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On Oscillation of a Differential Equation
with Infinite Number of Delays

L. Berezansky and E. Braverman

Abstract. For a scalar delay differential equation

ẋ(t) +
P∞

k=1ak(t)x(hk(t)) = 0 (hk(t) ≤ t)

a connection between the following four properties is established:

- non-oscillation of this equation
- non-oscillation of the corresponding differential inequality
- positiveness of the fundamental function
- existence of a non-negative solution for a certain explicitly constructed nonlinear integral

inequality.

Explicit non-oscillation and oscillation conditions, comparison theorems and a criterion of
the existence of a positive solution are presented for this equation.

Keywords: Delay differential equations, infinite number of delays, oscillation, non-oscilla-
tion

AMS subject classification: 34K11

1. Introduction

This paper deals with a scalar differential equation

ẋ(t) +
∞∑

k=1

ak(t)x(hk(t)) = 0 (t ≥ t0) (1)

with infinite number of delays hk(t) ≤ t. This equation is a natural generalization
of equations with a finite number of delays which are well studied now (see, for
example, monographs [5, 6, 8] and references therein, where various non-oscillation
and oscillation conditions are presented).
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In our recent paper [3] we considered an equation with distributed delay. Equa-
tion (1) with bounded delays, i.e. satisfying

inf
k

hk(t) > −∞ (t ≥ 0), (2)

is a particular case of the equation with distributed delay studied in [3]. However,
condition (2) does not hold for important classes of equation (1), such as equations
with constant delays hk(t) = t − τk, where lim τk = ∞, for instance, τk = kτ with
τ > 0.

Later on we will employ oscillation properties of equation (1) for the investigation
of a neutral equation. After some transformations a neutral equation can be rewritten
in the form of equation (1). However, generally condition (2) does not hold for the
latter equation. Hence for the investigation of a neutral equation we cannot apply
the results of [3].

The purpose of the present paper is to study equation (1) without assumption
(2). To the best of our knowledge such equations have not been considered. The
main result is the equivalence of the following four properties for equation (1):
- non-oscillation of this equation
- existence of an eventually positive solution of the corresponding differential in-

equality
- existence of a non-negative solution of some nonlinear integral inequality which

is explicitly constructed by the differential equation
- positiveness of the fundamental function of the differential equation.

The paper is organized as follows. Section 2 contains relevant definitions, notations
and a ”variation of constants formula”. In Section 3 the equivalence of the four
properties mentioned above is established. In Section 4 we obtain some comparison
results. As a corollary, sufficient conditions on equation parameters and the initial
function are established providing that the solution of the initial value problem is
positive. At last, in Section 5 we suggest some explicit non-oscillation and oscillation
conditions for equation (1).

2. Preliminaries

We consider equation (1) under the following conditions:
(a1) ak : [t0,∞) → R (k ∈ N) are Lebesgue measurable functions, a(t) =∑∞

k=1 |ak(t)| is a locally essentially bounded function, where the series con-
verges uniformly on any bounded interval [t0, b].

(a2) hk : [t0,∞) → R (k ∈ N) are Lebesgue measurable functions, hk(t) ≤ t,
limt→∞ hk(t) = ∞, and

for all t, there exists n such that hk(t) ≤ t0 for k ≥ n. (3)

Together with equation (1) we consider for each t1 ≥ t0 the initial value problem

ẋ(t) +
∞∑

k=1

ak(t)x(hk(t)) = f(t) (t ≥ t1)

x(t) = ϕ(t) (t < t1), x(t1) = x0





. (4)
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We also assume that the following hypothesis holds.
(a3) f : [t1,∞) → R is a Lebesgue measurable locally essentially bounded function

and ϕ : (−∞, t1) → R is a Borel measurable bounded function.

Definition. A locally absolutely continuous on [t0,∞) function is called a solu-
tion of problem (4) if it satisfies equation (4)1 for almost all t ≥ t1 and equation (4)2
for t ≤ t1.

Lemma 1. Let conditions (a1) - (a3) hold. Then there exists one and only one
solution of problem (4).

