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An Extension of the Notion of Zero-Epi Maps
to the Context of Topological Spaces

M. Furi and A. Vignoli

Abstract. We introduce the class of hyper-solvable equations whose concept may be
regarded as an extension to the context of topological spaces of the known notion of 0-
epi maps. After collecting some notation, definitions and preliminary results we give
a homotopy principle for hyper-solvable equations. We provide examples showing
how these equations arise in the framework of Leray-Schauder degree, Lefschetz
number theory and essential compact vector fields in the sense of A. Granas.
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1. Introduction

The main purpose of this work is to extend the definition and properties
of 0-epi (zero-epi) maps to the context of topological spaces. For readers’s
convenience we recall here the definition as expounded in [4]:

Given two Banach spaces E and F , and a bounded open subset U of E, a
continuous map f : U → F defined on the closure U of U is called 0-admissible
(zero-admissible) provided that f(x) 6= 0 for x ∈ ∂U – the boundary of U .
Now, a 0-admissible map f is said to be 0-epi (zero-epi) if the equation f(x) =
h(x) admits a solution in U for any (continuous) compact map h : U → F
such that h(x) = 0 for x ∈ ∂U .

The class of 0-epi maps enjoys properties akin to those satisfied both by
Brouwer and Leray-Schauder (topological) degree. In particular, 0-epi maps
satisfy the following continuation (or homotopy) principle, which shows that if
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f is 0-epi, then the solvability of the equation f(x) = 0 is stable under a class
of perturbations which is considerably larger than that used in the definition
of 0-epi map.

Theorem 1.1. Let f : U → F be 0-epi and let H : U × [0, 1] → F be a
(continuous) compact homotopy such that H(x, 0) = 0 for any x ∈ U . Assume
that f(x)+H(x, t) 6= 0 for all (x, t) ∈ ∂U× [0, 1]. Then, the map f(·)+H(·, 1)
is 0-epi.

We refer the reader to [4] for the proof of this result and some of its
applications.

The equations we consider in this paper are of the type f(x) = h(x), where
f and h are continuous maps between two topological spaces, the second one
being locally compact. Given such an equation, our purpose is to provide
conditions ensuring that its solvability is not destroyed under a sufficiently
large class of perturbations of h. In our opinion, a reasonable class, call it
C, is represented by those maps that can be joined to h through a locally
compact homotopy which, loosely speaking, maintains a priori bounds on the
set of solutions during the deformation (Theorem 3.1 will clarify the exact
nature of C).

Now, a comparison with the theory of 0-epi maps leads us to look for a con-
veniently small subclass C0 of C such that when the solvability of f(x) = h(x)
is preserved under perturbations in C0, it is still preserved under perturba-
tions in the larger class C. Clearly, the smaller is C0, the easier is to check
whether or not the solvability of the equation f(x) = h(x) is stable under
perturbations in C0.

It seems to us that, given C as above, a convenient subclass C0 of C with
the above requirements (and probably the smallest one) is given by those
maps obtained (at λ = 1) by means of a homotopy satisfying conditions (a)
- (c) of Definition 2.6 below. An equation whose solvability is stable under
perturbations in C0 will be called hyper-solvable.

In Section 3 we prove a continuation result, Theorem 3.1, which implies
that hyper-solvable equations are actually invariant under perturbations be-
longing to the class C. Examples showing how these equations arise naturally
in the framework of topological fixed point theory are given in Section 4.

2. Preliminaries

In what follows X and Y will stand for arbitrary topological spaces, and any
map considered in this paper is assumed to be continuous. In some statements
the space X is assumed to be T4, i.e. Hausdorff and normal.
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Some of the definitions that follow are standard. We include them for
completeness sake.

Definition 2.1. A map f : X → Y is said to be
(i) compact if f(X) is a relatively compact subset of Y (i.e., the closure

f(X) of f(X) is a compact set);
(ii) locally compact if for any x ∈ X there exists a neighborhood Ux of x

with f(Ux) relatively compact in Y .

Obviously, if X is a locally compact space, then any map f : X → Y is
locally compact.

We recall that a subset A of a (real) topological vector space E is said to
be bounded if for any neighborhood U of the origin there exists δ > 0 such
that λA ⊂ U for |λ| < δ.

