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A Transmission Problem with a Fractal Interface

M. R. Lancia

Abstract. In this paper we study a transmission problem with a fractal interface
K, where a second order transmission condition is imposed. We consider the case
in which the interface K is the Koch curve and we prove existence and uniqueness
of the weak solution of the problem in V (Ω, K), a suitable ”energy space”. The link
between the variational formulation and the problem is possible once we recover
a version of the Gauss-Green formula for fractal boundaries, hence a definition of
”normal derivative”.
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1. Introduction

In this paper we study some properties of the solution of a transmission prob-
lem with a fractal layer. In particular, we look for weak solutions in V (Ω,K),
a suitable space to be defined, of the transmission problem formally stated as

−∆u = g

C∆Ku =
[

∂u
∂n

]
K

u = 0

in Ωi (i = 1, 2)

in K \ {A,B}
on ∂Ω, [u] = 0 across K





(1.1)

where Ω is a bounded open set in R2 with regular or Lipschitz boundary
(for instance, we can think Ω = (0, 1) × (−1, 1)) and g is a given function
in L2(Ω). We assume the layer K to be a fractal curve and the set Ω to
be divided into two subsets Ω1 and Ω2 such that K = ∂Ω1 ∩ ∂Ω2, with the
result that Ω = Ω1 ∪ Ω2 ∪ K. By A and B we denote the points (0, 0) and
(1, 0), respectively, where K intersects ∂Ω. Just to fix the ideas, we choose K
to be the Koch curve throughout the paper and we denote by Df its fractal
dimension.
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Further, ∆ denotes the Laplace operator in R2, ∆K is the Laplace operator
defined on the layer K (see Subsection 3.2), the functions ui are the restriction
of u to Ωi (i = 1, 2), ui|K denotes the ”trace” of ui to K according to Definition
2.1, and [u] = u1|K − u2|K . We denote by ni the ”outward normal vector”
to Ωi so that ∂ui

∂ni
(i = 1, 2) (as it will be defined in (4.20) below) denotes the

trace to K of ”the normal derivative” of ui. The term [ ∂u
∂n ]K = ( ∂u1

∂n1
+ ∂u2

∂n2
),

classically, denotes the jump of the trace of the normal derivative across K
(here it will be necessary to establish in which sense they must be intended),
and C > 0 is a physical constant.

We point out that the transmission condition on the layer K is a second
order condition. Namely, the operator which is involved in the transmission
condition is a second order operator. Such a condition appears naturally in
electrostatics or magnetostatics: in these cases the constant C represents the
dielectric constant or the magnetic permeability, respectively. In the mathe-
matical literature, there are many papers dealing with transmission problems,
always assuming the interface K to be a regular curve or surface, and with
different transmission conditions (for a complete list of references see [27]).
The classical case (see [27]), the case of smooth interface, is the combination
of two elliptic boundary value problems in a domain Ω ⊂ R3 and in a domain
K ⊂ R2. The two problems are coupled via the transmission condition.

Our purpose in this paper is to consider the case of K a fractal interface.
The transmission condition puts in relation two different roles that a fractal
set may have from the point of view of partial differential equations. Indeed,
in problem (1.1), K occurs, on one side, as the boundary of the (Euclidean)
domains Ω1 and Ω2, and also, on the other side, as an intrinsic body supporting
a suitable Laplace operator. This double role of K in problem (1.1) is indeed
the main feature or interest of the present transmission problem.

In Section 2 we recall the definition and the properties of the Koch curve
and of some relevant functional spaces which will be used.

In Section 3 we define the energy form and the Laplace operator on the
Koch curve K. The construction of the energy form E and the related Laplace
operator on the Koch curve K follows the by now standard constructions given
in [10, 18, 19] for the Sierpinski gasket and the more general class of nested
fractals. The form E turns out to be a non-trivial closed Dirichlet form which
is regular and strongly local in the space L2(K, µ). The Laplacian on K is
the operator associated to the energy form E (see (3.6) and (3.7)).

In Section 4 we will consider the trace space on the Koch curve of H1(Ω)-
functions and we will obtain a Green formula for domains with a fractal bound-
ary. These trace spaces are a particular case of some more general spaces which
have been investigated by Jonsson and Wallin in [16] and by Triebel in [28].
Actually, their theory works for the class of the so-called Df -sets (the Koch
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curve is indeed a Df set). A Df -set, roughly speaking, is a set on which a
doubling measure is supported. More precisely, for u ∈ H1(Ω) the trace of u

on the Koch curve K is in the Besov space B2,2
β (K), with β equal to Df

2 .

We then introduce the dual of the space B2,2
β (K), β = Df

2 , for the Koch
curve which, as shown by Jonsson and Wallin [17], coincides with the space
B2,2
−β(K) – a subspace of Schwartz distributions supported on K. Finally, we

can give Green’s formula to deal with boundary value problems with fractal
boundary. This will allow us, by duality arguments, to define the trace of the
”normal derivative” as an element of the dual of the Besov space B2,2

β,0(K).

In Section 5 we state a variational principle for problem (1.1) (see The-
orem 5.2). We prove existence and uniqueness of the minimum in V (Ω,K)
(a suitable Hilbert space which is a sort of ”energy space” defined both on Ω
and on the layer K) of the energy functional

W0[u] =
∫

Ω

|Du|2dx1dx2 + CE[u|K ]− 2
∫

Ω

gu dx1dx2

where V (Ω,K) = {u ∈ H1
0 (Ω)| z = u|K ∈ D0}, D0 is the ”energy space” of

those functions vanishing on the boundary of K” defined at the end of Section
3, and u|K denotes the trace of u to K. Above L2(Ω) and H1

0 (Ω) denote the
usual Lesbegue and Sobolev spaces on the open set Ω, respectively.

The link between the variational problem and problem (1.1) – i.e. a
”strong interpretation” of the trace of the normal derivative, hence of the
transmission condition – is possible by the Green formula also for domains
with fractal boundaries.

In section 6 we give a ”strong” interpretation of the problem by proving
that the variational solution satisfies the transmission condition in the sense
of the dual of D0(K) (see Theorem 6.2). If u were more regular, say ∆Ku ∈
L2(K, µ), i.e. u ∈ D∆K

, then the transmission condition could be interpreted
in the L2-sense. This problem, as far as we know, was still an open problem
also in the case of the smooth layer considered in [27] and in the case of
Lipschitz interface, such as the prefractal curve approximating the Koch curve,
and it has been recently studied in [21].

