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On the Hilbert Inequality With Weights

Gao Mingzhe, Wei Shongrong and He Leping

Abstract. In this paper, it is shown that a Hilbert-type inequality with weight
ω(n) = π − θ√

2n+1
can be established where θ = 17

20
. As application, a quite sharp

result of the Hardy-Littlewood inequality is obtained and some further extensions
are obtained.
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1. Introduction

The Hilbert inequality may be written in the form

∞∑
m=0

∞∑
n=0

ambn

m + n + 1
< π

( ∞∑
n=0

a2
n

) 1
2
( ∞∑

n=0

b2
n

) 1
2

(1)

where (an) and (bn) are sequences of real numbers such that 0 <
∑∞

n=0 a2
n <

+∞ and 0 <
∑∞

n=0 b2
n < +∞. It is well known that the constant factor π

herein is best possible, i.e. π cannot be decreased any more. But we can move
the factors in π =

√
π
√

π under the summation sign on an average and write
a Hilbert-type inequality with weights of the form

∞∑
m=0

∞∑
n=0

ambn

m + n + 1
≤

( ∞∑
n=0

ω(n)a2
n

) 1
2
( ∞∑

n=0

ω(n)b2
n

) 1
2

(2)

where the weight function ω is defined by

ω(n) = π − θ(n)√
2n + 1

.

Gao Mingzhe: Xiangxi Educ. Coll. Jishou, Hunan 416000, P.R. China
He Leping: Xiangxi Educ. Coll. Jishou, Hunan 416000, P.R. China
Wei Shongrong: Zhaqing Coll., Zhaoqing Guangdong 526062, P.R. China
Mingzhegao@163.com

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



258 Gao Mingzhe et al.

Recently, a few papers (see [4, 5]) dealt with the weight function ω. Namely,
in [4] it was shown that θ(n) > 4n+1

3(n+1)(2n+1) > 0 (n ∈ N0). Clearly, this
inequality is related to n, and 4n+1

3(n+1)(2n+1) → 0 as n → ∞. In addition, the
expression of θ(n) is relatively complicated. Further, in [5] it was shown that
ω(n) < π − α√

n+1
where α = 0.5292496+.

The purpose of the present paper is to simplify and to refine the results of
[4, 5]. The method and theory employed by us are different from those in [4,
5]. To be specific, we use the expansion of functions into power series and the
approximation theory. Similarly, our results can be extended to a Hilbert-type
integral inequality with weights. Applying the results to the Hardy-Littlewood
inequality, a sharp result there is obtained.

For convenience, we define the function θ by

θ(x) = u(x) + v(x)ξ (x ≥ 0) (3)

where ξ is a constant satisfying the condition 0 < ξ < 1 and the functions u
and v are defined by

u(x) = 2
√

2x + 1 arctan

√
3

2x + 1
− 2x + 1

x + 1
−
√

3(2x + 1)
6(x + 2)

(4)

v(x) = −
√

3(2x + 1)(x + 5)
108(x + 2)2

, (5)

respectively.

2. Lemmas and their proofs

In order to prove our assertions we need the following lemmas.

Lemma 1. Let u be the function defined by (4). Then u(x) > 5
√

3
3 − 2

for x ≥ 8.

Proof. Taking the derivative of u we obtain after some simplifications

u′(x) =
2√

2x + 1
arctan

√
3

2x + 1
−

√
3

x + 2
− 1

(x + 1)2
−

√
3

2(x + 2)2
.

