sigma$ the normalized surface measure on the unit sphere $S=\partial \mathbb{B}$. We shall consider the Poincaré metric in \mathbb{B}

$$
d s^{2}=\frac{|d x|^{2}}{\left(1-|x|^{2}\right)^{2}}
$$

The corresponding Laplace-Beltrami operator and gradient are given by

$$
\begin{aligned}
& \widetilde{\triangle} f(x)=\left(1-|x|^{2}\right)^{2}\left(\triangle f(x)+\frac{2(n-2)}{1-|x|^{2}} \sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}(x)\right), \\
& \widetilde{\nabla} f(x)=\left(1-|x|^{2}\right) \nabla f(x),
\end{aligned}
$$

where \triangle and ∇ denote the usual Laplacian and gradient, respectively. They are invariant in the sense

$$
\begin{aligned}
\widetilde{\triangle} f(x) & =\triangle\left(f \circ \varphi_{x}\right)(0), \\
\widetilde{\nabla} f(x) & =\nabla\left(f \circ \varphi_{x}\right)(0),
\end{aligned}
$$

where the Möbius transformation $\varphi_{x} \in \operatorname{Aut}(B), x \in \mathbb{B}$, is an involutionary automorphism of \mathbb{B} with $\varphi_{x}(0)=x$. Notice that for any $f \in C^{2}(\mathbb{B})$

$$
|\widetilde{\nabla} f(x)|=\left(1-|x|^{2}\right)|\nabla f(x)|
$$

Guangbin Ren: Univ. of Sci. \& Techn. of China, Dept. Math., Hefei 230026, P.R. China and Univ. of Aveiro, Dept. Math., 3810-193 Aveiro, Portugal
U. Kähler: Univ. of Aveiro, Dept. Math., 3810-193 Aveiro, Portugal; uwek@mat.ua.pt Project supported by the NNSF of China (No. 10001030, 19871081) and the Post-doctoral Fellowship of University of Aveiro, UID "Mathematics and Applications".

A function $f \in C^{2}(\mathbb{B})$ is called hyperbolic harmonic or simply \mathcal{H}-harmonic if it is annihilated by the invariant Laplacian on \mathbb{B}. The

- \mathcal{H}-harmonic Bloch space \mathcal{B} is the space of all \mathcal{H}-harmonic functions on \mathbb{B} for which $\sup _{x \in \mathbb{B}}|\widetilde{\nabla} f(x)|<\infty$
- \mathcal{H}-harmonic little Bloch space \mathcal{B}_{0} consists of all functions $f \in \mathcal{B}$ such that $\lim _{|x| \rightarrow 1}|\widetilde{\nabla} f(x)|=0$
- \mathcal{H}-harmonic Besov space \mathcal{B}_{p} is the space of all -harmonic functions on B for which $\int_{\mathbb{B}}|\widetilde{\nabla} f(x)|^{p} d \tau(x)<\infty$ where $d \tau(x)=\left(1-|x|^{2}\right)^{-n} d \nu(x)$ is the invariant measure on \mathbb{B}.

Let $\alpha, \beta \geq 0$ and $0<\lambda<1$, and let f be a continuous function in \mathbb{B}. If there exist a constant C such that

$$
\begin{equation*}
\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\beta}|f(x)-f(y)| \leq C|x-y| \tag{1.1}
\end{equation*}
$$

for any $x, y \in \mathbb{B}$, then we say that f satisfies a weighted Lipschitz condition of indices (α, β). If there exist a constant C such that

$$
\begin{equation*}
\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\beta}|f(x)-f(y)| \leq C|x-y|^{\lambda} \tag{1.2}
\end{equation*}
$$

for any $x, y \in \mathbb{B}$, then we say that f satisfies a weighted Hölder condition of indices (α, β, λ).

The main purpose of this paper is to give some characterizations of $\mathcal{B}, \mathcal{B}_{0}$ and \mathcal{B}_{p} in terms of weighted Hölder or Lipschitz conditions. We refer to [3, 4, 7, 8] for corresponding results in the complex unit ball for holomorphic or \mathcal{M}-harmonic functions. See $[6,9,12,13,15,16]$ for various characterization of the Bloch, little Bloch, and Besov spaces in the unit ball of \mathbb{C}^{n}.