As a final remark, we point out that Sections 2 and 3 and Subsection
4.1 contain many technical results – which we have recalled for completeness
– obtained by adapting to the present problem more general results due re-
spectively to Kusuoka, Fukushima, Mosco, Jonsson and Wallin. The principal
result is the formulation of the transmission condition given in Theorem 6.2.
This result requires the solution of some delicate problems, due to the pres-
ence of the fractal layer, which have been analyzed in Sections 4 - 6 (see, i.e.,
Proposition 4.8, Theorem 4.15 and Proposition 6.1).
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2. Preliminaries

2.1 The Koch curve. Through the paper RD (D ≥ 2) will denote the D-
dimensional Euclidean space, |x− y| the Euclidean distance, Be(x, r) = {y ∈
RD : |x− y| < r} (x ∈ RD, r > 0) are the Euclidean balls (denoted by Be

r).
The Koch curve belongs to the class of so-called nested fractals introduced

by Lindstrøm [22], and it is obtained as follows [7]. Pose A = (0, 0) and
B = (1, 0), and let V0 = {A,B}. Consider the set of N = 4 contractive
similitudes Ψ = {ψ1, ..., ψ4} with contraction factors α−1

i = α−1 = 1
3 , i.e.

ψ1 = z
3 , ψ2 = z

3ei π
3 + 1

3 , ψ3 = z
3e−i π

3 + 1
2 + i

√
3

6 and ψ4 = z+2
3 , where z denotes

an element of C. Set I = [0, 1] and

K1 = ∪4
j=1ψj(I)

Kh+1 = ∪M∈Kh
∪4

j=1 ψj(M)
(2.1)

where M denotes a segment of the ”h-th” generation. The Koch curve K
is the unique closed bounded set which is invariant under Ψ, that is K =
ψ(K) := ∪4

i=1ψi(K).
Further, C0(K) denotes the space of continuos functions with compact

support on K. On the Koch curve K there exists an invariant measure µ [11],
that is ∫

K

φdµ =
4∑

i=1

1
4

∫

K

(φ ◦ ψi) dµ (φ ∈ C0(K))

which is given, after normalization, by the restriction to K of the Df -dimensional
Hausdorff measure of R2, HDf 6 K normalized:

µ = (HDf (K))−1HDf 6 K (2.2)

where Df = ln 4
ln 3 . The measure µ has the property [7, 11] that there exists two

constants c1 > and c2 > 0 such that

c1r
Df ≤ µ(Be(x, r) ∩K) ≤ c2r

Df (x ∈ K). 2.3)

As µ is supported on K, it is not ambiguous to write in (2.3) µ(Be(x, r)). In
the terminology of the following Section 4 we say that K is a Df -set.

Let us go further, giving some more definitions which will help us later.
For an arbitrary n-tuple of indices i1, ..., in ∈ {1, .., 4} we define

ψi1...in = ψi1 ◦ ψi2 ◦ ... ◦ ψin

Ki1...in = ψi1...in(K)
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and we will call it an n-complex.

Figure 1: The curves Kl
h,Kr

h (dashed) and the prefractal curve Kh (solid)

Remark 2.1. Γ = {A, B} is the boundary of K. We note that Γ coincides
with the set F of essential fixed points of the given similitudes {ψ1, ψ2, ψ3, ψ4}
(see [22, 25]).

Remark 2.2. We note that K can be approximated also from above.
The point ( 1

2 ,
√

3
6 ) divides K into two parts, the left Kl and the right Kr one,

respectively. For each one of these one can consider the corresponding prefrac-
tal curves Kl

h and Kr
h – generated by the segments of endpoints (0, 0), ( 1

2 ,
√

3
6 )

and ( 1
2 ,
√

3
6 ), (1, 0) – which approximate Kl and Kr from above, respectively.

2.2 Relevant functional spaces. Let Ω be an open set in R2 and K a
compact subset such that K ⊂ Ω̄. We denote by D(R2) the set of C∞-
functions with compact support in R2, by D(Ω) the set of C∞-functions with
compact support in Ω, and by D′(R2) and D′(Ω) the duals of D(R2) and
D(Ω), respectively. From now on Lp(Ω) denotes the usual Lebesgue space
with respect to the two-dimensional Lebesgue measure. By Hm(Ω) (m ∈ N)
we denote the usual Sobolev space:

Hm(Ω) =

{
u : Ω → R

∣∣∣∣∣
u ∈ L2(Ω) and Dαu ∈ L2(Ω)

(|α| ≤ m) in the distributional sense

}

equipped with the norm which we denote by ‖ · ‖m:

‖u‖m =
∑

0≤|α|≤m

‖Dαu‖L2(Ω);
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H1
0 (Ω) will denote the closure of D(Ω) with respect to the ‖u‖1-norm [1]. By

Du = (ux1 , ux2) we denote the gradient of u, by dy = dy1dy2 or dx = dx1dx2

we denote the Lebesgue measure in R2, and by |Ω| the Lebesgue measure of
Ω. By H2

loc(Ω) we denote the space of functions u ∈ H2(D) on every open set
D ⊂⊂ Ω.

Definition 2.1. Let Ω be an open set in R2 and let f ∈ L1(Ω). We say
that f can be strictly defined at x ∈ Ω̄ if the limit

f̄(x) = lim
r→0

1
|Be(x, r) ∩ Ω|

∫

Be(x,r)∩Ω

f(y) dy (2.4)

exists.

Remark 2.3. By the Lesbegue theorem any f ∈ L1(Ω) can be striclty
defined at every x ∈ Ω̄, except possibly a subset of two-dimensional Lesbegue
measure zero, and f = f̄ a.e. in Ω.

If we replace Ω by R2 in (2.4) and f ∈ L1
loc(R2), then f can be strictly

defined at x ∈ R2 if the limit f̃(x) = limr→0
1

|Be(x,r)|
∫

Be(x,r)
f(y) dy exists.

Theorem 2.2. Let f ∈ H1(R2). Then f can be strictly defined at quasi-
every x ∈ R2.

The proof is based on the fact that every f ∈ H1(R2) has a (unique) quasi-
continuous representative and can be strictly defined up to a set of Newtonian
capacity null. Then by [1: Theorem 6.2.1] f̃ exists quasi-everywhere, f̃ is
quasi-continuous and coincides with f quasi-everywhere.

Theorem 2.2 still holds if we replace R2 by Ω. More precisely, if f ∈ H1(Ω),
then f can be strictly defined at quasi-every x ∈ Ω̄.