Definition 2.2. Assume that X is a subset of a topological vector space
E and let Y be as above. A map f : X → Y is said to be completely continuous
if it maps bounded subsets of X into relatively compact subsets of Y .

Clearly, if E is a normed space and f is completely continuous, then f
is also locally compact. Notice that this is not true in general when E is a
topological vector space, since E need not be locally bounded. For example,
an infinite dimensional Banach space with its weak topology is never locally
bounded, because any weak neighborhood of the origin contains a straight
line.

The following definition is not standard. As a matter of fact it is at the
heart of this paper, together with the other two definitions that follow.

Definition 2.3. Let H : X × [0, 1] → Y be a homotopy. By DisH we
denote the set of those points of X which are displaced by H. Namely,

Dis H =
{

x ∈ X : H(x, 0) 6= H(x, λ) for some λ ∈ [0, 1]
}

.

Definition 2.4. A locally compact homotopy H : X × [0, 1] → Y is said
to be conditionally compact if H(Dis H × [0, 1]) is a relatively compact subset
of Y . In other words, H is conditionally compact if it is locally compact on
X × [0, 1] and actually compact on Dis H × [0, 1].

The following example shows that a conditionally compact homotopy need
not be compact.

Example 2.5. Let E and F be Banach spaces. Define a homotopy H :
E × [0, 1] → F by H(x, λ) = h(x) + λk(x), where h is completely continuous,
but not compact, and k is compact with bounded support. Now, DisH is
obviously contained in the support of k. Thus H, being completely continuous,
sends Dis H × [0, 1] into a relatively compact set.
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Definition 2.6. Let f, h : X → Y be two maps, with h locally compact.
Given a (possibly empty) subset A of X, we say that the coincidence equation
f(x) = h(x) is

(i) admissible rel A (or simply admissible, when A = ∅) if the (coinci-
dence) set

Σ0 =
{
x ∈ X : f(x) = h(x)

}

is compact (possibly empty) and does not intersect A;
(ii) hyper-solvable (from X into Y ) rel A (or simply hyper-solvable, when

A = ∅), if it is admissible rel A and the equation f(x) = H(x, 1) has a solution
whenever H : X×[0, 1] → Y is a homotopy satisfying the following conditions:

(a) H(x, 0) ≡ h(x) (i.e., H starts from h)
(b) H is conditionally compact
(c) the set Σ =

{
(x, λ) ∈ X × [0, 1] : f(x) = H(x, λ)

}
is compact and

does not intersect A× [0, 1].

Remark 2.7. If the equation f(x) = h(x) is hyper-solvable rel A, then
it has a solution in X \ A. To see this define H(x, λ) = h(x) for any (x, λ) ∈
X × [0, 1] and observe that properties (a) - (c) of Definition 2.6 are fulfilled.

Clearly, any compact homotopy is conditionally compact. The follow-
ing result provides a sufficient (and, obviously, necessary) condition for the
converse to hold true.

Proposition 2.8. Let H : X × [0, 1] → Y be a conditionally compact
homotopy. Assume that the starting map h(x) = H(x, 0) is compact. Then,
H is compact.

Proof. We have
H(X × [0, 1]) ⊂ H(Dis H × [0, 1]) ∪H

(
(X\Dis H)× [0, 1]

)

= H(Dis H × [0, 1]) ∪ h(X\DisH)

⊂ H(Dis H × [0, 1]) ∪ h(X\DisH)

and the assertion is proved

The following result has been suggested to us by Jorge Ize.

Proposition 2.9. Let Y be a topological vector space and H : X×[0, 1] →
Y be a homotopy. Define h(x) = H(x, 0) and G(x, λ) = H(x, λ)−h(x). Then,
the set H(Dis H × [0, 1]) is relatively compact if and only if the starting map
h is compact on DisH and the perturbing homotopy G is compact.

Proof. Assume that h is compact on Dis H and G is compact. We have
to show that H(Dis H× [0, 1]) is a relatively compact set. This follows at once
from the inclusion

H(Dis H × [0, 1]) ⊂ h(Dis H) + G(Dis H × [0, 1]).
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Assume now that H = h + G is conditionally compact. We have to show
that h(Dis H) and G(X × [0, 1]) are relatively compact sets. The first set is
relatively compact since

h(DisH) = H(Dis H × {0}) ⊂ H(Dis H × [0, 1]).