Our main results are the following three theorems.
Theorem 1.1. Let f be a hyperbolic harmonic function on \mathbb{B}. Then the following statements are equivalent:
(i) $f \in \mathcal{B}$.
(ii) f satisfies a weighted Lipschitz condition of indices (α, β) with $\alpha+\beta=1$, $\alpha, \beta>0$.
(iii) f satisfies a weighted Hölder condition of indices (α, β, λ) with $\alpha+\beta=\lambda$, $\alpha, \beta>0$ and $0<\lambda<1$.
Theorem 1.2. Let $0<\lambda<1$ and $\alpha, \beta>0$ with $\alpha+\beta=\lambda$. For any hyperbolic harmonic function f on $\mathbb{B}, f \in \mathcal{B}_{0}$ if and only if

$$
\lim _{|x| \rightarrow 1^{-}} \sup \left\{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\beta} \frac{|f(x)-f(y)|}{|x-y|^{\lambda}}: y \in \mathbb{B}, y \neq x\right\}=0
$$

Theorem 1.3. Let $p \in(2(n-1), \infty)$. For any hyperbolic harmonic function f on $\mathbb{B}, f \in \mathcal{B}_{p}$ if and only if

$$
\int_{\mathbb{B}} \int_{\mathbb{B}}\left(1-|x|^{2}\right)^{\frac{p}{2}}\left(1-|y|^{2}\right)^{\frac{p}{2}}\left(\frac{|f(x)-f(y)|}{|x-y|}\right)^{p} d \tau(x) d \tau(y)<\infty .
$$

2. Preliminaries

We shall be using the following notation: for $x, y \in \mathbb{R}^{n}$ we write in polar coordinates $x=|x| x^{\prime}$ and $y=|y| y^{\prime}$. For any $y, w \in \mathbb{R}^{n}$ the symmetric lemma (see [2: p. 10]) shows

$$
\begin{equation*}
\left||y| w-y^{\prime}\right|=\left||w| y-w^{\prime}\right| \tag{2.1}
\end{equation*}
$$

The same deduction yields

$$
\left||y| w-\left(1-|w|^{2}\right) y^{\prime}\right|=\left||w| y-\left(1-|w|^{2}\right) w^{\prime}\right|
$$

so that

$$
\begin{equation*}
\left||y|^{2} w-\left(1-|w|^{2}\right) y\right|=|y|| | w\left|y-\left(1-|w|^{2}\right) w^{\prime}\right| . \tag{2.2}
\end{equation*}
$$

For any $a \in \mathbb{B}$ we denote the Möbius transformation in \mathbb{B} by φ_{a}. It is an involutionary automorphism of \mathbb{B} such that $\varphi_{a}(0)=a$ and $\varphi_{a}(a)=0$, which is of the form (see [1: p.25])

$$
\begin{equation*}
\varphi_{a}(x)=\frac{|x-a|^{2} a-\left(1-|a|^{2}\right)(x-a)}{\left||x| a-x^{\prime}\right|^{2}} \quad(a, x \in \mathbb{B}) \tag{2.3}
\end{equation*}
$$

From (2.2) with $w=a$ and $y=x-a$ we have

$$
\begin{equation*}
\left|\varphi_{a}(x)\right|=\frac{|x-a|}{\left||a| x-a^{\prime}\right|} \tag{2.4}
\end{equation*}
$$

such that

$$
\begin{equation*}
1-\left|\varphi_{a}(x)\right|^{2}=\frac{\left(1-|x|^{2}\right)\left(1-|a|^{2}\right)}{\left||a| x-a^{\prime}\right|^{2}} \tag{2.5}
\end{equation*}
$$

For any $a \in \mathbb{B}$ and $\delta \in(0,1)$ we denote

$$
\begin{aligned}
& E(a, \delta)=\left\{x \in \mathbb{B}:\left|\varphi_{a}(x)\right|<\delta\right\} \\
& B(a, \delta)=\{x \in \mathbb{B}:|x-a|<\delta\}
\end{aligned}
$$

Clearly, $E(a, \delta)=\varphi_{a}(B(0, \delta))$.
Lemma 2.1. Let $x, w \in \mathbb{B}$ and $y \in E(w, \delta)$. Then

$$
\frac{1-\delta}{1+\delta}\left||x| w-x^{\prime}\right| \leq\left||x| y-x^{\prime}\right| \leq \frac{1+\delta}{1-\delta}| | x\left|w-x^{\prime}\right|
$$

Proof. From (2.4) and (2.1) we have $\left|\varphi_{y}(w)\right|=\left|\varphi_{w}(y)\right|$, so that $y \in E(w, \delta)$ is equivalent to $w \in E(y, \delta)$. By symmetry, we need only to prove the right inequality. Since

$$
\left||x| y-x^{\prime}\right| \leq||x|(y-w)|+\left||x| w-x^{\prime}\right|
$$

it is enough to show

$$
|y-w| \leq \frac{2 \delta}{1-\delta}| | x\left|w-x^{\prime}\right|
$$

for any $y \in E(w, \delta)$. Denoting $\eta=\varphi_{w}(y)$ we have $y=\varphi_{w}(\eta)$ and $|\eta|<\delta$. From (2.3), a direct computation yields

$$
\left|\varphi_{w}(\eta)-w\right|=\frac{|\eta|}{\left||w| \eta-w^{\prime}\right|}\left(1-|w|^{2}\right)
$$

Therefore, by the simple inequality $1-|w| \leq\left||x| w-x^{\prime}\right|$ we get

$$
|y-w|=\left|\varphi_{w}(\eta)-w\right| \leq \frac{\delta}{1-\delta}\left(1-|w|^{2}\right) \leq \frac{\delta}{1-\delta} 2| | x\left|w-x^{\prime}\right|
$$

as desired

As a direct corollary, we have

$$
\begin{equation*}
1-|x|^{2} \simeq 1-|y|^{2} \quad(x \in E(y, \delta)) \tag{2.6}
\end{equation*}
$$

In fact, taking $w=x$ in Lemma 2.1 we get $\left||x| y-x^{\prime}\right| \simeq 1-|y|^{2}$. The assertion now follows from (2.1).

