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Asymptotical Behavior
of Solutions of Nonlinear Elliptic Equations in RN

M. Grillot and P. Grillot

Abstract. In this paper we study the behavior near infinity of non-negative solutions u ∈
C2(RN ) of the semi-linear elliptic equation

−∆u + uq − up = 0

where q ∈ (0, 1), p > q and N ≥ 2. Especially, for a non-negative radial solution of this
equation we prove the following alternative :

either u has a compact support
or u tends to one at infinity.

Moreover, we prove that if a general solution is sufficiently small in some sense, then it is
compactly supported. To prove this result we use some inequalities between the solution and
its spherical average at a shift point and consider a differential inequality. Finally, we prove
the existence of non-trivial solutions which converge to one at infinity.
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1. Introduction

In this article we study non-negative solutions of the semi-linear elliptic equation with
non-Lipschitzian non-linearity

−∆u + uq − up = 0 (1)

with q ∈ (0, 1) and p > q. This equation and, more generally, the equation

−∆u + f(u) = 0 (2)

where f : [0, +∞) → R is a given continuous function, appears in models for many
physical situations. On the one hand, equation (2) can be considered as non-linear
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Euclidean scalar field equation (see [2]). On the other hand, equation (2) can correspond
to the stationary problem of the non-linear evolution equation ∂u

∂t = ∆u + f(u). This
equation occurs, for example, in population dynamics and chemical reactions (see [7, 8,
10]).

Our first question is the following:
Letting u ∈ C2(RN ) be a non-negative solution of equation (1) in RN with N ≥ 2,

can we describe the precise behavior of u near infinity? In the general case, this question
is very difficult. For example, the sign of the Laplacian of u is not constant in the
case where u oscillates around one. Another difficulty is that the non-linearity is non-
Lipschitzian. Few people have tackled this question. The only results that we know are
due to Cortazar, Elgueta and Felmer [6]. They consider the case 0 < q < 1 < p < N+2

N−2

and N ≥ 3 and prove that every H1(RN )-function which satisfies equation (1) in the
sense of distributions is a classical solution of this equation with compact support.
Moreover, if this solution is positive, then it is radial. Therefore, it seems that the
radial case is an important step in the study of equation (1).

Note that the function identically equal to one in RN is a solution of equation (1)
which is not in H1(RN ).

Section 1 concerns the radial case. Our results complete those of [6]. We give a
complete classification of solutions of equation (1) under the only restriction q ∈ (0, 1),
p > q and N ≥ 2. Our main result is given in

Theorem 1. If u ∈ C2(RN ) is a non-negative radial solution of equation (1) such
that u 6≡ 0 and u 6≡ 1, then either u has compact support or u tends to one at infinity.

The proof of this theorem consists of several steps. We begin to prove by energy
arguments that the function u is bounded. We distinguish two cases according to the
monotonicity of u. In the case where u is non-monotone, which is the more difficult
one, we prove that u oscillates necessary around one. More precise, we give a complete
analysis on the length of the oscillation of a solution u.

The second question is the existence of solutions of equation (1). Section 2 is devoted
to this problem. If 0 < q < 1 < p < N+2

N−2 , then in [6] the existence of a non-trivial
solution of equation (1) in RN with compact support is proved. On the other hand, if we
consider radial solutions, equation (1) is reduced to the ordinary differential equation

u′′ + N−1
r u′ = uq − up (3)

where u′ denotes the derivative of u. Another result of [6] asserts that if 0 < q < 1 <
p < N+2

N−2 , there exists a unique non-trivial solution of equation (3) such that

u(r) ≥ 0 in [0, +∞)

u(0) = 0

}
. (4)

We state a result in an exterior domain. Troughout the paper we denote by b∗ the
number

b∗ =
(

p+1
q+1

) 1
p−q . (5)
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Theorem 2. Assume q ∈ (0, 1), p > q and N ≥ 2. Let γ ∈ (0, b∗] and r0 > 0.
Then there exists a unique solution u of equation (3) in (r0,+∞) such that u(r0) = γ
and u′(r0) = 0. Moreover, u is positive and converges to one at infinity.

The uniqueness of solutions of equations (3) - (4) is proved in [6] whithout restric-
tions on p and q.

If we are not in the case 0 < q < 1 < p < N+2
N−2 , the existence of a non-negative

solution of equation (3) in (r0,+∞) with u(r0) = γ > b∗ and u′(r0) = 0 is an open
problem.