Proof. Consider together with (4) the problem

ẏ(t) +
∞∑

k=1

ak(t)y(hk(t)) = g(t) (t ≥ t1)

y(t) = 0 (t < t1), y(t1) = x0





(5)

where

g(t) = f(t)−
∞∑

k=1

ak(t)ϕ(hk(t)) with ϕ(t) = 0 for t ≥ t1.

If y is a solution of problem (5), then

x(t) =
{

y(t) if t ≥ t1
ϕ(t) if t < t1

is a solution of problem (4). After substituting y(t) = y(t1) +
∫ t

t1
z(s) ds with z(t) =

ẏ(t) into (5)1 we obtain the operator equation

z(t) +
∞∑

k=1

ak(t)
∫ hk(t)

t1

z(s) ds = g(t)−
∞∑

k=1

ak(t)y(t1) (6)

where the sum in the left-hand side contains only such terms for which hk(t) ≥ t1.
Condition (3) implies that for every t the number of such terms is finite.

Suppose t2 > t1 is an arbitrary number and the integer n is such that

(t2 − t1) sup
t1<t<t2

∞∑

k=n+1

|ak(t)| < 1. (7)

Consider the operator H = H1 + H2 in the space L[t1,t2] of all integrable on [t1, t2]
functions with the usual norm, where the summands are defined by

(H1z)(t) =
n∑

k=1

ak(t)
∫ hk(t)

t1

z(s) ds

(H2z)(t) =
∞∑

k=n+1

ak(t)
∫ hk(t)

t1

z(s) ds.
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Inequality (7) implies that in the space L[t1,t2] the inequality r(H2) ≤ ‖H2‖ < 1
holds, where r(H2) and ‖H2‖ are the spectral radius and the norm of the operator
H2 in this space, respectively. The operator H1 is a finite sum of integral compact
Volterra operators, hence (see [4: p. 519]) r(H1) = 0 and then (see [1: p. 56])
r(H) = r(H1 + H2) = r(H2) < 1. Consequently, equation (6) has a unique solution,
hence problem (5) also has a unique solution and therefore the same is true for
problem (4)

Definition. For each s ≥ t0 the solution X(t, s) of the problem

ẋ(t) +
∞∑

k=1

ak(t)x(hk(t)) = 0, x(t) = 0 (t < s), x(s) = 1 (8)

is called a fundamental function of equation (1).

We assume X(t, s) = 0 for t0 ≤ t < s. Lemma 1 implies that X(t, s) exists.

Lemma 2. Let conditions (a1) - (a2) hold. Then for the fundamental function
X(t, s) of equation (1) we have the estimate

|X(t, s)| ≤ exp
{ ∞∑

k=1

∫ t

s

|ak(τ)| dτ

}
.

Proof. Let x(t) = X(t, s) for t ≥ s. Equalities (8) imply

x(t) = 1−
∞∑

k=1

∫ t

s

ak(τ)x(hk(τ)) dτ.

Denote y(t) = sups≤ξ≤t |x(ξ)|. Then

y(t) ≤ 1 +
∞∑

k=1

∫ t

s

|ak(τ)|y(τ) dτ.

The Gronwall-Bellman inequality implies the inequality in question

Theorem 1. Let conditions (a1) - (a3) hold. Then there exists one and only one
solution x of problem (4) that with the fundamental function X(t, s) of equation (1)
can be presented in the form

x(t) = X(t, t1)x0 +
∫ t

t1

X(t, s)f(s) ds

−
∞∑

k=1

∫ t

t1

X(t, s)ak(s)ϕ(hk(s)) ds

(9)

where ϕ(hk(s)) = 0 if hk(s) > t1.

Proof. Lemmas 1 and 2 imply that the solution of problem (4) exists, it is unique
and the sum in (9) is well defined. By direct computation one can see that function
(9) is the solution of problem (4)
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3. Non-oscillation criteria

In this section we investigate conditions providing the existence of a solution of
problem (4) which is positive together with the initial function. Theorem 2 is the
main result of the present paper.