Definition 2.3.

(i) For f ∈ H1(R2) we denote by γ0,K,R2f the trace of f on K: γ0,K,R2f :=
f̃ .

(ii) For f ∈ H1(Ω) we denote by γ0,K,Ωf the trace of f on K: γ0,K,Ωf :=
f̄ .

Thus f̄ and f̃ are functions defined with respect to the usual Newtonian
capacity.
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3. The Laplacian on the Koch curve

3.1 The energy form. The construction of the energy form on the Koch
curve K is based on suitable sequences of finite difference schemes. For every
positive integer n we define

E(n)(z, z) = 1
24n

4∑

i1,...,in=1

∑
ξ,η∈F

ξ 6=η

(
z(ψi1...in

(ξ))− z(ψi1...in
(η))

)2 (3.1)

where the coefficient 4 is a renormalization factor. It is well known [19] that
the limit of the right-hand side in (3.1) does exist, and the limit form

E(z, z) = lim
n→∞

E(n)(z, z) (3.2)

is non-trivial (E 6= ∞) for some class of z.
The form E[z] = E(z, z) is a closed Dirichlet form which is regular and

strongly local in L2(K,µ), the Hilbert space of square summable functions on
K with respect to the invariant measure µ, with dense domain DE in L2(K, µ),

DE =
{

z : K → R
∣∣∣ z ∈ L2(K,µ) and E(z, z) < +∞

}
. (3.3)

The regularity of the form E(z, z) means that it possesses a core, a core being
any subset C of DE ∩C0(K), where C0(K) = {z : K → R| z ∈ C(K) and z =
0 on Γ}, which is dense both in C0(K) with the uniform norm and in DE with
respect to the intrinsic norm

‖z‖E =
(
E(z, z) + ‖z‖2L2(K,µ)

) 1
2 . (3.4)

This property implies that DE is non-trivial (i.e. not only made by constant
functions). Moreover, the functions in DE are Hölder continuous on K:

Theorem 3.1. DE ⊂ C0,β(K) where β = ln 4
ln 9 .

In the following, let

C0,β(K) =
{

z : K → R
∣∣∣ |z(x)− z(y)| ≤ M |x− y|β (x, y ∈ K)

}

denote the space of Hölder continuous functions on K. The proof of Theorem
3.1 is given in [20] as a consequence of the characterization of the functions in
the domain DE of the form, in terms of the so-called Lipschitz spaces. This
characterization is analogous to that given in [15] for the Sierpinski gasket. A
similar characterization, for the more general class of nested fractals (including
the Koch curve) has been obtained independently in [34] and was further
generalized in [32].

By Theorem 3.1, z ∈ DE implies z ∈ C(K), thus we shall identify z
with its continuous representative which will still be denoted by z. Thus the
condition z ∈ DE and z = 0 on Γ (i.e. z(A) = z(B) = 0) has an obvious
meaning. In the sequel we shall consider homogeneous Dirichlet conditions on
the boundary Γ of K.
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Definition 3.2. We introduce the subspace D0(K) =
{
z ∈ DE | z =

0 on Γ
}

and denote by ‖z‖D0(K) = (E(z, z))
1
2 the norm in D0(K).

This is a closed subspace of DE with respect to the intrinsic norm. It
is non-empty because it contains the solution of the homogeneous Dirichlet
problem for the Poisson equation on K [8]. The subspace D0(K) can be also
characterized as the closure of the set C0(K \ Γ) ∩ DE with respect to the
intrinsic norm. In fact, we have

Lemma 3.3. The space D0(K) coincides with the closure of the set C0(K\
Γ) ∩DE with respect to the intrinsic norm.

In the following we shall use also the form E(z, w) which is obtained from
E(z, z) by the polarization identity:

E(z, w) =
1
2

{
E(z + w, z + w)− E(z, z)− E(w, w)

}
(z, w ∈ DE). (3.5)

3.2 The Laplacian on the Koch curve. We now define the Laplace oper-
ator on the fractal K with homogeneous Dirichlet boundary conditions. The
form E with domain D0(K) is again a closed form in L2(K, µ). Therefore,
there exists a non-positive self-adjoint operator ∆K in L2(K, µ), with dense
domain D∆K ∩D0(K) in L2(K, µ), such that

E(z, w) = −
∫

K

(∆Kz)w dµ (3.6)

for z ∈ D∆K
∩D0(K) and for all w ∈ D0(K). Let (D0(K))′ denote the dual of

the space D0(K), i.e. the set of linear and continuous functionals on D0(K).
We now introduce the Laplace operator on the fractal K as a variational
operator from D0(K) → (D0(K))′ by

E(z, w) = −〈∆Kz, w〉(D0(K))′,D0(K) (3.7)

for z ∈ D0(K) and for all w ∈ D0(K) where 〈·, ·〉(D0(K))′,D0(K) is the duality
pairing between (D0(K))′ and D0(K). We use the same symbol ∆K to define
the Laplace operator both as a selfadjoint operator in (3.6) and as a variational
operator in (3.7). It will be clear from the context to which case we refer.
We remark also that the two definitions given above have their anologous
counterpart in the case of the Euclidean Laplacian. More precisely, one can
define the Laplacian with homogeneous Dirichlet boundary conditions either
as a self-adjoint operator with domain H2(·)∩H1

0 (·) or as a variational operator
from H1

0 (·) to H−1(·) [4].
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4. The layer K as a Df -set, traces and the Green for-
mula

According to [16], we give the following

Definition 4.1. Let F ⊂ RD be a closed non-empty subset. It is a Df -set
(0 < Df ≤ D) if there exist a Borel measure m with supp m = F such that
for some constants c1 = c1(F ) > 0 and c2 = c2(F ) > 0

c1r
Df ≤ m(Be(x, r)) ≤ c2r

Df (x ∈ F, 0 < r ≤ 1). (4.1)

Such an m is called a Df -measure on F .

If F is a Df -set, then the Df -dimensional Hausdorff measure HDf of RD

restricted to F , defined by HDf 6 F (E) = HDf (F ∩ E) for Borel sets E, is a
Df -measure on F . Also, any Df -measure m on F is equivalent to HDf 6 F in
the sense that, for some constants c3 > 0 and c4 > 0, c3m ≤ HD

f
6 F ≤ c4m

(see [16: Chapter II]). To conclude, a Df -measure on a Df -set F ⊂ RD is
unique up to equivalence and it is given by the restriction to F of the Df -
dimensional Hausdorff measure in RD.