As far as the second set regards notice that

G(X × [0, 1]) = G(Dis H × [0, 1]) ∪ {0}

and
G(DisH × [0, 1]) ⊂ H(Dis H × [0, 1]) + (−h(DisH)).

Thus the assertion is proved

3. Continuation principle

The following result can be regarded as a sort of homotopy invariance for
hyper-solvable equations. As indicated in Introduction, such a result shows
that the solvability of hyper-solvable equations is stable under a large class
of perturbations. In fact, the perturbing homotopy need not be conditionally
compact. The only requirement is its local compactness together with a sort
of a priori bounds on the set of solutions of the coincidence equation.

Tneorem 3.1 (Continuation principle for hyper-solvable equations). Let
f : X → Y be a map between two topological spaces, where X is T4, and let A
be a closed subset of X. Assume that G : X × [0, 1] → Y is a locally compact
homotopy such that the equation f(x) = G(x, 0) is hyper-solvable rel A. If the
set

Γ =
{
(x, λ) ∈ X × [0, 1] : f(x) = G(x, λ)

}

is compact and does not intersect A× [0, 1], then the equation

f(x) = G(x, 1)

is hyper-solvable rel A as well.

Proof. Let us show first that the equation

f(x) = G(x, 1)

has a solution. Let π1 : X × [0, 1] → X be the projection onto the first
factor and consider the compact set S = π1(Γ), which by assumption does not
intersect A. Since G is locally compact and A is closed, there exists an open
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neighborhood W of S such that W ∩ A = ∅ and G(W × [0, 1]) is relatively
compact in Y . Since X is Hausdorff, S is closed in X. Thus, being X normal,
by Urysohn’s lemma there exists a continuous function σ : X → [0, 1] such
that σ(x) = 0 if x /∈ W and σ(x) = 1 if x ∈ S. Consider the homotopy
H(x, λ) = G(x, λσ(x)), which is conditionally compact, since Dis H ⊂ W and
consequently

H(DisH × [0, 1]) ⊂ H(W × [0, 1]) ⊂ G(W × [0, 1]),

the last set being relatively compact.

The homotopy H satisfies also property (c) of Definition 2.6, since the set

Σ =
{
(x, λ) ∈ X × [0, 1] : f(x) = H(x, λ)

}

coincides with Γ. Indeed, if (x, λ) belongs to either Σ or Γ, then x ∈ S, and
therefore σ(x) = 1. Since the equation f(x) = H(x, 0) is hyper-solvable rel A,
there exists x̄ ∈ X \ A such that f(x̄) = H(x̄, 1). Consequently, the equality
Σ = Γ implies f(x̄) = G(x̄, 1).

It remains to show that the equation f(x) = G(x, 1) is actually hyper-
solvable rel A. To this end consider a locally compact homotopy

Ĥ : X × [0, 1] → Y

with the following properties:

(a) Ĥ(x, 0) ≡ G(x, 1)

(b) Ĥ is conditionally compact

(c) the set
{
(x, λ) ∈ X × [0, 1] : f(x) = Ĥ(x, λ)

}
is compact and does not

intersect A× [0, 1].

We have to show that the equation f(x) = Ĥ(x, 1) is solvable. To see this
define the homotopy

Ĝ(x, λ) =
{

G(x, 2λ) if λ ∈ [0, 1
2 ]

Ĥ(x, 2λ− 1) if λ ∈ [ 12 , 1]

which is clearly locally compact, and conclude as above that the equation
f(x) = Ĝ(x, 1) has a solution (in X \A)

The following result is a useful consequence of the above Continuation
Principle.
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Corollary 3.2. Let X be a T4 space, A a closed subset of X and Y a
topological vector space. Then, f(x) = h(x) is hyper-solvable rel A if and only
if so is f(x)− h(x) = 0.