Definition. We will say that equation (1) has a non-oscillatory solution if for
some t1 ≥ t0, ϕ(t) ≥ 0, x0 > 0 the solution of problem (4) is positive. Otherwise all
solutions of equation (1) are oscillatory.

Remark. For the case of finite number of delays, if equation (1) has an even-
tually positive solution, then it has a positive solution with a non-negative initial
function. Hence our definition of non-oscillation and the usual one for equations
with finite number of delays are equivalent. This is also valid for equations with
infinite number of delays satisfying inequality (2).

Consider together with equation (1) the delay differential inequality

ẏ(t) +
∞∑

k=1

ak(t)y(hk(t)) ≤ 0. (10)

For this inequality the definition of non-oscillation is the same as for equation (1).
The following theorem establishes non-oscillation criteria.

Theorem 2. Suppose conditions (a1) - (a3) hold and ak(t) ≥ 0 (k ∈ N). Then
the following hypotheses are equivalent:

1) Inequality (10) has a non-oscillatory solution.

2) There exists t1 ≥ t0 such that the inequality

u(t) ≥
∞∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s) ds

}
(t ≥ t1) (11)

has a non-negative locally integrable solution, where the sum contains only
terms for which hk(t) ≥ t1.

3) There exists t1 ≥ t0 such that for the fundamental function of equation (1)
we have X(t, s) > 0 for t ≥ s ≥ t1.

4) Equation (1) has a non-oscillatory solution.

Remark. Condition (3) implies that for every t the sum in (11) contains only
finite numbers of terms. We will suppose, without loss of generality, that for solutions
u of inequality (11) we have u(t) = 0 for t ≤ t1.

Proof of Theorem 2. In [2: Theorem 1] the equivalence of statements 1) - 4)
was proved for an equation with a finite number of delays. The proof of the present
theorem is similar to one of [2: Theorem 1]. Therefore we will give only a scheme of
it.
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1) ⇒ 2): Let y be a positive solution of inequality (10) for t ≥ t1 with non-
negative initial function ϕ(t) ≥ 0. Denote

u(t) = − d

dt
ln

y(t)
y(t1)

(t ≥ t1).

Then

y(t) = y(t1) exp
{
−

∫ t

t1

u(s) ds

}
(t ≥ t1).

We substitute this into (10) and obtain by carrying the exponent out of the brackets

− exp
{
−

∫ t

t1

u(s) ds

}
y(t1)

[
u(t)−

∞∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s )ds

}]

+
∞∑

k=1

′
ak(t)ϕ(hk(t)) ≤ 0

(12)

where the sum
∑′ contains such terms that hk(t) < t1. Since y(t) > 0 and ak(t) ≥ 0,

then (12) implies (11).
2) ⇒ 3): Step 1. Consider the initial value problem

ẋ(t) +
∞∑

k=1

ak(t)x(hk(t)) = f(t) (t ≥ t1)

x(t) = 0 (t ≤ t1)





. (13)

Denote
z(t) = ẋ(t) + u(t)x(t) with z(t) = 0 for t ≤ t1 (14)

where x is the solution of problem (13) and u is a non-negative solution of inequality
(11). Equality (14) implies

x(t) =
∫ t

t1

exp
{
−

∫ t

s

u(τ) dτ

}
z(s) ds (t ≥ t1). (15)

After substituting this into (13) and some transformations problem (13) can be rewrit-
ten in the form

z −Hz = f (16)

where

(Hz)(t) =
∫ t

t1

exp
{
−

∫ t

s

u(τ) dτ

}
z(s) ds

×
[
u(t)−

∞∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s) ds

}]

+
∞∑

k=1

ak(t)
∫ t

hk(t)

exp
{
−

∫ hk(t)

s

u(τ) dτ

}
z(s) ds.
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Inequality (11) yields that if z(t) ≥ 0, then (Hz)(t) ≥ 0 (i.e. the operator H is
positive).