The following notations are introduced in [6]. For q ∈ (0, 1) and p > q, let u be a
solution of equation (3) in (r0,+∞) such that u(r0) = γ > 0 and u′(r0) = 0. Define

R(γ) = sup
{
r > r0 : u(s) > 0 and u′(s) < 0 for all s ∈ (r0, r)

}
.

It is proved in [6] that if γ > 1, then R(γ) < ∞. There are also introduced the sets

N =
{

γ : lim
r→R(γ)

u(r) = 0 and lim
r→R(γ)

u′(r) < 0
}

G =
{

γ : lim
r→R(γ)

u(r) = 0 and lim
r→R(γ)

u′(r) = 0
}

P =
{

γ : lim
r→R(γ)

u(r) > 0
}

.

Note that these sets are mutually disjoint and that they form a partition of the interval
(1, +∞). Also, it is proved that N and P are open subsets of (1, +∞). Theorem 2
implies (1, b∗] ⊂ P , and this result entails the existence of a real number b > b∗ such
that Theorem 2 still holds for γ ∈ (0, b). We do not know if b = +∞ is possible.

In last, in Section 3 we prove that all small (in some sense) non-negative general
solutions of equation (1) have necessarely a compact support. More precisely, we state
the following

Theorem 3. Let η be a positive real number such that max(A,B) ≤ 1 where

A =
((

2N

N

)p+1−q + η
2

)− 1
p−q

and B =
((

2N

N

)1−q + η
2

)− 1
p−q

.

If u ∈ C2(RN ) is a non-negative solution of equation (1) such that u 6≡ 0 and u(x) ≤
min(A,B) for large x, then u has compact support.

The proof of this theorem uses the spherical average of u. First we introduce the
spherical coordinate (r, θ) of x in RN with r = |x| and θ ∈ SN−1. Next we denote by u
the spherical average of u which is defined by

u(r) = 1
|SN−1|

∫

SN−1
u(r, θ) dθ (6)

for all r ≥ 0 and where |SN−1| denotes the Lebesgue measure of the unit sphere of RN .
Now the idea of the proof of Theorem 3 is as follows. Since u satisfies equation (1) and
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the inequality u(x) ≤ min(A,B) ≤ 1, u is subharmonic for large x. As in [5] we deduce
an inequality between u and u of the type u(x) ≤ Cu( |x|2 ) and prove that u necessary
tends to 0 at infinity. Finally, a maximum principle of the type of [6] leads us to the
conclusion of the theorem.

Note that this property of solutions with compact support has been exhibited in
[3, 4] where the problem is no longer in RN . There the authors consider equation (2)
in a bounded domain, for example B1 \ {0}, where B1 denotes the unit ball in RN . In
the case where f(u) = uq +

(
c
|x|2

)
u with q ∈ (0, 1) and c ∈ R, it is proved in [3] that

for N ≥ 3 some solutions of equation (2) have compact support in B1 \ {0}. The same
is true [4] for f(u) = uq if N = 2. We also mention the papers [1, 7, 9] for general
semi-linear or quasi-linear equations with monotonous non-linearities.

We finish our paper stating its last result as

Theorem 4. Assume q ∈ (0, 1) and p ≥ 1. If u ∈ C2(RN ) is a solution of equation
(1), then lim inf |x|→+∞ u(x) ≤ 1. Moreover, if u(x) ≥ c for large x with some c ∈ (0, 1),
then lim sup|x|→+∞ u(x) ≥ 1.

Corollary 1. There does not exist solutions u of equation (1) such that u(x) ≥ c >
1 for large x.

Our work leads us to the following

Conjecture. If u ∈ C2(RN ) is a solution of equation (1), then either u has compact
support or lim|x|→∞ u(x) = 1?

We now establish the notations that we will use troughout this paper. We introduce
functions F and E defined in (0, +∞) by

F (v) = 1
q+1 vq+1 − 1

p+1 vp+1 (7)

E(r) = 1
2 u′2(r)− F (u(r)) (8)

where u is a solution of equation (3). Observe that the function F is increasing in (0, 1),
decreasing in (1,+∞) and positive in (0, b∗) where b∗ is defined in (5). On the other
hand, if u satisfies equation (3), then the derivative of E is

E′(r) = −N−1
r u′2(r) (9)

which implies that E is non-increasing. This will be used in several later comparison
arguments.
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2. Classification of non-negative radial solutions

Here we establish a classification of non-negative radial solutions of equation (1) starting
with a result on their boundedness. We state it with an inequality which will be used
later in Section 4.