Proof. Assume that f(x)−h(x) = 0 is hyper-solvable rel A. Let us show
that f(x) = h(x) is hyper-solvable rel A as well. We need to prove that if
H : X × [0, 1] → Y is a locally compact homotopy satisfying properties (a) -
(c) of Definition 2.6, then the equation f(x) = H(x, 1) has a solution. To this
end observe first that the homotopy

G(x, λ) = H(x, λ)− h(x)

is locally compact as well. Moreover, the set

Γ =
{
(x, λ) ∈ X × [0, 1] : f(x)− h(x) = G(x, λ)

}

coincides with the set

Σ =
{
(x, λ) ∈ X × [0, 1] : f(x) = H(x, λ)

}

which is compact because of assumption c). Since f(x) − h(x) = 0 is hyper-
solvable rel A, by Theorem 3.1 so is the equation f(x) − h(x) = G(x, 1). In
particular, f(x) = H(x, 1) has a solution. Thus, f(x) = h(x) is hyper-solvable
rel A. The converse implication follows analogously

4. Examples of hyper-solvable equations

The following result shows that the concept of hyper-solvable equation may
be regarded as an extension of the notion of 0-epi map introduced in [4].

Theorem 4.1. Let f : U → F be a map from the closure of a bounded
open set U of a Banach space E into a Banach space F . If f is 0-epi, then
the equation f(x) = 0 is hyper-solvable rel ∂U . If, moreover, f is proper, then
the converse implication holds.

Proof. Assume that f is 0-epi and consider a conditionally compact ho-
motopy H : U → F with H(x, 0) ≡ 0 and

Σ =
{
(x, λ) ∈ U × [0, 1] : f(x) = H(x, λ)

}

compact and disjoint from ∂U × [0, 1]. By Proposition 2.8, H is a compact
homotopy. Thus, because of the Homotopy Property of 0-epi maps (see [4]),
the equation f(x) = H(x, 1) has a solution (in U). Hence, f(x) = 0 is hyper-
solvable rel ∂U .
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Assume now that f(x) = 0 is hyper-solvable rel ∂U and let h : U → F be
any compact map such that h(x) = 0 for all x ∈ ∂U . Define H(x, λ) = λh(x)
for (x, λ) ∈ U × [0, 1]. The homotopy H is clearly conditionally compact,
being h a compact map. Moreover, the set

Σ =
{
(x, λ) ∈ U × [0, 1] : f(x) = H(x, λ)

}

does not intersect ∂U × [0, 1], because for x ∈ ∂U one has f(x) 6= 0 (being
f(x) = 0 hyper-solvable rel ∂U) and h(x) = 0 (by assumption). We show now
that Σ is compact. In fact, let K denote the closure of the relatively compact
set H(U × [0, 1]). Since f is proper, the set f−1(K) is compact. Now, observe
that Σ ⊂ f−1(K)× [0, 1]. Thus, Σ is compact, as claimed.

Being f(x) = 0 hyper-solvable rel ∂U , there exists x̄ ∈ U such that f(x̄) =
H(x̄, 1) = h(x̄). Hence, f is 0-epi

Example 4.2. The equation x = 0 is hyper-solvable in Rn (i.e., from Rn

into itself). To see this, take a homotopy H : Rn × [0, 1] → Rn according to
Definition 2.6. By Proposition 2.8, H is a compact map. Take a closed ball
D containing the closure of H(Rn × [0, 1]) and apply the Brouwer fixed point
theorem to the map g : D → D given by g(x) = H(x, 1).

Remark 4.3. The assertion that the equation x = 0 is hyper-solvable in
Rn may be regarded as a reformulation of the Brouwer fixed point theorem.

With the same argument as in Example 4.2, replacing the Brouwer fixed
point theorem by that of Schauder, we get the following

Example 4.4. The equation x = 0 is hyper-solvable in any normed space.

The following result extends that in Example 4.4 and will be deduced from
the Schauder fixed point theorem, without any fixed-point index theory.

Theorem 4.5. Let X be a metrizable Absolute Neighborhood Retract
(ANR) and let p ∈ X. Then, the equation x = p is hyper-solvable in X.
In particular, a continuous map h : X → X has a fixed point whenever it is
homotopic to a constant map through a compact homotopy.