We have

0 ≤ u(t)−
∞∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s) ds

}
≤ u(t)

and

0 ≤
∞∑

k=1

ak(t)
∫ t

hk(t)

exp
{
−

∫ hk(t)

s

u(τ) dτ

}
z(s) ds

≤
∫ t

t1

a(t)z(s) ds.

Then for every b > t1 the operator H : L[t1,b] → L[t1,b] is the sum of compact integral
Volterra operators. Hence for its spectral radius we have r(H) = 0 < 1. Thus if in
(16) f(t) ≥ 0, then

z(t) = f(t) + (Hf)(t) + (H2f)(t) + . . . ≥ 0.

The solution of problem (13) has form (15), with z being a solution of equation (16).
Hence if in (13) f(t) ≥ 0, then for the solution x of this equation x(t) ≥ 0. On
the other hand, the solution of problem (13) can be presented in form (9): x(t) =∫ t

t1
X(t, s)f(s) ds. As was shown above, f(t) ≥ 0 implies x(t) ≥ 0. Consequently, the

kernel of the integral operator is non-negative, i.e. X(t, s) ≥ 0 for t ≥ s > t1.

Step 2. Let us prove that in fact the strict inequality X(t, s) > 0 holds. Denote

x(t) = X(t, t1)− exp
{
−

∫ t

t1

u(s) ds

}
, x(t) = 0 for t < t1.

After substitution one can see that this function is a solution of problem (13) with
f(t) ≥ 0. Hence as proved above, x(t) ≥ 0. Consequently,

X(t, t1) ≥ exp
{
−

∫ t

t1

u(s) ds

}
> 0.

For s > t1 the inequality X(t, s) > 0 can be proved similarly.

3) ⇒ 4): A function x(t) = X(t, t1) is a positive solution of equation (1) for
t ≥ t1. The implication 4) ⇒ 1) is evident
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4. Comparison theorems and existence of a
positive solution

Theorem 2 can be employed for obtaining comparison results in oscillation theory.
To this end consider together with equation (1) the following one

ẋ(t) +
∞∑

k=1

bk(t)x(hk(t)) = 0 (t ≥ t0). (17)

In this section we suppose that conditions (a1) - (a2) hold for equations (1) and (17).
Denote by Y (t, s) the fundamental function of equation (17).

Theorem 3. Suppose ak(t) ≥ 0 and ak(t) ≥ bk(t) (t ≥ t1) and equation (1) has
a positive solution for t ≥ t1. Then equation (17) has a positive solution for t ≥ t1,
and for its fundamental function Y (t, s) we have Y (t, s) > 0 for t ≥ s ≥ t1.

Proof. Consider the problem

ẋ(t) +
∞∑

k=1

bk(t)x(hk(t)) = f(t) (t ≥ t1)

x(t) = 0 (t ≤ t1)





. (18)

We will show that if f(t) ≥ 0, then the solution of this problem is non-negative. To
this end rewrite the problem in the form

ẋ(t) +
∞∑

k=1

ak(t)x(hk(t)) +
∞∑

k=1

[bk(t)− ak(t)]x(hk(t)) = f(t) (t ≥ t1)

x(t) = 0 (t ≤ t1)





.

Substitute herein

x(t) =
∫ t

t1

X(t, s)z(s) ds

where X is the fundamental function of equation (1). Then problem (18) is equivalent
to the equation

z − Tz = f (19)

where

(Tz)(t) =
∫ t

t1

X(t, s)
∞∑

k=1

[ak(t)− bk(t)]χk(t, s)z(s) ds

and

χk(t, s) =
{

1 if t1 ≤ s ≤ hk(t)
0 if hk(t) < s or hk(t) < t1.

Lemma 2 yields that the integral Volterra operator T is a compact one acting in the
space of integrable functions L[t1,b] for every b > t1. Then for the spectral radius
of this operator we have r(T ) = 0 < 1. Theorem 2 implies that X(t, s) > 0 for
t ≥ s ≥ t1, hence the operator T is positive. Therefore for the solution z of equation
(19) we have

z(t) = f(t) + (Tf)(t) + . . . ≥ 0 if f(t) ≥ 0.