Let us expand u′ into power series of 1
2x+1 and drop the negative remainder

which consists of all terms with powers higher than 5. In such a way we may
find via algebraic calculations

u′(x) < (2
√

3− 4)t2 +
(
8− 12

√
3

5

)
t3 + A(t) t4 < −1

2
t2 + 4 t3 + A(t) t4 (6)
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where t = 1
2x+1 and A(t) = −(12 + 54

√
3

7 ) + (16 + 234
√

3) t. In fact, when
0 < α < 1, using the inequality arctanα < α− 1

3α3 + 1
5α5− 1

7α7 + 1
9α9 we get

2
√

t arctan
√

3t < 2
√

3 t− 2
√

3 t2 +
18
√

3
5

t3 − 54
√

3
7

t4 + 18
√

3 t5

and

−
√

3
x + 2

= − 2
√

3 t

1 + 3t
< −2

√
3 t + 6

√
3 t2 − 18

√
3 t3 + 54

√
3 t4

− 1
(x + 1)2

= − 4 t2

(1 + t)2
< −4 t2 + 8 t3 − 12 t4 + 16 t5

−
√

3
2(x + 2)2

= − 2
√

3 t2

(1 + 3t)2
< −2

√
3 t2 + 12

√
3 t3 − 54

√
3 t4 + 216

√
3 t5.

Adding these inequalities, we get inequality (6). Notice that for A(t) contained
in (6) we have A(t) < −25+422 t. Evidently, A(t) < 0 when t ∈ (0, 1

17 ). Hence
inequality (6) can be reduced to u′(x) < (− 1

2 + 4t)t2 < 0 where t = 1
2x+1 and

x ≥ 8. It follows that u(x) is monotone decreasing in the interval [8, +∞)
whence we have infx≥8 u(x) = u(∞) = 5

√
3

3 − 2 and the lemma is proved

Lemma 2. Let v be the function defined by (5). Then v(x) ≥ −
√

3
48 for

x ≥ 0.

Proof. Taking the derivative, after simplifications we get v′(x) =
√

3(x−4)
36(x+2)3 .

Evidently, v(4) is a minimun of v in [0, +∞). This implies that the lemma is
true

Lemma 3. Let θ be the function defined by (3). Then θ(n) > 17
20 for all

n ∈ N0.

Proof. For n ≥ 8 we have with the use of Lemmas 1 and 2

θ(n) = u(n) + v(n) ξ > u(n) + v(n) >
(5
√

3
3

− 2
)
−
√

3
48

>
17
20

where ξ is a constant satisfying 0 < ξ < 1. It remains to prove only that
u(n) > 5

√
3

3 − 2 when 0 ≤ n ≤ 7. By direct computations we attain from (4)

u(0) = 0.9500 u(1) = 0.9320

u(4) = 0.9085 u(5) = 0.9054

u(2) = 0.9198 u(3) = 0.9130

u(6) = 0.9031 u(7) = 0.9013.

This way θ(n) > 17
20 for all n ≥ 0 and the lemma is proved
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3. Main results

Now let us came to our main results.

Theorem 1. If 0 <
∑∞

n=0 a2
n < ∞ and 0 <

∑∞
n=0 b2

n < +∞, then

∞∑
m,n=0

ambn

m + n + 1
<

{ ∞∑
n=0

(
π − θ√

2n + 1

)
a2

n

} 1
2
{ ∞∑

n=0

(
π − θ√

2n + 1

)
b2
n

} 1
2

(7)
where θ = 17

20 .

Proof. We apply Cauchy’s inequality to estimate the left-hand side of
(7) as follows:

∞∑
m,n=0

ambn

m + n + 1

=
∞∑

m,n=0

ambn

(m + n + 1)
1
2

(2m + 1
2n + 1

) 1
4 bn

(m + n + 1)
1
2

( 2n + 1
2m + 1

) 1
4

≤
{ ∞∑

m,n=0

a2
m

m + n + 1

(2m + 1
2n + 1

) 1
2
} 1

2
{ ∞∑

m,n=0

b2
n

m + n + 1

( 2n + 1
2m + 1

) 1
2
}1/2

=
{ ∞∑

n=0

( ∞∑
m=0

1
m + n + 1

( 2n + 1
2m + 1

) 1
2
)

a2
n

} 1
2

×
{ ∞∑

n=0

( ∞∑
m=0

1
m + n + 1

( 2n + 1
2m + 1

) 1
2
)

b2
n

} 1
2

=
{ ∞∑

n=0

ω(n)a2
n

} 1
2
{ ∞∑

n=0

ω(n)b2
n

} 1
2

where ω(n) =
∑∞

m=0
1

m+n+1

(
2n+1
2m+1

)1/2. Let us define the function F by

F (t) =
1

t + n + 1

(2n + 1
2t + 1

) 1
2
.