Examples of Df -sets are F = R2 with m equal to the 2-dimensional Les-
begue measure and geometrically self-similar sets [30], in particular we have

Proposition 4.2. The Koch curve is a Df -set with Df = log 4
log 3 . The

invariant measure µ = (HDf )−1HDf 6 K is a Df -measure.

From now on we assume Ω to be the open rectangle (0, 1)× (−1, 1) and K
the unit Koch curve. Throughout the paper c will denote different constants.

We now come to the definition of the class of Besov spaces in those spe-
cial cases which best fit our problem. We remind the reader that we shall
only consider the case in which D = 2 (for a complete discussion see [16]).
According to [16] we give the following

Definition 4.3. Let K denote the Koch curve, µ its invariant measure
and Df = ln 4

ln 3 . By B2,2
β (K) with 0 < β < 1 we denote the space of all

functions ω such that

‖ω‖B2,2
β

(K) = ‖ω‖L2(K,µ) +

(∫∫

|x−y|<1

|ω(x)− ω(y)|2
|x− y|Df+2β

dµ(x)dµ(y)

) 1
2

< ∞.

(4.2)
Here β is also called the smoothness index.

Before stating the trace theorem in the case of interest for us, we note the
following
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Theorem 4.4. If f ∈ H1(Ω) and Extf is any function in H1(R2) with
Extf = f a.e. in Ω, then γ0,K,Ωf and γ0,K,R2Extf exist and coincide µ-a.e.
on K.

Proof. This theorem is a particular case of [29: Theorem 1] which holds
for the larger class of (ε, δ) domains (see [13] for the definition)

Theorem 4.5 (see [29]). Let K be the Koch curve. Then the trace oper-
ator γ0,K,R2 : f → f̃ is a bounded linear surjection H1(R2) → B2,2

β (K) with a
bounded linear right inverse (the extension operator) Ext : B2,2

β (K) → H1(R2)
such that if f ∈ B2,2

β (K), then Ext f ∈ C∞(R2 \K) and

(i) ‖Ext f‖H1(R2) ≤ c ‖f‖B2,2
β

(K)

(ii) γ0,K,R2(Ext f) = f µ-a.e.

Theorem 4.6. Let Ω and K be as in problem (1.1) and let f ∈ H1(Ω).
Further let γ0,K,Ω be the trace operator defined in Definition 2.3/(ii). Then
the mapping

γ0,K,Ω : H1(Ω) → B2,2
β (K) (4.3)

is a bounded linear surjection, with a bounded right linear inverse, where β =
Df

2 > 0.

Proof. As the domain Ω is the rectangle, the function f can be ex-
tended by reflexion (see [4]): there exists a bounded linear operator (ex-
tension operator) Ext : H1(Ω) → H1(R2) such that Extf = f a.e. in
Ω, for all f ∈ H1(Ω), and ‖Extf‖H1(R2) ≤ c ‖f‖H1(Ω) where the constant
c > 0 depends on Ω. From Theorem 4.5 and the extension theorem we have
‖f̃‖B2,2

β
(K) ≤ c ‖Ext f‖H1(R2) ≤ c′‖f‖H1(Ω) and from Theorem 4.4 we have

f̃ = f̄ µ-a.e. on K

In the sequel, in force of Theorem 4.4, we denote by the same symbol f |K
both γ0,K,Ωf and γ0,K,R2f .

Remark 4.1. Theorem 4.4 holds for a large class of domains, namely the
(ε, δ) domains (see [13] for the definition and [29] for the proofs). If K = ∂T
for a (bounded) Lipschitz domain T , then Df = 1 and the trace space for
H1(T ) is B2,2

β (∂T ) = H
1
2 (∂T ) with β = 1

2 (for the definition of the trace
space H

1
2 (∂T ) see [26]), and Theorem 4.6 should become a particular case of

[12: Theorem 3.1].

Theorem 4.7. There exists a bounded linear extension operator E : D0(K) →
H1(R2) such that γ0,K,R2(Ez) = z µ-a.e. for every z ∈ D0(K).

Proof. We recall that D0(K) ⊂ DE(K). From [20: Theorem 3.1] we de-
duce that D0(K) is embedded into the space Lip(Df , 2,∞)(K) (for the defini-
tion of this space see [20]). From [15: Corollary 1] there exists a bounded linear
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extension operator E from Lip(Df , 2,∞)(K) to the Besov space B2,∞
Df /2+1(R

2)
(for the definition of this space see [16]). Then the embedding theorem (see
[16: Chapter VIII/Proposition 5]) yields the thesis

Proposition 4.8. The space V (Ω,K) = {u ∈ H1
0 (Ω) : u|K ∈ D0(K)} is

non-trivial.

Proof. We shall prove that non-trivial functions in D0(K) have a suitable
extension in H1

0 (Ω). To see this, let G denote a compact set such that G ⊂⊂
K. For instance, choose G = K∩Be(x̄, r) with r < 1

2 and x̄ = ( 1
2 , 0). Let φ be

the capacity potential of G (for its existence and properties see [9: Theorem
2.1.5]). The function φ belongs to D0(K), its support is compact on K and,
by Theorem 4.7, Eφ ∈ H1(R2). Then ηEφ ∈ H1

0 (Ω) where η is a suitable
cut-off function

Remark 4.2. Actually, one can prove that the trace space of V (Ω, K) to
K is D0(K) (see Section 6).

Proposition 4.9. The space D0(K) is embedded into B2,2
Df /2(K).

Proof. From [20: Theorem 3.1] we deduce that D0(K) is embedded into
the space Lip(Df , 2,∞)(K) (for the definition of this space see [20]). On the
other hand, the space B2,2

Df /2(K) coincides with the space Lip(Df/2, 2, 2)(K)
(see [16: pp. 114/Proposition 1]). The thesis follows from the embedding of
Lip(Df , 2,∞)(K) into Lip(Df/2, 2, 2)(K) (see [16])

4.1 The dual of B2,2
β (K) on the Koch curve K. Let us now intro-

duce the dual space of B2,2
β (K) where β = Df

2 . This space as shown in [17]
coincides with B2,2

−β(K), a subspace of Schwartz distributions D′(R2), which
are supported in K. It is built by means of atomic decompositions. Actu-
ally, Johnsson and Wallin [17] proved this result in the general framework of
Df -sets.