Lemma 1. Let u = u(r), u ∈ C2(α, +∞) with α > 0, be a solution of the differen-
tial inequality

u′′ + N−1
r u′ ≤ uq − up (10)

in (α, +∞). Then u is bounded in (α, +∞).

Proof. Assume that u is unbounded. Then lim supr→+∞ u(r) = +∞. If u is
monotonous, then E is non-increasing and limr→+∞E(r) = +∞ which is a contradic-
tion. If u is non-monotonous, then there exist sequences (rn) and (µn) of maxima and
minima of u, respectively, such that u is non-decreasing in (µn, rn) and limn→+∞ u(rn) =
+∞. Since u satisfies inequality (10), E is non-increasing in (µn, rn). On the other
hand, inequality (10) implies u(µn) ≤ 1. This entails E(rn) ≤ E(µn) ≤ 0 which is a
contradiction to limn→+∞E(rn) = +∞. Therefore u is bounded in (α, +∞)

Lemma 2. Lut u = u(r), u ∈ C2(α, +∞) with α > 0, be a solution of equation
(3). Then u and its derivatives u′ and u′′ are bounded.

Proof. Lemma 1 implies that u is bounded. Since E is bounded from above,
there exists a constant C > 0 such that u′2(r) ≤ C + 2F (u(r)). We deduce from the
boundedness of u that u′ is also bounded. Finally, we deduce from equation (3) that
also u′′ is bounded

Note that there does not exist a local minimum or maximum point r such that u(r)
is strictly greater or less than 1, respectively. Because of Lemma 2 we can introduce
some vocabulary:

Definition. We say that u = u(r) oscillates around one if for all R > 0 there exist
two points r1 > R and r2 > R such that u(r1) = u(r2) = 1 and u(r) > 1 in (r1, r2).

Note that if u = u(r) oscillates around one, then for all R > 0 there exist two points
r′1 > R and r′2 > R such that u(r′1) = u(r′2) = 1 and u(r) < 1 in (r′1, r

′
2). This is a

consequence of equation (3).

Lemma 3. Let u = u(r), u ∈ C2(0, +∞), be a solution of equation (3) such that
u oscillates around one and lim supr→+∞ u(r) = b ∈ (1, b∗), with b∗ from (5). Then we
have the following property:

(i) If (σn) is a sequence such that u(σn) = 1 and limn→+∞ σn = +∞, then there
exists a real γ > 0 such that |u′(σn)| > γ for all large n.

(ii) If (sn) and (rn) are two sequences such that u(sn) = 1 and u′ > 0 on (s2n, rn)
or u′ < 0 on (rn, s2n+1), then

2(u(rn)− 1) =
√

2
∫ s2n+1

s2n

√∣∣L + F (u(r)) + O(1)
∣∣ dr (11)

as rn → +∞, where F is the function defined in (7) and L = limr→+∞E(r).
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Proof.
(i) Since u is a solution of equation (3), definition (8) implies

1
2 u′2(σn) = E(σn) + F (u(σn)) = E(σn) + max

v∈R+
F (v) = E(σn) + F (1) (12)

for all n. Since by (9) and Lemma 2 E is non-decreasing and bounded, limr→+∞E(r) =
L. We deduce from (12) that

lim
n→+∞

u′2(σn) = 2(L + F (1)).

On the other hand, since u oscillates around one and lim supr→+∞ u(r) = b ∈ (1, b∗),
there exists a sequence (xn) of strict maxima of u such that limn→+∞ u(xn) = b. Thus
limn→+∞E(xn) = −F (b) < 0 and therefore L = −F (b) < 0. Since b ∈ (1, b∗), we
deduce that 2(L + F (1)) = γ̃2 > 0 with γ̃ > 0. This implies the first statement of
Lemma 3 with γ = γ̃

2 .