Let F be the hypergeometric function (see $[5,10]$)

$$
F(a, b ; c ; s)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{k!(c)_{k}} s^{k}
$$

for $a, b, c \in \mathbb{R}$ and c neither zero nor a negative integer, where $(a)_{k}$ denotes the Pochhammer symbol with $(a)_{0}=1$ and $(a)_{k}=a(a+1) \cdots(a+k-1), k \in \mathbb{N}$. These functions have some well-known properties:
(i) Bateman's integral formula

$$
\begin{equation*}
F(a, b ; c+\mu ; s)=\frac{\Gamma(c+\mu)}{\Gamma(c) \Gamma(\mu)} \int_{0}^{1} t^{c-1}(1-t)^{\mu-1} F(a, b ; c ; t s) d t \tag{2.7}
\end{equation*}
$$

with $c, \mu>0$ and $s \in(-1,1)$.
(ii) For any integer m [12: p. 69]

$$
\begin{align*}
F(-m, b ; c ; 1) & =\frac{(c-b)_{m}}{(c)_{m}} \tag{2.8}\\
F(-m, a+m ; c ; 1) & =\frac{(-1)^{m}(1+a-c)_{m}}{(c)_{m}}
\end{align*}
$$

The following identity furnishes the hypergeometric function with an integral representation.

Lemma 2.2. Let $t>1, \lambda \in \mathbb{R}$ and $r \in(-1,1)$. Then

$$
\begin{equation*}
\int_{-1}^{1} \frac{\left(1-u^{2}\right)^{(t-3) / 2}}{\left(1-2 r u+r^{2}\right)^{\lambda}} d u=\frac{\Gamma\left(\frac{t-1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{t}{2}\right)} F\left(\lambda, \lambda+1-\frac{t}{2} ; \frac{t}{2} ; r^{2}\right) . \tag{2.9}
\end{equation*}
$$

Proof. Let C_{m}^{λ} be the Gegenbauer polynomials. These polynomials can be defined by the generating function

$$
\begin{equation*}
\left(1-2 r u+r^{2}\right)^{-\lambda}=\sum_{m=0}^{\infty} C_{m}^{\lambda}(u) r^{m} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
C_{2 m}^{\lambda}(u) & =(-1)^{m} \frac{(\lambda)_{m}}{m!} F\left(-m, m+\lambda ; \frac{1}{2} ; u^{2}\right) \\
C_{2 m+1}^{\lambda}(u) & =(-1)^{m} \frac{(\lambda)_{m}}{m!} 2 u F\left(-m, m+\lambda+1 ; \frac{3}{2} ; u^{2}\right) . \tag{2.11}
\end{align*}
$$

To calculate the integral in (2.9), we apply (2.10) and (2.11) and can deduce that it is only left to evaluate the integral

$$
\int_{-1}^{1}\left(1-u^{2}\right)^{(t-3) / 2} F\left(-m, m+\lambda ; \frac{1}{2} ; u^{2}\right) d u
$$

or rather an integral over the interval $(0,1)$ by the simple change of variables $t=u^{2}$. For this integral, we first use Bateman's integral formula (2.7) with $s=1$, then we apply (2.8) so that it can be represented by Pochhammer symbols. The calculation of integral (2.9) leads to a series which by definition is the desired hypergeometric function I

Lemma 2.3. Let $\alpha>-1$ and $\beta \in \mathbb{R}$. Then for any $x \in \mathbb{B}$

$$
\int_{\mathbb{B}} \frac{\left(1-|y|^{2}\right)^{\alpha}}{| | x\left|y-x^{\prime}\right|^{n+\alpha+\beta}} d \nu(y) \approx \begin{cases}\left(1-|x|^{2}\right)^{-\beta} & \text { if } \beta>0 \\ \log \frac{1}{1-|x|^{2}} & \text { if } \beta=0 \\ 1 & \text { if } \beta<0\end{cases}
$$

where $a(x) \approx b(x)$ means the ratio $\frac{a(x)}{b(x)}$ has a positive finite limit as $|x| \rightarrow 1$.
Proof. Denote the above integral by $J_{\alpha, \beta}(x)$. From Stirling's formula we need only to show

$$
J_{\alpha, \beta}(x)=\frac{\Gamma\left(\frac{n}{2}+1\right) \Gamma(\alpha+1)}{\Gamma\left(\alpha+\frac{n}{2}+1\right)} F\left(\frac{n+\alpha+\beta}{2}, \frac{2+\alpha+\beta}{2} ; \alpha+\frac{n}{2}+1 ;|x|^{2}\right) .
$$