Here we do not give a detailed description of the duals of Besov spaces on
Df -sets and we refer to [17] for a complete discussion. We will only recall the
main features to deal with our case D = 2, K the Koch curve, and β = Df

2 .
As a preparation we introduce some notation. Let N denote a division of

R2 into equally squares Q with side r, half-open of the form {x = (x1, x2) ∈
R2 : ai < xi ≤ ai+r (i = 1, 2)}, obtained intersecting R2 with lines orthogonal
to the axes. We call such a division a net N with mesh r. By Nh we denote
the net with mesh 2−h such that the origin is a corner of some square in the
net Nh(K) = {Q ∈ Nh : Q ∩ K 6= ∅}. In the following definition we still
denote by µ the measure (2.2) trivially extended to R2, that is the measure
that on every Borel set E of R2 takes the value µ(E ∩K).

According to [29] we give the following
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Definition 4.10. Let K be the Koch curve, let β = Df

2 and let Q with
Q ∩ K 6= ∅ be a square with edge lenght 2−h where h is a non-negative
integer. A funtion a = aQ ∈ L2(R2, µ) is a (−β, 2) atom associated with Q if
the conditions

• supp a ⊂ 2Q

• ∫
R2 a(x) dµ(x) = 0 if h > 0

• ‖a‖L2(R2,µ) ≤ 2hβ

are satisfied.

Let Nh (h ∈ N0) be a fixed net with mesh 2−h, let Q ∈ Nh(K), let
aQ be a (−β, 2) atom associated with Q and let SQ be numbers such that
S = {Sh} ∈ l2 where Sh is given by

Sh =
( ∑

Q∈Nh(K)

|SQ|2
) 1

2

. (4.4)

Then the function
gh =

∑

Q∈Nh(K)

SQaQ (4.5)

is in L1
loc(R2, µ), since the sum defining gh is a finite sum on any compact

subset of R2. We identify gh with the distribution

〈gh, φ〉 =
∑

Q∈Nh(K)

SQ

∫
aQφdµ (φ ∈ D(R2)). (4.6)

Then fm =
∑m

h=0 gh is the distribution given by

〈fm, φ〉 =
m∑

h=0

∑

Q∈Nh(K)

SQ

∫
aQφdµ (φ ∈ D(R2)). (4.7)

We have fm → f in the distributional sense, i.e.

〈fm, φ〉 → 〈f, φ〉 (φ ∈ D(R2),m →∞) (4.8)

where the distribution f is given by

〈f, φ〉 =
∞∑

h=0

∑

Q∈Nh(K)

SQ

∫
aQφdµ (φ ∈ D(R2)). (4.9)

In fact, since φ ∈ D(R2), the trace theorem for Besov spaces [16: p. 141] in
particular gives φ|K ∈ B2,2

β (K) and the claim follows from [17: Lemma 3.2].
When (4.9) holds, we write

f =
∞∑

h=0

∑

Q∈Nh(K)

SQaQ (4.10)

and we refer to (4.10) as an atomic decomposition of f .



A Transmission Problem with a Fractal Interface 125

Remark 4.3. Note that the atomic decomposition (4.10) is not necessar-
ily unique, i.e. different (−β, 2)-atoms aQ and numbers SQ, S = {Sh}∞h=0 ∈ l2

with Sh given by (4.4), may give the same distribution in (4.10).

Definition 4.11. Let K be the Koch curve and β = Df

2 . We define
B2,2
−β(K) to consist of those f ∈ D′(R2) which are given by (4.10) where we

assume that aQ are (−β, 2) atoms and SQ are numbers such that S = {Sh} ∈
l2 and Sh is defined by (4.4). We define the norm of f by

‖f‖B2,2
−β

(K) = inf ‖S‖l2 (4.11)

where the infimum is taken over all possible atomic decompositions (4.10).

In [17) it is proved that the dual of B2,2
β (K) is B2,2

−β(K). In fact, if
f ∈ B2,2

β (K) and g ∈ B2,2
−β(K) is given by the atomic decomposition g =∑∞

h=0

∑
Q∈Nh(K) SQaQ, then the duality is given by

〈g, f〉 =
∞∑

h=0

∑

Q∈Nh(K)

SQ

∫
aQf dµ. (4.12)

Remark 4.4. As pointed out in [17], the double sum in (4.12) is inde-
pendent of the particular atomic decomposition used for g.

In fact, the following duality result holds [17].

Proposition 4.12. Assume β = Df

2 .
(i) If

g =
∞∑

h=0

∑

Q∈Nh(K)

SQaQ ∈ B2,2
−β(K) (4.13)

and L is defined by

L(f) =
∞∑

h=0

∑

Q∈Nh(K)

SQ

∫
aQf dµ for f ∈ B2,2

β (K), (4.14)

then L ∈ (B2,2
β (K))′ and

‖L‖ ≤ c ‖g‖B2,2
−β

(K) (4.15)

where c > 0 is a constant depending only on K,µ and β.
(ii) If L ∈ (B2,2

β (K))′, then there exists a unique g as in (4.13) such that
(4.14)− (4.15) hold and

‖g‖B2,2
−β

(K) ≤ c ‖L‖
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where c > 0 is a constant depending only on K,µ and β.

4.2 The Green formulas. It is well known (see, for instance, Necas [26],
and Dautray and Lions [6]) that if S denotes an appropriate interface, say of
Lipschitz type, the normal vector to S is defined a.e. [26] so that a suitable
Green formula to deal with this type of boundary value problems can be
proved (see [2: Appendix 4] and [6: Chapter 6/Section 4]), and by duality
arguments the normal derivative can be interpreted in the sense of the dual of
the Sobolev-type space H

1
2
0,0(S) (for the definition of this space see [23], but

also [2, 6]). Following this philosophy, we shall prove that in the fractal case
the normal derivative can be interpreted in the sense of the dual of the Besov
space B2,2

β,0(K) (see (4.20) below).
We start by recalling the Green formula for Lipschitz domains, specialized

to our case. For the sake of simplicity we assume T ⊂ R2 to be, as in problem
(1.1), the open rectangle (0, 1) × (−1, 1). We assume that the layer S is of
Lipschitz type and that it divides T into two subdomains T1 and T2 such that
S = ∂T1 ∩ ∂T2. Let Γ = {A,B} denote the two points in which S intersects
∂T .