(ii) Because of (8) and since limr→+∞E(r) = L = −F (b), there exists a function
Φ such that limr→∞ Φ(r) = 0 and that Φ satisfies the equation

u′2(r) = 2
(
L + F (u(r)) + Φ(r)

)
. (13)

Then
|u′(r)| =

√
2
√∣∣L + F (u(r)) + Φ(r)

∣∣. (14)

Integrating this relation on [s2n, s2n+1], we obtain
∫ s2n+1

s2n

|u′(r)| dr =
∫ rn

s2n

u′(r) dr −
∫ s2n+1

rn

u′(r) dr = 2
(
u(rn)− 1

)

which implies (11)

Lemma 4. Let v = v(r) be a non-negative uniformly continuous function on
(0, +∞). If (σn) is a sequence such that limn→+∞ σn = +∞, lim infn→+∞ v(σn) ≥ γ

and n
σn

> β for some reals γ > 0 and β > 0, then the integral
∫ +∞
1

v(r)
r dr is unbounded.

Proof. Since v is a uniformly continous function and lim infn→+∞ v(σn) ≥ γ, there
exists a real α > 0 which does not depend on n and an integer N such that for all n ≥ N

v(r) ≥ γ
2 ∀ r ∈ (σn, σn + α). (15)

Since limn→+∞ σn = +∞, there exists a subsequence also denoted by (σn) such that
σn + α < σn+1 for all n ≥ N . Therefore,

N+m∑

n=N

∫ σn+1

σn

v(r)
r

dr ≥ γ
2

N+m∑

n=N

ln
(
1 + α

σn

)
(16)

for all m ∈ N. Since the sequence (σn) tends to infinity, we have ln(1 + α
σn

) ∼ α
σn

. But
1

σn
> β

n for all n. Then (16) implies that the integral
∫ +∞
1

v(r)
r dr is unbounded
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Lemma 5. Let u = u(r), u ∈ C2(0, +∞), be a solution of equation (3) oscillating
around one and such that

lim sup
r→+∞

u(r) = b ∈ (1, b∗) or lim inf
r→+∞

u(r) = c ∈ (0, 1)

with b∗ defined by (5). Further, let (sn) be a real sequence with limn→+∞ sn = +∞,
u(sn) = 1 (n ∈ N) and

u(r) ≥ 1 ∀ r ∈ [s2n, s2n+1] or u(r) ≤ 1 ∀ r ∈ [s2n+1, s2n+2],

respectively. At last, let (rn) or (µn) be a real sequence such that

rn ∈ (s2n, s2n+1), u′(rn) = 0

u′′(rn) ≤ 0, lim
n→+∞

u(rn) = b

}
or

{
µn ∈ (s2n+1, s2n+2), u′(µn) = 0

u′′(µn) ≥ 0, lim
n→+∞

u(µn) = c,

respectively. Then the sequence

(s2n+1 − s2n) or (s2n+2 − s2n+1), (17)

respectively, is bounded.

Proof. We only consider the pair of sequences (sn) and (rn), the proof concerning
the pair of sequences (sn) and (µn) is similar. To prove that the sequence (s2n+1−s2n) is
bounded, we assume the contrary. Then either the sequence (rn− s2n), or the sequence
(s2n+1 − rn) or both of them are unbounded, with an extraction of a subsequence if
necessary. Without loss of generality we can assume that (rn − s2n) is unbounded.

Denote by c and d the constants defined by c = 1+b
2 and d = b+b∗

2 . There exist an
integer N and a sequence (γn) such that

s2n ≤ γn ≤ rn and u(γn) = c ∀n ≥ N.

Since the sequence (u(rn)) converges to b and is non-increasing because of the mono-
tonicity of E, there exists an integer n1 ≥ N such that

u(r) ∈ [c, d] ∀ r ∈ [γn, rn] and n ≥ n1.

Now we distinguish the two cases where the sequence (rn−γn) is bounded or unbounded.
1. First we assume that (rn − γn) is unbounded and integrate equation (3) on

[γn, rn] to get

−u′(γn) = u′(rn)− u′(γn)

= −(N − 1)
(u(r)

r

)∣∣∣
rn

γn

− (N − 1)
∫ rn

γn

u(s)
s2

ds +
∫ rn

γn

(uq − up)(s) ds.
(19)

Because of Lemma 2 both functions u and u′ are bounded. Then we deduce that there
exists a number M > 0 independent on n such that for all n ≥ n1

∣∣∣∣
∫ rn

γn

(uq − up)(s) ds

∣∣∣∣ < M. (20)
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Because of (18) and the monotonicity of the function r 7→ rq − rp on [c, d] we obtain

0 > cq − cp ≥ uq(r)− up(r) ≥ (dq − dp) ∀ r ∈ (γn, rn).