For any continuous function f of one variable and any $\eta \in \partial \mathbb{B}$, we have the formula (see [2: p. 216])

$$
\int_{\partial \mathbb{B}} f(\langle\zeta, \eta\rangle) d \sigma(\zeta)=\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1}\left(1-u^{2}\right)^{\frac{n-3}{2}} f(u) d u
$$

where $\langle\zeta, \eta\rangle$ stands for the inner product in \mathbb{R}^{n}. Taking

$$
f(u)=\left(1-2 r u+r^{2}\right)^{-\frac{n+\alpha+\beta}{2}} \quad(r \in(0,1) \text { fixed })
$$

and combining it with Lemma 2.2 we get

$$
\begin{aligned}
\int_{\partial \mathbb{B}} & \left(1-2 r\langle\zeta, \eta\rangle+r^{2}\right)^{-\frac{n+\alpha+\beta}{2}} d \sigma(\zeta) \\
& =\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1} \frac{\left(1-u^{2}\right)^{\frac{n-3}{2}}}{\left(1-2 r u+r^{2}\right)^{\frac{n+\alpha+\beta}{2}}} d u \\
& =F\left(\frac{n+\alpha+\beta}{2}, \frac{2+\alpha+\beta}{2} ; \frac{n}{2} ; r^{2}\right)
\end{aligned}
$$

Consequently, from the polar coordinates formula we get

$$
\begin{aligned}
J_{\alpha, \beta}(x) & =n \int_{0}^{1} r^{n-1}\left(1-r^{2}\right)^{\alpha} d r \int_{S}\left(1-2 r|x|\left\langle x^{\prime}, \zeta\right\rangle+r^{2}|x|^{2}\right)^{-\frac{n+\alpha+\beta}{2}} d \sigma(\zeta) \\
& =C \int_{0}^{1} r^{n-1}\left(1-r^{2}\right)^{\alpha} F\left(\frac{n+\alpha+\beta}{2}, \frac{2+\alpha+\beta}{2} ; \frac{n}{2} ; r^{2}|x|^{2}\right) d r
\end{aligned}
$$

The assertion now follows from Bateman's integral formula (2.7)

3. Bloch space

In this section we give the proof of Theorems 1.1 and 1.2. Theorem 1.1 can be rephrased as the following

Theorem 3.1. Let $0<\alpha<\lambda \leq 1$. For any hyperbolic harmonic function f on \mathbb{B}, $f \in \mathcal{B}$ if and only if

$$
\begin{equation*}
\sup \left\{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{|f(x)-f(y)|}{|x-y|^{\lambda}}: x, y \in \mathbb{B}, x \neq y\right\}<\infty . \tag{3.1}
\end{equation*}
$$

Proof. We may assume $\alpha \leq \frac{\lambda}{2}$, since one of the indices α and $\lambda-\alpha$ is no greater than $\frac{\lambda}{2}$.

First, let us assume that $f \in \mathcal{B}$. For any $a \in \mathbb{B}$ we have

$$
f(a)-f(0)=\int_{0}^{1} \frac{d f}{d t}(t a) d t=\sum_{k=1}^{n} a_{k} \int_{0}^{1} \frac{\partial f}{\partial x_{k}}(t a) d t
$$

so that

$$
|f(a)-f(0)| \leq n\|f\|_{\mathcal{B}} \int_{0}^{1} \frac{|a|}{1-t^{2}|a|^{2}} d t=\frac{n}{2}\|f\|_{\mathcal{B}} \log \frac{1+|a|}{1-|a|}
$$

Now, replacing f by $f \circ \varphi_{y}$ and substituting $x=\varphi_{y}(a)$ we get

$$
|f(x)-f(y)| \leq \frac{n}{2}\|f\|_{\mathcal{B}} \log \frac{1+\left|\varphi_{y}(x)\right|}{1-\left|\varphi_{y}(x)\right|}
$$

To estimate the last factor, we can apply the fact that

$$
\log \frac{1+|a|}{1-|a|}=2|a| \sum_{n=0}^{\infty} \frac{|a|^{2 n}}{2 n+1} \leq C|a| \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)}|a|^{2 \alpha}=C \frac{|a|}{\left(1-|a|^{2}\right)^{\alpha}}
$$

for any $0<\alpha<1$ and $a \in \mathbb{B}$. Now, from identities (2.4) - (2.5), we get

$$
\begin{aligned}
\log \frac{1+\left|\varphi_{y}(x)\right|}{1-\mid \varphi_{y}(x)} & \leq C \frac{\left|\varphi_{y}(x)\right|}{\left(1-\left|\varphi_{y}(x)\right|^{2}\right)^{\alpha}} \\
& \leq C \frac{\left|\varphi_{y}(x)\right|^{\lambda}}{\left(1-\left|\varphi_{y}(x)\right|^{2}\right)^{\alpha}} \\
& =C \frac{|x-y|^{\lambda}}{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}}\left(\frac{1-|y|^{2}}{\| x\left|y-x^{\prime}\right|}\right)^{\lambda-2 \alpha} \\
& \leq C \frac{2^{\lambda-2 \alpha}|x-y|^{\lambda}}{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}} .
\end{aligned}
$$