By Ṽ (Ti) we denote the set of functions

Ṽ (Ti) =
{
u ∈ H1(T )

∣∣ ∆ui ∈ L2(Ti)
}

where ui = u|Ωi (i = 1, 2), ∆ui = uix1x1
+ uix2x2

and the derivatives are

intended in the distributional sense. We define the space H
1
2
0,0(S) [6] as follows:

H
1
2
0,0(S) =

{
u ∈ L2(S)

∣∣∣ There exists w ∈ H1
0 (T ) such that w|S = u on S

}

equipped with the quotient norm

‖u‖
H

1
2
0,0(S)

= inf
w∈H1

0
(T )

w|S=u

‖w‖H1(T ).

Here L2(S) denotes the usual Lebesgue space with respect to the one-dimensional

Lebesgue measure and by (H
1
2
0,0(S))′ we denote the dual of H

1
2
0,0(S). Then the

following Green formula holds [2, 6]:

Theorem 4.13. Let Ti (i = 1, 2) denote one of the two domains defined
above. For u ∈ Ṽ (Ti) we have

〈∂ui

∂ni
, θ|S

〉
(H

1
2
0,0(S))′, H

1
2
0,0(S)

=
∫

Ti

DuiDθ dx1dx2 +
∫

Ti

θ∆uidx1dx2 (4.16)
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for every θ ∈ H1
0 (T ) where 〈·, ·〉 denotes the duality pairing between (H

1
2
0,0(S))′

and H
1
2
0,0(S).

From (4.16) it follows that for u ∈ Ṽ (Ti) the normal derivative can be

defined as a linear and continuous functional on H
1
2
0,0(S).

We now come to the case in which the layer is the Koch curve K. Analo-
gously to the Lipschitz case we need to define ∂ui

∂ni
for boundary value problems

with fractal boundaries. Following [23] we give the following

Definition 4.14. We define B2,2
β,0(K) with β = Df

2 as

B2,2
β,0(K) =

{
z ∈ L2(K,µ)

∣∣∣ There exists w ∈ H1
0 (Ω) such that w|K = z on K

}

and equipp it with the quotient norm

‖z‖B2,2
β,0(K) = inf

w∈H1
0
(Ω)

w|K=z

‖w‖H1(Ω). (4.17)

We observe that B2,2
β,0(K) ⊂ B2,2

β (K). In the sequel by (B2,2
β,0(K))′ we will

denote the dual of B2,2
β,0(K). Further, we define the set of functions

Ṽ (Ωi) =
{
u ∈ H1(Ω)|∆ui ∈ L2(Ωi)

}

where ui = u|Ωi , ∆ui = uix1x1
+uix2x2

and the derivatives are intended in the
distributional sense.

Theorem 4.15. Let K and Ωi as in problem (1.1) and u ∈ Ṽ (Ωi). The
normal derivative of u on K defined in (4.20) below is a linear and continuous
functional on B2,2

β,0(K) with β = Df

2 .

Proof. Let u ∈ Ṽ (Ωi). We define

li(θ) =
∫

Ωi

DuiDθ dx1dx2 +
∫

Ωi

θ∆uidx1dx2 (θ ∈ H1
0 (Ω)). (4.18)

Let us show that li(θ) depends only on the trace of θ on K and is independent
from the choice of the test function θ ∈ H1

0 (Ω), i.e. if θ, θ̂ ∈ H1
0 (Ω) and

θ|K = θ̂|K , then li(θ) = li(θ̂).

We consider the increasing sequence of domains Ω1
h (exhausting Ω1) corre-

sponding to the Lipschitz prefractal curve Kh (see (2.1)). Denote by χΩ1
h

the
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characteristic function of Ω1
h. From Theorem 4.13 specialized to our situation

Ti = Ω1
h, S = Kh and T = Ω we deduce that, for all θ ∈ H1

0 (Ω),
〈∂u1

∂n1
, θ|Kh

〉
(H

1
2
0,0(Kh))′, H

1
2
0,0(Kh)

=
∫

Ω1

χΩ1
h
Du1Dθ dx1dx2 +

∫

Ω1

χΩ1
h
θ∆u1dx1dx2.

(4.16)h

But for every θ ∈ H1
0 (Ω),

l1(θ) =
∫

Ω1

Du1Dθ dx1dx2 +
∫

Ω1

θ∆u1dx1dx2

= lim
h→∞

∫

Ω1

χΩ1
h
Du1Dθ dx1dx2 +

∫

Ω1

χΩ1
h
θ∆u1dx1dx2

= lim
h→∞

〈∂u1

∂n1
, θ|Kh

〉
(H

1
2
0,0(Kh))′, H

1
2
0,0(Kh)

.

From Schwarz inequality we get

|l1(θ)| ≤
(‖∆u1‖L2(Ω1) + ‖Du1‖L2(Ω1)

)‖θ‖H1(Ω). (4.19)

We prove that the distribution l(·) is indeed supported on K. Namely, we
consider, for any ball B = Be

r , B ⊂ Ω\K, a smooth function φB supported on
B and we choose θφB as test function in (4.16)h. Definitely φB |Kh

= 0, hence
(θφB)|Kh

= 0 and l1(θφB) = 0. Analogously we proceed for Ω2, considering
the sequence of increasing domains Ω2

h (exhausting Ω2) corresponding to the
two prefractal curves Kr

h and Kl
h (see Remark 2.2).

The previous considerations allow us to define for any u ∈ Ṽ (Ωi) the
”normal derivative” in the following way:
〈∂ui

∂ni
, θ|K

〉
(B2,2

β,0(K))′, B2,2
β,0(K)

=
∫

Ωi

DuiDθ dx1dx2 +
∫

Ωi

θ∆uidx1dx2 (4.20)

for every θ ∈ H1
0 (Ω). We show now that ∂ui

∂ni
(i = 1, 2) is a linear and

continuous functional on B2,2
β,0(K). From (4.17), we have that for every z ∈

B2,2
β,0(K) there exists a w ∈ H1

0 (Ω) such that

‖w‖H1(Ω) ≤ c ‖z‖B2,2
β,0(K) (4.21)

and w|K = z µ-a.e. By using (4.20) and the independence from extension we
have 〈∂ui

∂ni
, z

〉
(B2,2

β,0(K))′,(B2,2
β,0(K)

= l(w).

The thesis now follows from (4.19) and (4.21)
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5. Variational formulation

5.1 Variational principle. In this section, we give the variational formu-
lation of problem (1.1) formally stated in Section 1. We follow the approach
used in [27] for the classical case where the layer K was a smooth curve.