Then
(cq − cp)(rn − γn) ≥

∫ rn

γn

(uq − up)(r) dr ≥ (dq − dp)(rn − γn)

which implies

lim sup
n→+∞

∫ rn

γn

(uq − up)(r) dr = −∞ because lim sup
n→+∞

(rn − γn) = +∞.

Therefore we obtain a contradiction to (20).
2. Now we consider the case where the sequence (rn − γn) is bounded. Recall that

we assume (rn − s2n) to be unbounded. We deduce that (γn − s2n) is unbounded. Let
ε > 0 and D > 0 such that

F (c)− F (b)− ε = D2 > 0. (21)

The assumptions of Lemma 3 are satisfied and we can use the function Φ introduced in
(13). Let n2 be an integer greater than n1 such that for all n ≥ n2

Φ(r) + ε ≥ 0 ∀ r ∈ [s2n, γn]. (22)

Since u is non-decreasing on [s2n, γn], we deduce that F (u(r)) ≥ F (c) for all r ∈ [s2n, γn]
and equality (21) implies

F (u(r))− F (b)− ε ≥ D2 ∀ r ∈ [s2n, γn]. (23)

Then, for all n ≥ n2 and for all r ∈ [s2n, γn], both relations (22) and (23) imply
√∣∣F (u(r))− F (b) + Φ(r)

∣∣ =
√∣∣F (u(r))− F (b)− ε + Φ(r) + ε

∣∣

≥
√

F (u(r))− F (b)− ε

≥ D

> 0.

(24)

Since γn ≤ s2n+1, we have
∫ s2n+1

s2n

√∣∣F (u(r))− F (b) + Φ(r)
∣∣dr ≥

∫ γn

s2n

√∣∣F (u(r))− F (b) + Φ(r)
∣∣dr (25)

and we deduce from (11), (24) and (25)

2(u(rn)− 1) ≥
√

2D(γn − s2n) (26)

for all n ≥ n2. Since limn→+∞ u(rn) = b and the sequence (γn − s2n) is unbounded we
obtain a contradiction when n goes to infinity
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Now we prove Theorem 1. For that we proceed in several steps in which we denote
by C > 0 a constant independent of r.

Proof of Theorem 1. Let u ∈ C2(RN ) be a non-negative radial solution of equa-
tion (1) such that u 6≡ 0 and u 6≡ 1.

Step 1. Here we assume that u is monotone. Because of Lemma 2 we deduce the
existence of a real l ≥ 0 such that limr→+∞ u(r) = l. Assume l ∈ (0, 1). Then lq − lp

is positive. Therefore, there exists a real r0 > 0 such that (rN−1u′(r))′ ≥ DrN−1 for
all r ≥ r0 with D = lq−lp

2 . Integrating successivily two times this inequality on (r0, r),
we obtain u(r) ≥ Cr2 for large r where C > 0. But this is impossible because u is
bounded.

Now if l > 1, there also exists another r0 such that (rN−1u′(r))′ ≤ DrN−1 for all
r ≥ r0 which implies u(r) ≤ Dr2 for large r with D < 0. We still obtain a contradiction.

Then either l = 1 or l = 0. If l = 0, [6: Theorem 1] implies by comparison arguments
that u has compact support.

Step 2. Here we assume u to be non-monotone for large r and prove limr→+∞ u(r)
= 1. Recall that there does not exist a local minimum or maximum point r such that
u(r) is strictly greater or less than 1, respectively. This implies that there exist an
integer N and sequences (rn) and (µn) of strict maxima and minima of u, respetively,
such that

µn ≤ rn ≤ µn+1 ≤ rn+p (27)
0 ≤ u(µn) ≤ 1 ≤ u(rn) (28)

for all n ≥ N and p ≥ 1. That is, u oscillates around one. Now we divide this step in
several parts.

(i) We claim that there exists a real b ∈ [1, b∗] such that (u(rn)) converges to b.
Indeed, since E is non-increasing, we have from inequality (27)

E(rn+p) ≤ E(µn+1) ≤ E(rn) ≤ E(µn) (29)

for all n ≥ N and p ≥ 1. Moreover, the monotonicity of the function F defined in (7)
and both inequalities (27) and (28) imply

0 ≤ F (u(µn)) ≤ F (1). (30)

We deduce with the help of (8) that L ∈ [−F (1), 0], where L is given in Lemma 3, and
that (−F (u(rn)) converges to L. Since F is one-to-one on [1,+∞), we conclude that
there exists a real b ∈ [1, b∗] such that limn→+∞ u(rn) = b.