Here we used the assumption $\alpha \leq \frac{\lambda}{2}$ and the inequality $1-|y| \leq \| x\left|y-x^{\prime}\right|$ for any $x, y \in \mathbb{B}$. Notice that $2^{\lambda-2 \alpha} \leq 2^{\lambda} \leq 2$, which combined with the above results yields

$$
|f(x)-f(y)| \leq n C \frac{|x-y|^{\lambda}}{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}}\|f\|_{\mathcal{B}}
$$

This proves the necessity.
Conversely, suppose that f is hyperbolic harmonic and (3.1) is satisfied. We will show that $f \in \mathcal{B}$. For any fixed $\delta \in(0,1)$, it is known that

$$
|\widetilde{\nabla} f(0)| \leq C \int_{\delta B}|f(a)| d \tau(a)
$$

Now, replacing f by $f \circ \varphi_{x}-f(x)$ and taking $y=\varphi_{x}(a)$ we get

$$
\begin{equation*}
|\widetilde{\nabla} f(x)| \leq C \int_{E(x, \delta)}|f(x)-f(y)| d \tau(y) \tag{3.2}
\end{equation*}
$$

Therefore,

$$
|\widetilde{\nabla} f(x)| \leq C \sup \{|f(x)-f(y)|: y \in E(x, \delta), x \in B\}
$$

Note that, for any $y \in E(x, \delta),\left|\varphi_{y}(x)\right| \leq \delta$ and $1-|x|^{2} \simeq 1-|y|^{2}$, so that

$$
\begin{align*}
\frac{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}}{|x-y|^{\lambda}} & \simeq \frac{\left(1-|x|^{2}\right)^{\lambda / 2}\left(1-|y|^{2}\right)^{\lambda / 2}}{|x-y|^{\lambda}} \\
& =\left(\frac{\sqrt{1-\left|\varphi_{y}(x)\right|^{2}}}{\left|\varphi_{y}(x)\right|}\right)^{\lambda} \tag{3.3}\\
& \geq C .
\end{align*}
$$

Consequently,

$$
\begin{aligned}
|\widetilde{\nabla} f(x)| & \leq C \sup \left\{\frac{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}}{|x-y|^{\lambda}}|f(x)-f(y)|: y \in E(x, \delta), x \in B\right\} \\
& \leq C \sup \left\{\frac{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}}{|x-y|^{\lambda}}|f(x)-f(y)|: x, y \in B\right\}
\end{aligned}
$$

This completes the proof of Theorem 3.1
Theorem 3.2. Let $0<\alpha<\lambda \leq 1$. For any hyperbolic harmonic function f on \mathbb{B}, $f \in \mathcal{B}_{0}$ if and only if

$$
\begin{equation*}
\lim _{|x| \rightarrow 1^{-}} \sup \left\{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{|f(x)-f(y)|}{|x-y|^{\lambda}}: y \in \mathbb{B}, y \neq x\right\}=0 \tag{3.4}
\end{equation*}
$$

Proof. Assume that $f \in \mathcal{B}_{0}$ and let $f_{t}(x)=f(t x) \quad(t \in(0,1))$. By (3.1), we have

$$
\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{\left|\left(f-f_{t}\right)(x)-\left(f-f_{t}\right)(y)\right|}{|x-y|^{\lambda}} \leq C\left\|f-f_{t}\right\|_{\mathcal{B}}
$$

and

$$
\begin{aligned}
(1- & \left.|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{\left|f_{t}(x)-f_{t}(y)\right|}{|x-y|^{\lambda}} \\
& =t^{\lambda} \frac{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha}}{\left(1-|t x|^{2}\right)^{\alpha}\left(1-|t y|^{2}\right)^{\lambda-\lambda}}\left(1-|t x|^{2}\right)^{\alpha}\left(1-|t y|^{2}\right)^{\lambda-\alpha} \frac{|f(t x)-f(t y)|}{|t x-t y|^{\lambda}} \\
& \leq C \frac{t^{\lambda}}{\left(1-t^{2}\right)^{\lambda}}\left(1-|x|^{2}\right)^{\alpha}\|f\|_{\mathcal{B}} .
\end{aligned}
$$

By the triangle inequality we obtain

$$
\begin{aligned}
\sup & \left\{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{|f(x)-f(y)|}{|x-y|^{\lambda}}: y \in \mathbb{B}, y \neq x\right\} \\
& \leq C \frac{t^{\lambda}}{\left(1-t^{2}\right)^{\lambda}}\left(1-|x|^{2}\right)^{\alpha}\|f\|_{\mathcal{B}}+\left\|f-f_{t}\right\|_{\mathcal{B}} .
\end{aligned}
$$

In the above inequality, by first letting $|x| \rightarrow 1^{-}$, the first term on the right side converges to 0 , and then letting $t \rightarrow 1^{-}$, the second term on the right side also converges to 0 .