From Propositions 4.8 and 4.9 it follows that the space of functions u :
Ω → R

V (Ω,K) =
{
u ∈ H1

0 (Ω) : u|K ∈ D0(K)
}

(5.1)

is well defined.

Lemma 5.1. V (Ω,K) is an Hilbert space equipped with the scalar product

(u, v)V (Ω,K) =
∫

Ω

DuDv dx1dx2 + E(u|k, v|K) (5.2)

where E(u|K , v|K) is the Dirichlet form associated to the fractal Laplacian on
the layer K (see (3.5)− (3.6)).

We denote by ‖u‖2V (Ω,K) the corresponding ”energy norm” in V (Ω,K).

Proof of Lemma 5.1. Let un ∈ V (Ω,K) be a Cauchy sequence. We
want to prove that there exists a u ∈ V (Ω,K) such that

‖un − u‖2V (Ω,K) = ‖D(un − u)‖2L2(Ω) + E
(
un|K − u|K , un|K − u|K

) → 0.

We note the following:
(i) From the Poincarè inequality we deduce that {un} is a Cauchy se-

quence in H1
0 (Ω), therefore there exists an u ∈ H1

0 (Ω) such that ‖un −
u‖H1(Ω) → 0 as n →∞.

(ii) {un|K} is a Cauchy sequence in D0(K), therefore there exists a z ∈
D0(K) such that ‖un|K − z‖D0(K) → 0 as n →∞.

(iii) As consequence of Theorem 4.6 (see also Definition 4.3), ‖un|K −
u|K‖L2(K,µ) ≤ c‖un − u‖H1(Ω). Hence z = u|K

For further properties of this form, like its regularity in the case Ω = RD,
we refer to [31, 32] (see also [33]).

We now come to state our variational principle. We look for the weak
solution u of problem (1.1). As the constant C is not relevant for our purposes
we set it equal to one.

Theorem 5.2. Given g ∈ L2(Ω), there exists a unique u ∈ V (Ω,K) such
that ∫

Ω

DuDθ dx1dx2 + E(u|K , θ|K) =
∫

Ω

gθ dx1dx2 (5.3)
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for every θ ∈ V (Ω,K). Moreover, u is obtained by

min
θ∈V (Ω,K)

{∫

Ω

|Dθ|2dx1dx2 + E[θ|K ]− 2
∫

Ω

gθ dx1dx2

}
.

Proof. The thesis follows by applying the LaxMilgram theorem (or Riesz-
Frechét theorem) to the bilinear form

a(u, θ) =
∫

Ω

(
ux1θx1 + ux2θx2

)
dx1dx2 + E(u|K , θ|K)

defined in V (Ω,K)×V (Ω,K). This form is continuous and coercive in V (Ω,K)
and the linear functional

∫
Ω

gθ dx is bounded in V (Ω,K), with norm depend-
ing on ‖g‖L2(Ω) and the Poincarè constant in Ω

5.2 ”Regularity” of the weak solution. Let us now go back and interpret
the solved problem. We recall that by ui we denote the restriction to Ωi of
the solution u ∈ V (Ω,K) of (5.3). Let us choose in (5.3) θ = φ1 ∈ D(Ω1) and
θ = φ2 ∈ D(Ω2), respectively, where φ1 and φ2 are arbitrary. From this we
obtain ∫

Ωi

DuiDφidx1dx2 =
∫

Ωi

gφidx1dx2 (5.4)

for every φi ∈ D(Ωi) (i = 1, 2). We have in the sense of distributions

−∆u1 = g in D′(Ω1) (5.5)
−∆u2 = g in D′(Ω2). (5.6)

From the density of D(Ωi) in L2(Ωi) and from the fact that g ∈ L2(Ωi)
we deduce that equations (5.5) - (5.6) hold also in L2(Ωi). This gives that
u ∈ Ṽ (Ωi) = {u ∈ H1(Ω)|∆ui ∈ L2(Ωi)} where the Laplacian is intended in
the distributional sense. The classical theory on local regularity results (see
[4]) gives also that ui ∈ H2

loc(Ωi).

6. The transmission condition

The purpose of this section is to show that the weak solution u of problem
(1.1) satisfies the transmission condition on the fractal layer K in a ”suitable”
sense.

We preliminary prove that the trace space of V (Ω,K) on K is the space
D0(K). In fact, every function u ∈ V (Ω,K) by definition is such that u|K ∈
D0(K). Every function z ∈ D0(K) has a suitable extension w in H1

0 (Ω) such
that w|K = z µ-a.e. on K. This follows from the fact that D0(K) ⊂ B2,2

β,0(K)
(see Definition 4.14).
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Proposition 6.1. The space D0(K) is a subspace of the space B2,2
β,0(K).

Proof. Let z ∈ D0(K). There exists a bounded linear extension opera-
tor E from D0(K) to the Besov space B2,∞

1+Df /2(R
2) which is embedded into

B2,2
1+Df /2−ε(R

2) where ε > 0 (see the proof of Theorem 4.7); in particular, we
deduce Ez ∈ C0(R2) and Ez ∈ H1(R2). Let us consider now the function
u? = ηEz where η is a suitable smooth cut-off function. For instance, η = 0 in
the set R = ([0, 1]× [ 23 , 1]) ∪ ([0, 1]× [−1,− 2

3 ]), η = 1 in the set S where S is
the rectangle [0, 1]× [−h, h] with

√
3

6 < h < 2
3 and 0 ≤ η ≤ 1 in the remaining

part. The function u? belongs to H1(Ω), u? = 0 in R, and

‖u?‖H1(Ω) ≤ c ‖u?‖B2,2
1+Df /2−ε

(Ω) ≤ c ‖Ez‖B2,2
1+Df /2−ε

(R2) ≤ c ‖z‖D0(K). (6.1)

Consider now in the rectangle Ω the four open triangles T1, T2, T3, T4 where

T1 has vertexes A = (0, 0), A1 = (0, 1), A2 = ( 1
3 , 1)

T2 has vertexes B = (0, 1), B1 = (1, 1), B2 = ( 2
3 , 1)

and T3 and T4 are symmetric triangles with respect to the x1-axis.
Let us now focus our attention on the triangle T1. We denote by L2 the side

AA2. The trace z̃ of Ez to the set L2 belongs to the space B2,2
1/2+Df /2−ε(L2),

i.e. the Sobolev space Hs(L2) with s = 1
2 + Df

2 − ε (see, i.e., [23]). By Morrey
type embedding z̃ belongs to C0(L2); recall that z̃(A) = z̃(A2) = 0. Consider
now the function z? = z̃ on L2 and z? = 0 in ∂T1 \ L2. The function z?

still belongs to the space Hs(∂T1) (see [5] and [26] for the definition of this
space). Thus by the extension theorem there exists an extension v1 = Ext z?

in Hs+ 1
2 (T1) (see [5: Theorem 2.7.1]). In particular, the function v1 belongs

to H1(T1) and its trace to L2 is continuous and we have

‖v1‖H1(T1) ≤ ‖v1‖
Hs+ 1

2 (T1)

≤ c ‖z?‖Hs(∂T1)

≤ c ‖Ez‖B2,2
1+Df /2−ε

(R2)

≤ c ‖z‖D0(K).