(ii) In the same way we can prove the existence of a real c ∈ [0, 1] such that
limn→+∞ u(µn) = c.

(iii) We assume that b ∈ (1, b∗) and c ∈ (0, 1). Since u oscillates around one, we can
define a sequence (sn)n≥0 by

s0 = inf{r > rN : u(r) = 1}
sn+1 = inf{r > sn : u(r) = 1} (31)
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Without loss of generality we can assume

s2n ≤ rn ≤ s2n+1 ≤ µn ≤ s2n+2.

Then u ≥ 1 on [s2n, s2n+1] and u ≤ 1 on [s2n+1, s2n+2]). Because of (29) the sequence
(u(rn)) is non-increasing and the sequence (u(µn)) is non-decreasing. Therefore, (i)
- (ii) and Lemma 5 imply that the sequences (s2n+1 − s2n) and (s2n+2 − s2n+1) are
bounded. Thus the sequence (sn+1 − sn) is bounded. That is, there exists a constant
C > 0 and an integer N ≥ N such that sn+1 − sn ≤ C for all n ≥ N . A straightfoward
computation gives us for large n

1
sn

≥ 1
nC + s0

. (32)

On the other hand, we deduce after integration of (9) over (1, +∞)

|L− E(1)| = (N − 1)
∫ +∞

1

u′2(r)
r

dr (33)

which implies that the integral
∫ +∞
1

u′2(r)
r dr is bounded. Now we check the assumptions

of Lemma 4 for v = u′2 and σn = sn. First, because of Lemma 2, u′ is uniformly
bounded. Next, Lemma 3 with σn = sn implies limn→+∞ u′2(sn) ≥ γ > 0. Finally,
inequality (32) holds and we obtain a contradiction.

(iv) If we assume b = b∗, then L = limn→+∞E(rn) = −F (b∗) = 0. Therefore, we
deduce from (29) when p tends to infinity that E(µn) ≥ 0 for all n ≥ N . On the other
hand, inequality (30) implies E(µn) ≤ 0. Thus E vanishes identical for large r and
relation (9) entails that u is constant for large r. We deduce from (3) that u ≡ 0 or
u ≡ 1 which contradicts the fact that limn→+∞ u(rn) = b∗. Then b < b∗.

(v) We deduce from substeps (iii) and (iv) that necessarily b = 1. Then L = −F (1)
and we deduce from (29) that −F (1) ≤ −F (u(µn)) ≤ −F (u(rn)) for n ≥ N + 1.
Therefore, limn→+∞−F (u(µn)) = −F (1) and inequality (28) implies limn→+∞ u(µn) =
1. Thus limr→+∞ u(r) = 1 and the theorem is proved.

(vi) If c = 0, we obtain a contradiction as in substep (iv). Then c = 1 and as before
we obtain the statement of the theorem

3. Existence of non-trivial radial solutions

Here we prove the existence of solutions of equation (3) which tends to one. We start
with the following

Lemma 6. Let γ ∈ (0, b∗] and r0 > 0. Then there exists a unique solution u of
equation (3) in (r0, +∞) such that u(r0) = γ and u′(r0) = 0. Moreover, u is positive in
(r0, +∞).

Proof. Since γ > 0, there exists a solution u of equation (3) in some maximal
interval (r0, r0 + δ) with δ ∈ (0, +∞] and such that u(r0) = γ and u′(r0) = 0. We
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claim that u is positive in (r0, r0 + δ). Actually, E(r0) = −F (γ) ≤ 0, and if there
exists r1 ∈ (r0, r0 + δ) such that u(r1) = 0, then E(r1) = (u′(r1))

2

2 ≥ 0. Since E is
non-increasing, we have a contradiction if γ < b∗ which entails −F (γ) < 0. And if
γ = b∗, then E(r) = 0 in [r0, r1] and (9) implies u′(r) = 0 in (r0, r1). Thus u(r) = b∗

in [r0, r1) which is not a solution of equation (3). This contradiction implies that u is
positive in (r0, r0 + δ).