Now suppose that f is hyperbolic harmonic and (3.3) is satisfied. We will show that $f \in \mathcal{B}_{0}$. Fix $r \in(0,1)$. From (3.2) - (3.3) we have

$$
|\widetilde{\nabla} f(x)| \leq C(n, r) \int_{E(x, r)}\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{|f(x)-f(y)|}{|x-y|^{\lambda}} d \tau(y)
$$

By assumption (3.4), for any given $\varepsilon>0$ there exists $\delta \in(0,1)$ such that

$$
\sup \left\{\left(1-|x|^{2}\right)^{\alpha}\left(1-|y|^{2}\right)^{\lambda-\alpha} \frac{|f(x)-f(y)|}{|x-y|^{\lambda}}: y \in \mathbb{B}, y \neq x\right\}<\varepsilon
$$

whenever $|x|>\delta$. Since

$$
\int_{E(x, r)} d \tau=\tau(E(a, r))=\tau(B(0, r))=n \int_{0}^{r} t^{n-1}\left(1-t^{2}\right)^{-n} d t
$$

we have $|\widetilde{\nabla} f(x)|<C \varepsilon$ for any $|x|>\delta$, which means $|\widetilde{\nabla} f(x)| \rightarrow 0$ as $|x| \rightarrow 1^{-}$. This completes the proof

4. \mathcal{H}-Besov spaces

In this section, we give the Holland-Walsh characterization for \mathcal{H}-Besov spaces. When $p \rightarrow \infty$, it also reveals the weighted Lipschitz characterization of Bloch spaces.

Theorem 4.1. Let $p \in(2(n-1), \infty)$ and f be hyperbolic harmonic on \mathbb{B}. Then $f \in \mathcal{B}_{p}$ if and only if

$$
\begin{equation*}
\int_{\mathbb{B}} \int_{\mathbb{B}}\left(1-|x|^{2}\right)^{\frac{p}{2}}\left(1-|y|^{2}\right)^{\frac{p}{2}}\left(\frac{|f(x)-f(y)|}{|x-y|}\right)^{p} d \tau(x) d \tau(y)<\infty . \tag{4.1}
\end{equation*}
$$

To prove this theorem, we need the following
Lemma 4.2. Let $p \geq 1$ and $\alpha>-1$. If f is hyperbolic harmonic on \mathbb{B}, then

$$
\begin{equation*}
\int_{\mathbb{B}}\left(\int_{0}^{1} \frac{|\widetilde{\nabla} f(t a)|}{1-t|a|} d t\right)^{p} d \nu_{\alpha}(a) \leq C \int_{\mathbb{B}}|\widetilde{\nabla} f(a)|^{p} d \nu_{\alpha}(a) \tag{4.2}
\end{equation*}
$$

Proof. Fix $\varepsilon \in(0,1)$. Observe that for any $t \in[0,1]$ and $a \in \mathbb{B}$ if at least one of t and $|a|$ is less than ε, then $|t a|=t|a|<\varepsilon$, such that $\frac{1}{1-t|a|} \leq \frac{1}{1-\varepsilon}$. Thus the left side in (4.2) can be controlled by

$$
\int_{\mathbb{B}-\varepsilon \mathbb{B}}\left(\int_{\varepsilon}^{1} \frac{|\widetilde{\nabla} f(t a)|}{1-t|a|} d t\right)^{p} d \nu_{\alpha}(a)+C \sup _{x \in \varepsilon \mathbb{B}}|\widetilde{\nabla} f(x)|^{p} .
$$

Denote the first summand above by I. From the polar coordinate integral formula and Minkowski's inequality we get

$$
\begin{aligned}
I & =n \int_{\varepsilon}^{1} \int_{\partial \mathbb{B}}\left(\int_{\varepsilon}^{1} \frac{|\widetilde{\nabla} f(t s \zeta)|}{1-t s} d t\right)^{p} d \sigma(\zeta) s^{n-1}\left(1-s^{2}\right)^{\alpha} d s \\
& \leq C \int_{\varepsilon}^{1}\left(\int_{\varepsilon}^{1} \frac{M_{p}(t s,|\widetilde{\nabla} f|)}{1-t s} d t\right)^{p} s^{n-1}\left(1-s^{2}\right)^{\alpha} d s \\
& \leq C \int_{\varepsilon}^{1}\left(\int_{\varepsilon^{2}}^{s} h(\rho) d \rho\right)^{p}\left(1-s^{2}\right)^{\alpha} d s
\end{aligned}
$$

where

$$
h(\rho)=\frac{\rho^{(n-1) / p} M_{p}(\rho,|\widetilde{\nabla} f|)}{1-\rho}
$$

From Hölder's inequality and Fubini's theorem, we can get the following Hardy's inequality:

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{s} h(\rho) d \rho\right)^{p}(1-s)^{\alpha} d s & \leq \int_{0}^{1} \int_{0}^{s} h^{p}(\rho) d \rho(1-s)^{\alpha} d s \\
& \leq \int_{0}^{1} \int_{\rho}^{1}(1-s)^{\alpha} d s h^{p}(\rho) d \rho \\
& \leq C \int_{0}^{1} h^{p}(t)(1-t)^{\alpha+1} d t
\end{aligned}
$$

for any $p \geq 1, \alpha>-1$, and $h \geq 0$. As a result,

$$
\begin{aligned}
I & \leq C \int_{0}^{1}\left(\int_{0}^{s} h(\rho) d \rho\right)^{p}(1-s)^{\alpha} d s \\
& \leq C \int_{0}^{1} t^{n-1}(1-t)^{\alpha} M_{p}^{p}(t,|\widetilde{\nabla} f|) d t \\
& =C \int_{\mathbb{B}}|\widetilde{\nabla} f(a)|^{p} d \nu_{\alpha}(a) .
\end{aligned}
$$

It remains to show that $\sup _{\varepsilon \mathbb{B}}|\widetilde{\nabla} f(x)|^{p} \leq C \int_{\mathbb{B}}|\widetilde{\nabla} f(a)|^{p} d \nu_{\alpha}(a)$. For this it is sufficient to prove the inequality

$$
\begin{equation*}
|\widetilde{\nabla} f(x)|^{p} \leq C \int_{E(x, \delta)}|\widetilde{\nabla} f|^{p}(a) d \tau(a) \tag{4.3}
\end{equation*}
$$

Since f is hyperbolic harmonic, we have $f(0)=\int_{\partial \mathbb{B}} f(r \xi) d \sigma(\xi)$ for any $0<r<1$. Replacing f by $f \circ \varphi_{x}$, we see that $f(x)=\int_{\partial \mathbb{B}} f\left(\varphi_{x}(r \xi)\right) d \sigma(\xi)$ for any $x \in \mathbb{B}$ and $0<$ $r<1$. Now we take the gradient about x, evaluate at $x=0$, and denote $\psi_{a}(x)=\varphi_{x}(a)$ to get $|\nabla f(0)| \leq C \int_{\partial \mathbb{B}} \mid \nabla\left(f \circ \psi_{r \xi}\right)(0) d \sigma(\xi)$. Since

$$
\left|\nabla\left(f \circ \psi_{r \xi}\right)(0)\right| \leq C\left|\nabla f\left(\psi_{r \xi}(0)\right)\right| \sup _{0<s<1}\left|\nabla \psi_{s \xi}(0)\right|
$$

and $\psi_{r \xi}(0)=\varphi_{0}(r \xi)=r \xi$, it follows that $|\nabla f(0)| \leq C \int_{\partial \mathbb{B}}|\nabla f(r \xi)| d \sigma(\xi)$. Multiplying both sides by $n r^{n-1}\left(1-r^{2}\right)^{-n} d r$ and integrating from 0 to δ, we notice that $|\nabla f(r \xi)| \leq$ $\left(1-\delta^{2}\right)^{-1}|\widetilde{\nabla} f(r \xi)|$ for any $r \in(0, \delta)$ and we conclude

$$
|\nabla f(0)| \leq C\left(1-\delta^{2}\right)^{-1} \delta^{-n} \int_{\delta B}|\widetilde{\tau} f(w)| d \lambda(w)
$$

If we replace f by $f \circ \varphi_{x}$, then assertion (4.3) follows. This finishes the proof
Proof of Theorem 4.1 Assume that $f \in \mathcal{B}_{p}$. For any $a \in \mathbb{B}$ we have

$$
\frac{|f(a)-f(0)|}{|a|}=\left|\int_{0}^{1} \nabla f(t a) \frac{a}{|a|} d t\right| \leq \int_{0}^{1} \frac{|\widetilde{\nabla} f(t a)|}{1-t|a|} d t
$$

Therefore, Lemma 4.2 means

$$
\int_{B} \frac{|f(a)-f(0)|^{p}}{|a|^{p}} d \nu_{\alpha}(a) \leq C \int_{B}|\widetilde{\nabla} f(a)|^{p} d \nu_{\alpha}(a) .
$$