Then, as in the proof of Theorem 2, we conclude Y (t, s) > 0 for t ≥ s ≥ t1 and
therefore x(t) = Y (t, t1) is a positive solution of equation (21)
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Corollary 1. Suppose ak(t) ≥ 0 and ak(t) ≥ bk(t), and equation (1) has a
non-oscillatory solution. Then equation (21) has a non-oscillatory solution.

Denote a+ = max{a, 0}.
Corollary 2. If the equation

ẋ(t) +
∞∑

k=1

a+
k (t)x(hk(t)) = 0

has a non-oscillatory solution, then equation (1) has a non-oscillatory solution.

Corollary 2 can be employed for obtaining a comparison result which improves
the statement of Theorem 3.

Consider the equation

ẋ(t) +
∞∑

k=1

bk(t)x(gk(t)) = 0. (20)

Suppose conditions (a1) - (a2) hold for it and denote by Y (t, s) its fundamental
function.

Theorem 4. Suppose ak(t) ≥ 0 and equation (1) has a non-oscillatory solution.
If

bk(t) ≤ ak(t) and hk(t) ≤ gk(t), (21)

then equation (20) has a non-oscillatory solution, and for some t1 ≥ t0 for its fun-
damental function Y (t, s) we have Y (t, s) > 0 for t ≥ s ≥ t1.

Proof. Theorem 2 implies that for some t1 ≥ t0 there exists a non-negative
solution u of inequality (11) for t ≥ t1. Inequalities (21) yield that this function is
also a solution of the inequality

v(t) ≥
∞∑

k=1

b+
k (t) exp

{ ∫ t

gk(t)

v(s) ds

}
(t ≥ t1)

where the sum contains only terms for which gk(t) ≥ t1. Hence by Corollary 2 of
Theorem 3 equation (20) has a positive solution for t ≥ t1 and the fundamental
function of this equation is positive

Corollary. Suppose 0 ≤ ak(t) ≤ bk(t) and gk(t) ≤ hk(t), and all solutions of
equation (1) are oscillatory. Then all solutions of equation (20) are oscillatory.

Inequality X(t, s) > 0 can be employed for comparison of solutions. To this end
consider together with problem (4) the initial value problem

ẏ(t) +
∞∑

k=1

bk(t)y(hk(t)) = g(t) (t ≥ t1)

y(t) = ψ(t) (t < t1), y(t1) = y0





. (22)

Suppose conditions (a1) - (a3) hold for this problem. Denote by x(t), X(t, s) and
y(t), Y (t, s) the solution and fundamental function of problems (4) and (22), respec-
tively.
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Theorem 5. Suppose there exists a non-negative solution of inequality (11) for
t ≥ t1, x(t) > 0,

ak(t) ≥ bk(t) ≥ 0, g(t) ≥ f(t), ϕ(t) ≥ ψ(t) ≥ 0 (t < t1)

and y0 ≥ x0 > 0. Then y(t) ≥ x(t) > 0.

Proof. Denote by u a non-negative solution of inequality (11). The inequality
ak(t) ≥ bk(t) yields that the function u(t) is also a solution of the inequality corre-
sponding to inequality (11) for equation (22)1. Hence, by Theorem 1, X(t, s) > 0
and Y (t, s) > 0 for t1 ≤ s < t. Rewrite equation (4)1 as

ẋ(t) +
∞∑

k=1

bk(t)x(hk(t)) =
∞∑

k=1

[bk(t)− ak(t)]x(hk(t)) + f(t) (t ≥ t1).