(6.2)

Let us recall that the function u∗ also belongs to H1(Ω \ T1) and its trace to
L2 is continuous.

Repeat the same argument for the other triangles and define the function
w as

w =
{

vi in Ti

u? in Ω \ ∪4
i=1Ti.
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A straightforward computation shows that w ∈ H1
0 (Ω). From (6.1) - (6.2) we

deduce

‖w‖H1(Ω) ≤
4∑

i=1

‖vi‖H1(Ti) + ‖u?‖H1(Ω\∪4
i=1Ti) ≤ c ‖z‖D0(K). (6.3)

Thus we have proved that, for each given function z ∈ D0(K), there exists a
function w ∈ H1

0 (Ω) such that w|K = z on K, that is to say that z ∈ B2,2
β,0(K).

From the definition of B2,2
β,0(K) and from (6.3) we have ‖z‖B2,2

β,0(K) ≤ ‖z‖D0(K)

thus concluding the proof

Remark 6.1. A different proof of Proposition 6.1 can be also achieved by
making use of a general extension theorem for Besov spaces defined on general
closed sets which are not possibly Df -sets (such as the set ∂Ω1 ∪ ∂Ω2). More
precisely, for any given z ∈ B2,2

Df−ε(K) with z(A) = z(B) = 0 consider the
function z∗ defined as z∗ = z on K and z∗ = 0 in ∂Ω. By [14: Theorem 1]
there exists a function w ∈ H1

0 (Ω) which extends z∗, hence z.

We can finally study the transmission condition. We recall that the (weak)
solution u of (5.3) belongs to Ṽ (Ωi) (see Subsection 5.2). This allow us to
make use of the Green formula (see Theorem 4.15 and (4.20)). In particular,
for every z ∈ D0(K)

−E(u|K , z)−
〈∂u1

∂n1
, z

〉
(B2,2

β,0(K))′, B2,2
β,0(K)

−
〈∂u2

∂n2
, z

〉
(B2,2

β,0(K))′, B2,2
β,0(K)

= 0.

We set [∂u

∂n

]
K

=
∂u1

∂n1
+

∂u2

∂n2
.

So we have, more concisely,

−E(u|K , z) =
〈[∂u

∂n

]
K

, z
〉

(B2,2
β,0(K))′, B2,2

β,0(K)
. (6.4)

We now show that the transmission condition holds in the sense of D0(K).
We recall that [ ∂u

∂n ]K ∈ (B2,2
β,0(K))′, i.e. it is a linear and continuous functional

on B2,2
β,0(K). We denote by the same symbol [ ∂u

∂n ]K the restriction of this
functional to D0(K) (see Proposition 6.1), which is still a linear and continuous
functional on D0(K):

∣∣∣
〈[∂u

∂n

]
K

, z
〉

(B2,2
β,0(K))′, B2,2

β,0(K)

∣∣∣ ≤ c ‖z‖D0(K)
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where c depends on u. Hence, as ∆K(u|K) ∈ (D0(K))′ (see (3.7)), equation
(6.4) can be also written as

〈∆K(u|K), z〉(D0(K))′,D0(K) =
〈[∂u

∂n

]
K

, z
〉

(D0(K))′,D0(K)
. (6.5)

Thus, from (6.5) we have in the sense of the duality defined by D0(K)

∆K(u|K) =
[∂u

∂n

]
K

on K, in (D0(K))′. (6.6)

Theorem 6.2. Let u ∈ V (Ω,K) be the weak solution of problem (5.3).
Then the transmission condition (6.6)

〈∆K(u|K), z〉(D0(K))′,D0(K) =
〈[∂u

∂n

]
K

, z
〉

(D0(K))′, D0(K)

holds where ∆K is the variational operator from D0(K) → (D0(K))′ defined
in (3.7) and 〈·, ·〉(D0(K))′,D0(K) is the duality pairing between (D0(K))′ and
D0(K).

To interpret the transmission condition in the sense of (B2,2
β,0(K))′ one

could consider the extension of the operator ∆K(u|K) as a linear and contin-
uous functional from D0(K) to B2,2

β,0(K). We do not know if this extension is
unique because we do not know if D0(K) is dense in B2,2

β,0(K). To obtain a
”stronger” formulation, u should be more regular, say ∆K(u|K) ∈ L2(K, µ),
i.e. u|K ∈ D∆K

so that the transmission condition could be interpreted in the
L2-sense. This problem, as far as we know, was still an open problem also in
the case of the smooth layer considered in [27] and in the case in which the
Koch curve is replaced by the corresponding approximating prefractal (Lips-
chitz) curves. It has been recently studied in [21], where it is proved that the
transmission condition can be interpreted in the L2-sense for both the case of
the smooth layer and the prefractal curve. We hope to extend this result to
the present case by limit arguments such as those in [24]. This would be inter-
esting also from a numerical point of view in order to prove the convergence of
approximating schemes for problem (5.4), as some preliminary computations
seem to substantiate our conjecture.

It is also an open problem to establish if the normal derivative itself (which,
as shown, is a distribution supported on K) is a measure.

We are now in position to summarize the properties of our solution u as
”strong solution” of problem (1.1):
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Conclusions. Let u ∈ V (Ω,K) be the weak solution of problem (5.3).
Then u ∈ Ṽ (Ωi) = {u ∈ H1(Ω)|∆ui ∈ L2(Ωi)} – where the Laplacian is
intended in the distributional sense – and ui ∈ H2

loc(Ωi). Its trace u|K ∈
C0(K) (in particular, it is in C0,β(K) with β = ln 4

ln 9 ). The normal derivative
∂ui

∂ni
is in the dual of the space B2,2

β,0(K). The transmission condition holds in
the sense of the duality defined by D0(K).
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