Replacing f with $f \circ \varphi_{x}$, integrating with respect to $d \tau(x)$, taking $y=\varphi_{x}(a)$ and setting $\alpha=\frac{p}{2}-n$, we get

$$
\begin{aligned}
& \int_{B} \int_{B} \frac{|f(y)-f(x)|^{p}}{\left|\varphi_{x}(y)\right|^{p}}\left(1-\left|\varphi_{x}(y)\right|^{2}\right)^{\frac{p}{2}} d \tau(x) d \tau(y) \\
& \quad \leq C \int_{B} \int_{B}|\widetilde{\nabla} f(y)|^{p}\left(1-\left|\varphi_{x}(y)\right|^{2}\right)^{\frac{p}{2}} d \tau(x) d \tau(y) \\
& \quad \leq C \int_{B}|\widetilde{\nabla} f(y)|^{p} d \tau(y) \int_{B}\left(1-\left|\varphi_{x}(y)\right|^{2}\right)^{\frac{p}{2}} d \tau(x) \\
& \quad \leq C \int_{B}|\widetilde{\nabla} f(y)|^{p} d \tau(y) .
\end{aligned}
$$

In the last step, we used the estimate $\int_{B}\left(1-\left|\varphi_{x}(y)\right|^{2}\right)^{\frac{p}{2}} d \tau(x) \leq C$ for $p>2(n-1)$, which follows from (2.5) and the Forelli-Rudin estimate in Lemma 2.3. Since

$$
\frac{\left(1-\left|\varphi_{x}(y)\right|^{2}\right)^{\frac{p}{2}}}{\left|\varphi_{x}(y)\right|^{p}}=\frac{\left(1-|x|^{2}\right)^{\frac{p}{2}}\left(1-|y|^{2}\right)^{\frac{p}{2}}}{|x-y|^{p}}
$$

we get (4.1).

Conversely, supposing that f is hyperbolic harmonic and satisfying (4.1), we will show that $f \in \mathcal{B}_{p}$. For any fixed $\delta \in(0,1)$,

$$
|\widetilde{\nabla} f(x)| \leq C \int_{E(x, \delta)}|f(x)-f(y)| d \tau(y)
$$

Then, by applying Hölder's inequality and (3.3) with $\lambda=p$ and $\alpha=\frac{p}{2}$,

$$
\begin{aligned}
|\widetilde{\nabla} f(x)|^{p} & \leq C \int_{E(x, \delta)}|f(x)-f(y)|^{p} d \tau(y) \\
& \leq \int_{E(x, \delta)}|f(x)-f(y)|^{p} \frac{\left(1-|x|^{2}\right)^{\frac{p}{2}}\left(1-|y|^{2}\right)^{\frac{p}{2}}}{|x-y|^{p}} d \tau(y)
\end{aligned}
$$

Thus, (4.1) implies $f \in \mathcal{B}_{p}$. This completes the proof

References

[1] Ahlfors, L. V.: Möbius Transformations in Several Dimensions. Ordway Professorship Lectures in Mathematics 1981.
[2] Axler, S., Bourdon, P. and W. Ramey: Harmonic Function Theory (Graduate Texts in Mathematics: Vol. 137). New York: Springer-Verlag 1992.
[3] Burbea, J. and S. Y. Li: Weighted Hadamard products of holomorphic functions in the ball. Pac. J. Math. 168 (1995), $235-270$.
[4] Choe, J. S., Kim, H. O. and Y. Y. Park: A Bergman-Carleson measure characterization of Bloch functions in the unit ball of \mathbb{C}^{n}. Bull. Korean Math. Soc. 29 (1992), $285-293$.
[5] Erdély, A. et al.: Higher Transcendental Functions, Vol. I. New York: McGraw-Hill 1953.
[6] Hahn, K. T. and E. H. Youssfi: Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the ball in \mathbb{C}^{n}. Complex Variables 17 (1991), $89-104$.
[7] Holland, F. and D. Walsh: Criteria for membership of Bloch space and its subspace, BMOA. Math. Ann. 273 (1986), 317 - 335.
[8] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball on \mathbb{C}^{n}. Complex Variables 44 (2001), 1 - 12.
[9] Ouyang, C. H., Yang, W. S. and R. H. Zhao: Characterizations of Bergman spaces and Bloch space in the unit ball of \mathbb{C}^{n}. Trans. Amer. Math. Soc. 374 (1995), $4301-4312$.
[10] Rainville, E. D.: Special Functions. Bronx - New York: Chelsea Publ. Comp. 1971.
[11] Rudin, W.: Function Theory in the Unit Ball of \mathbb{C}^{n}. New York: Springer-Verlag 1980.
[12] Shi, J. H.: Hadamard products of functions holomorphic on a hypersphere (in Chinese). Chinese Ann. Math. Ser. A 9 (1988), 49 - 59.
[13] Stroethoff, K.: Besov type characterization for the Bloch space. Bull. Austral. Math. Soc. 39 (1989), $405-420$.
[14] Stroethoff, K.: The Bloch space and Besov spaces of analytic functions. Bull. Austral. Math. Soc. 54 (1996), 211 - 219.
[15] Timoney, R. M.: Bloch functions in several complex variables, Part I. Bull. London Math. Soc. 12 (1980), $241-267$.
[16] Timoney, R. M.: Bloch functions in several complex variables, Part II. J. Reine Angew. Math. 319 (1980), 1 - 22.

Received 11.12.2001