Applying the Euler-Maclaurin summation fomula to ω(n) we get

ω(n) = F (0) +
∞∑

m=1

F (m) = F (0) +
∫ ∞

1

F (t) dt +
1
2
F (1) + R(n) (8)

where R(n) is the remainder. See [2, 3] for various expressions of it. Here
we give the remainder in the form R(n) = − ξ

12F ′(1) (0 < ξ < 1). By
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computation we obtain the relation
√

2n + 1 R(n) = v(n)ξ where v is the
function defined by (5), and

∫∞
1

F (t) dt = π − 2 arctan
√

3/(2n + 1). In view
of (4) we may write (8) in form

ω(n) = π − u(n) + v(n) ξ√
2n + 1

= π − θ(n)√
2n + 1

where θ is the function defined by (3). Basing on Lemma 3 we get ω(n) <
π − θ√

2n+1
where θ = 17

20 and the proof of the theorem is completed

Remark. Theorem 1 is obviously an improvement on the result of [5]
because θ√

2n+1
= θ√

2(n+ 1
2 )

1
2

> θ√
2(n+1)

1
2

> α

(n+1)
1
2

where θ = 17
20 and α =

0.5292496+.

Corollary 1. If 0 <
∑∞

n=0 a2
n < +∞, then

∞∑
m,n=0

aman

m + n + 1
<

∞∑
n=0

(
π − θ√

2n + 1

)
a2

n (9)

where θ = 17
20 .

Clearly, this is an immediate consequence of (7).

Theorem 2. Let f, g ∈ L2[0, +∞). Then
∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y + 1

dxdy

≤ π

{ ∫ ∞

0

(
1− 1

2
√

2x + 1

)
f2(x) dx

} 1
2
{ ∫ ∞

0

(
1− 1

2
√

2x + 1

)
g2(x) dx

} 1
2

.

(10)
Equality herein holds if and only if f = 0 or g = 0.

Proof. Similar to the proof of Theorem 1 we obtain
∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y + 1

dxdy ≤
{ ∫ ∞

0

p(x)f2(x) dx

} 1
2
{ ∫ ∞

0

p(x)g2(x) dx

} 1
2

where the weight function p is defined by

P (x) =
∫ ∞

0

1
x + y + 1

(2x + 1
2y + 1

) 1
2
dy = π − 2 arctan

1√
2x + 1

= π − α(x)√
2x + 1

where α(x) = 2
√

2x + 1 arctan 1√
2x+1

. It is easy to prove that the function α

is monotonely increasing in the interval [0, +∞). In fact,

α′(x) =
2√

2x + 1
arctan

1√
2x + 1

− 1
x + 1

.
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Notice that arctan t > t− 1
3 t3 when 0 < t < 1. Hence

α′(x) >
2

2x + 1
− 2

3(2x + 1)2
− 1

x + 1

=
1

(2x + 1)(x + 1)
− 2

3(2x + 1)2

=
1

2x + 1

( 1
x + 1

− 1
3x + 3

2

)

> 0

and α′(0) = π
2 − 1 > 0. So our assertion is proved. Hence infx≥0 α(x) =

α(0) = π
2 and p(x) ≤ π− α(0)√

2x+1
= π

(
1− 1

2
√

2x+1

)
. It follows that (10) is valid

and the theorem is proved

Corollary 2. If f ∈ L2[0, +∞), then

∫ ∞

0

∫ ∞

0

f(x)f(y)
x + y + 1

dxdy ≤ π

∫ ∞

0

(
1− 1

2
√

2x + 1

)
f2(x) dx. (11)

Equality herein holds if and only if f = 0.