Hence

x(t) = Y (t, t1)x0 −
∞∑

k=1

∫ t

t1

Y (t, s)bk(s)ϕ(hk(s)) ds

+
∫ t

t1

Y (t, s)f(s) ds−
∞∑

k=1

∫ t

t1

Y (t, s)[ak(s)− bk(s)]x(hk(s)) ds

and

y(t) = Y (t, t1)y0 −
∞∑

k=1

∫ t

t1

Y (t, s)bk(s)ψ(hk(s)) ds +
∫ t

t1

Y (t, s)g(s) ds

where ϕ(hk(s)) = ψ(hk(s)) = 0 if hk(s) ≥ t1 and x(hk(s)) = 0 if hk(s) < t1.
Therefore y(t) ≥ x(t) > 0

Corollary. Suppose ak(t) ≥ 0, x and y are positive solutions of equation (1) and
inequality (10), respectively, for t ≥ t1, with the same non-negative initial function
and positive initial value. Then x(t) ≥ y(t) for t > t1.

Now we proceed to the existence of a positive solution for equation (1). We will
show that if inequality (11) has a non-negative solution for t ≥ t1 and the condition

0 ≤ ϕ(t) ≤ x(t1) = x0 (t ≤ t1, x0 > 0) (23)

holds, then the solution of the initial value problem (4) is positive. This result
supplements some statements in [2, 6, 7] obtained for equations with a finite number
of delays.

Theorem 6. Suppose ak(t) ≥ 0, f(t) ≥ 0, there exists a non-negative solution
of the inequality

u(t) ≥
∞∑

k=1

ak(t)
∫ t

max{t1,hk(t)}
u(s) ds (t ≥ t1) (24)
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for a certain t1 ≥ t0, and conditions (23) holds. Then the solution of problem (4) is
positive for t ≥ t1.

Proof. First assume f ≡ 0. Consider the auxiliary problem

ż(t) +
∞∑

k=1

ak(t)z(hk(t)) = 0 (t ≥ t1)

z(t) = x0 (t ≤ t1)





.

Let u(t) ≥ 0 be a non-negative solution of inequality (24). Denote

v(t) =

{
x0 exp{− ∫ t

t1
u(s)ds} if t ≥ t1

x0 if t < t1

and for a fixed t ≥ t1 define the sets

N1(t) = {k : hk(t) ≥ t1}
N2(t) = {k : hk(t) < t1}.

We obtain

v̇(t) +
∞∑

k=1

ak(t)v(hk(t))

= −x0u(t) exp
{
−

∫ t

t1

u(s) ds

}

+ x0

∑

k∈N1(t)

ak(t) exp
{
−

∫ hk(t)

t1

u(s) ds

}
+ x0

∑

k∈N2(t)

ak(t)

= −x0 exp
{
−

∫ t

t1

u(s) ds

}[
u(t)−

∑

k∈N1(t)

ak(t) exp
{ ∫ t

hk(t)

u(s) ds

}

−
∑

k∈N2(t)

ak(t) exp
{ ∫ t

t1

u(s) ds

}]

= −x0 exp
{
−

∫ t

t1

u(s) ds

}[
u(t)−

∑

k∈N1(t)

ak(t) exp
{ ∫ t

max{t1,hk(t)}
u(s) ds

}

−
∑

k∈N2(t)

ak(t) exp
{ ∫ t

max{t1,hk(t)}
u(s) ds

}]

= −x0 exp
{
−

∫ t

t1

u(s) ds

}[
u(t)−

∞∑

k=1

ak(t) exp
{ ∫ t

max{t1,hk(t)}
u(s) ds

}]

≤ 0.

Obviously, inequality (24) implies inequality (11). Thus Corollary of Theorem 5
yields z(t) ≥ v(t) > 0. Conditions (23) and Theorem 5 imply x(t) ≥ z(t) > 0 for
t ≥ t1. For the case f ≡ 0 the theorem is proved. The general case is a consequence
of Theorem 5 since f(t) ≥ 0



814 L. Berezansky and E. Braverman

5. Explicit conditions of oscillation and non-oscillation

In this section we will generalize some well known results for differential equations
with finite number of delays. Some of these results one can see in the monographs
[5, 6, 8].

We will begin with non-oscillation conditions.