Proof. Let H : X × [0, 1] → X be a conditionally compact homotopy
such that H(x, 0) ≡ p. It is enough to show that the equation x = H(x, 1)
has a solution. By the Arens-Eells embedding theorem (see [1]), X can be
regarded as a closed subset of a normed space E. Since X is an ANR, there
exists an open neighborhood U of X in E and a retraction r : U → X. Define
σ : E → [0, 1] by

σ(x) =
d(x,E\U)

d(x,X) + d(x,E\U)
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where d stands for the distance in the normed space E. Because of Proposition
2.8, H is a compact homotopy. Thus, the continuous map h : E → E given
by

h(x) =
{

p if x ∈ E\U
H(r(x), σ(x)) if x ∈ U

is compact as well. Therefore, as a consequence of Schauder’s fixed point
theorem, there exists x̄ ∈ E such that x̄ = h(x̄). From the definition of h it
follows x̄ ∈ X. Hence, r(x̄) = x̄, σ(x̄) = 1 and, consequently, x̄ = H(x̄, 1)

The following is a consequence and an extension of the previous result.

Theorem 4.6. Let X be a metrizable ANR and let U ⊂ X be open.
Then, given p ∈ X\∂U , the equation x = p is hyper-solvable from U into X
rel ∂U if and only if p ∈ U (or, more generally, from U into X if and only if
p ∈ U).

Proof. We may assume p ∈ U , since by Remark 2.7 this condition is
necessary for the equation x = p to be hyper-solvable from U into X rel ∂U .
Let H : U × [0, 1] → X be a conditionally compact homotopy starting from
the constant map x 7→ p and such that the set

Σ =
{
(x, λ) ∈ U × [0, 1] : x = H(x, λ)

}

is compact and does not intersect ∂U × [0, 1]. We need to show that the
equation x = H(x, 1) has a solution. Denote by S the projection of Σ onto
the first factor of U × [0, 1]. Since Σ does not intersect ∂U × [0, 1], S is a
compact subset of U , which clearly contains p since (p, 0) ∈ Σ. Let V be any
open neighborhood of S with closure in U . Define σ : X → [0, 1] by

σ(x) =
d(x,X\V )

d(x, S) + d(x,X\V )

where d is any metric on X compatible with the topology. Define the homo-
topy G : X × [0, 1] → X by

G(x, λ) =
{

p if x ∈ X\V
H(x, λσ(x)) if x ∈ V .

Because of Proposition 2.8, H is a compact homotopy. Thus, so is G. Con-
sequently, from Theorem 4.5 we may deduce that the equation x = G(x, 1)
has a solution x̄ ∈ X, since x 7→ G(x, 1) is homotopic to the constant map
x 7→ p through G. Observe that x̄ ∈ V , since the contrary would lead to
the contradiction x̄ = p ∈ S ⊂ V . Hence, x̄ = G(x̄, 1) = H(x̄, σ(x̄)), and
this implies that x̄ ∈ S. The assertion that the equation x = H(x, 1) has a
solution now follows from the fact that σ(x) = 1 for all x ∈ S.

With the same argument, and just taking the homotopy H merely defined
on U × [0, 1], one can show that when p ∈ U the equation x = p is actually
hyper-solvable from U into X
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As an immediate consequence of the homotopy invariance of the Lefschetz
number (see, e.g., [2]) we get the following

Example 4.7. Let h : K → K be a map from a compact polyhedron into
itself. If the Lefschetz number Λ(h) of h is different from zero, then x = h(x)
is hyper-solvable.

Example 4.8. Let h : U → E be a compact map from the closure of a
bounded open subset U of a Banach space E into E. Assume that x 6= h(x) for
all x ∈ ∂U . If the Leray-Schauder degree deg (I−h,U, 0) is different from zero,
then x = h(x) is hyper-solvable rel ∂U . To see this, let H : U × [0, 1] → E be
a homotopy as in Definition 2.6. By Proposition 2.8, H is a compact map, and
by property (c) of Definition 2.6, x 6= H(x, λ) for all x ∈ ∂U . The assertion
now follows from the homotopy invariance of the Leray-Schauder degree.

The following example follows at once from the homotopy property of
essential compact vector fields introduced by Granas in [3].

Example 4.9. Let h : U → E be a compact map from the closure of a
bonded open subset U of a Banach space E into E. Assume that x 6= h(x) for
all x ∈ ∂U . If the compact vector field I − h is essential, then the equation
x = h(x) is hyper-solvable rel ∂U .
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