4. Applications

Let f ∈ L2(0, 1) and f(x) 6= 0 for all x. If an =
∫ 1

0
xnf(x) dx (n ∈ N0), then

we get the Hardy-Littlewood inequality (cf. [1]) in the form

∞∑
n=0

a2
n < π

∫ 1

0

f2(x) dx (12)

where π is the best constant that keeps (12) valid. The following improvement
of (12) will be obtained by means of Corollary 1.

Theorem 3. Under the assumptions just described we have

( ∞∑
n=0

a2
n

)2

<

{ ∞∑
n=0

(
π − θ√

2n + 1

)
a2

n

} ∫ 1

0

f2(x) dx (13)

where θ = 17
20 .
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Proof. By our assumption, a2
n =

∫ 1

0
anxnf(x) dx. Using the Cauchy-

Schwarz inequality and Corollary 1 we get

( ∞∑
n=0

a2
n

)2

=
( ∞∑

n=0

∫ 1

0

anxnf(x)dx

)2

=
( ∫ 1

0

( ∞∑
n=0

anxn

)
f(x)dx

)2

≤
∫ 1

0

( ∞∑
n=0

anxn

)2

dx

∫ 1

0

f2(x)dx

=
{ ∞∑

m,n=0

aman

m + n + 1

} ∫ 1

0

f2(x)dx

≤
{ ∞∑

n=0

(
π − θ√

2n + 1

)
a2

n

} ∫ 1

0

f2(x)dx

(14)

where θ = 17
20 . Since f(x) 6= 0 for all x, an 6= 0 for all n ≥ 0. Therefore it is

impossible to take equality in (14). It follows that (13) is valid

Remark. If in (13) we replace θ by zero, then (12) follows. Clearly, this
is a refinement of the Hardy-Littlewood inequality.

Theorem 4. Let g ∈ L2(0, 1) with g(t) 6= 0 for all t and define f by

f(x) =
∫ 1

0

txg(t)dt (x ≥ 0).

Then

( ∫ ∞

0

f2(x)dx

)2

< π

( ∫ ∞

0

(
1− 1√

2x + 1

)
f2(x)dx

) ∫ 1

0

g2(t)dt. (15)

Proof. We may write f2 in the form f2(x) =
∫ 1

0
f(x)txg(t)dt. Applying
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the Cauchy-Schwarz inequality and using Corollary 2 we get

( ∫ ∞

0

f2(x)dx

)2

=
{ ∫ ∞

0

( ∫ 1

0

f(x)txg(t)dt

)
dx

}2

=
{ ∫ 1

0

( ∫ ∞

0

f(x)txdx

)
g(t)dt

}2

≤
∫ 1

0

( ∫ ∞

0

f(x)txdx

)2

dt

∫ 1

0

g2(t)dt

=
∫ 1

0

( ∫ ∞

0

f(x)txdx

)( ∫ ∞

0

f(y)tydy

)
dt

∫ 1

0

g2(t)dt

=
∫ 1

0

( ∫ ∞

0

∫ ∞

0

f(x)f(y)tx+ydxdy

)
dt

∫ 1

0

g2(t)dt

=
∫ ∞

0

∫ ∞

0

f(x)f(y)
x + y + 1

dxdy

∫ 1

0

g2(t)dt

≤ π

∫ ∞

0

(
1− 1

2
√

2x + 1

)
f2(x)dx

∫ 1

0

g2(t)dt.

(16)
Since g(t) 6= 0 for all t, whence f(x) 6= 0 for all x. It is impossible to take
equality in (16). Hence (15) is valid

Remark. We point out that if 1
2
√

2x+1
contained in (15) is replaced by

zero, then we obtain immediately a new inequality of the form
∫∞
0

f2(x)dx <

π
∫ 1

0
g2(t)dt. Obviously, this is an extension of the Hardy-Littlewood inequal-

ity (12).
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