Theorem 7. Let conditions (a1) - (a2) hold and let there exist λ > 0 and t1 ≥ t0
such that at least one the two inequalities

sup
t≥t1

∞∑

k=1

a+
k (t) exp{λ(t− hk(t))} ≤ λ

sup
t≥t1

∑∞
k=1 a+

k (t) exp
{
λ

∫ t

hk(t)

∑∞
k=1 a+

k (s) ds
}

∑∞
k=1 a+

k (t)
≤ λ

(25)

hold where the sums contains only terms for which hk(t) ≥ t1. Then equation (1) has
a non-oscillatory solution.

Proof. Inequality (25)1 implies that the function u(t) = λ is a positive solution
of inequality (11), where ak(t) are replaced by a+

k (t). Corollary 2 of Theorem 3
implies that equation (1) has a non-oscillatory solution. If inequality (25)2 holds,
then the function u(t) = λ

∑∞
k=1 a+

k (t) is a non-negative solution of inequality (11)

Example 1. Consider the autonomous equation with infinite number of delays

ẋ(t) +
∞∑

k=1

bke−kx(t− k) = 0 (33)

where bk ≥ 0 and
∑∞

k=1 bk < 1. It is easy to see that λ = 1 is a solution of inequality
(25)1. Hence the equation has a non-oscillatory solution.

Now we proceed to oscillation conditions. The following statement is an imme-
diate corollary of comparison Theorem 3.

Theorem 8. Suppose conditions (a1) - (a2) hold, ak(t) ≥ 0, there exist indices
ki (i ∈ N) such that all solutions of the equation

ẋ(t) +
∑

ki

aki(t)x(hki(t)) = 0

are oscillatory. Then all solutions of equation (1) are oscillatory.

Corollary. Suppose conditions (a1) - (a2) hold, ak(t) ≥ 0 and there exists an
index k such that

lim sup
t→∞

∫ t

hk(t)

ak(s) ds >
1
e
.

Then all solutions of equation (1) are oscillatory.
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Theorem 9. Suppose conditions (a1) - (a2) hold, ak(t) ≥ 0, there exist indices
ki such that

lim inf
t→∞

(t− hki
(t)) > 0 and lim inf

t→∞

∑

ki

aki(t) > 0

lim inf
t→∞

[
inf
λ>0

{
1
λ

∞∑

k=1

ak(t) exp{λ(t− hk(t))}
}]

> 1.

(26)

Then all solutions of equation (1) are oscillatory.

Corollary. Suppose conditions (a1) - (a2) hold, ak(t) ≥ 0, there exist indices ki

such that (26)1 holds and

lim inf
t→∞

∞∑

k=1

ak(t)(t− hk(t)) >
1
e
.

Then all solutions of equation (1) are oscillatory.

Proof. The proof of Theorem 9 and its corollary is the same as for [6: Theorem
3.4.2 and its corollary] for the case of finite number of delays

Example 2. Consider the equation

ẋ(t) +
∞∑

k=1

ak

t
x(µkt) = 0

where ak ≥ 0 and 1 > µk > 0. If
∑∞

k=1 ak < ∞ and
∑∞

k=1 ak(1 − µk) > 1
e , then all

solutions of this equation are oscillatory.

For a general autonomous equation we will obtain well known criteria of non-
oscillation. To this end consider the equation

ẋ(t) +
∞∑

k=1

akx(t− τk) = 0. (27)

Theorem 10. Suppose ak ≥ 0, τk > 0,
∑∞

k=1 ak < ∞ and limt→∞ τk = ∞.
Equation (27) has a non-oscillatory solution if and only if its characteristic equation

λ =
∞∑

k=1

ak exp{λτk} (28)

has a positive solution.

Proof. Suppose equation (28) has no positive solution. Then

inf
λ>0

{
1
λ

∞∑

k=1

ak exp{λτk}
}

> 1.

Theorem 9 implies that all the solutions of equation (27) are oscillatory.

It is easy to see that if in assumptions of Theorem 10
∑∞

k=1 akτk > 1
e , then all

solutions of equation (27) are oscillatory.
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