We claim now that δ = ∞. Actually, assume δ < ∞. Then there exists a number
m > 0 such that u(r) ≥ m for all r ∈ (r0, r0 + δ). Moreover, for all r ∈ (r0, r0 + δ)

−F (u(r)) ≤ E(r) ≤ E(r0) = −F (u(r0)) ≤ 0.

We deduce that for all r ∈ (r0, r0 + δ)

m ≤ u(r) ≤ b∗.

Recall that u satisfies equation (3) which is equivalent to (rN−1u′)′ = rN−1(uq − up).
Then there exists a constant M(δ) such that for r0 < r < s < r0 + δ

∣∣sN−1u′(s)− rN−1u′(r)
∣∣ =

∣∣∣∣
∫ s

r

tN−1(uq − up)(t) dt

∣∣∣∣ ≤ M(δ)|s− r|.

That is, the function r 7→ rN−1u′(r) is uniformly Lipschitz and there exists a real number
l such that limr→r0+δ u′(r) = l. Thus we can extend the solution which contradicts that
the interval (r0, r0 + δ) is maximal. This ends the prove of the lemma

Proof of Theorem 2. Because of Lemma 6 we only need to prove that the solution
of equation (3) tends to one. Actually, if this is not the case, Theorem 1 implies that
u has compact support. That is, there exists a real number R > r0 such that u ≡ 0 on
[R, +∞). Since E is non-increasing, we deduce E(r0) ≥ 0.

If E(r0) > 0, then −F (γ) > 0, and then γ > b∗ which is a contradiction. If
E(r0) = 0, then γ = b∗ and E(r) = 0 for all r ∈ (r0, +∞). Thus E′(r) = 0 for all
r ∈ (r0,+∞). That is, u′(r) = 0 for all r ∈ (r0, +∞) and u(r) = b∗ for all r ∈ (r0,+∞).
The constant b∗ is not a solution of equation (3). This is an other contradiction

4. Solutions with compact support

In this section, we prove Theorems 3 and 4. For this we use a result of [5] which gives
an estimate between the solution u and its spherical average u. We recall this result as

Lemma 7. Let w ∈ C2(RN ) be a non-negative subharmonic function with w 6≡ 0
near infinity. Then w is monotone for large r = |x| and, for any ε ∈ (0, 1),

w(x) ≤ C(N, ε) ε−Nw(|x|(1± ε)) near infinity (34)

where C(N, ε) = N−1
(
(1 + ε)N − (1 − ε)N

)
, with sign +ε if w is non-decreasing, and

sign −ε if w is non-increasing. Moreover, for any Q > 1 and large r,

wQ(r) ≤ wQ(r) ≤ (C(N, ε) ε−N )QwQ(r(1± ε)) (35)
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and, for any Q ∈ (0, 1),

wQ(r) ≥ wQ(r) ≥ (C(N, ε) ε−N )Q−1wQ−1(r(1± ε))w(r). (36)

Proof of Theorem 3. Since N ≥ 2 and min(A,B) ≤ 1, the function u is sub-
harmonic for large x. Consequently, the spherical average u of u is monotone in some
interval (r0,+∞) with r0 > 0. Actually, u′′+ N−1

r u′ ≥ 0 entails that there cannot exist
the maximum of u. On the other hand, Lemma 1 imlies that u is bounded. Therefore,
there exists α ∈ [0, 1] such that limr→+∞ u(r) = α.

If α = 0, Lemma 7 with ε = 1
2 in (34) implies lim|x|→∞ u(x) = 0. Hence using the

comparison of [6] we establish the result in this case.
Now we assume α > 0 and consider the following two cases.
Case 1: p > 1. Then, because of Lemma 7, we have for some ε ∈ (0, 1)

(uq − up)(r)

≥ (C(N, ε) ε−N )q−1

×
[
uq−1(r(1± ε))u(r)− C(N, ε)p+1−qε−N(p+1−q)up(r(1± ε))

] (37)

with C(N, ε) = N−1
(
(1 + ε)N − (1− ε)N

)
. Let φ be the function defined on (0, 1] by

φ(s) =
[
N−1

(
(1 + s)N − (1− s)N

)]p+1−q
s−N(p+1−q).

This function is decreasing on (0, 1), satisfies φ(1) =
(

2N

N

)p+1−q and lims→0+ φ(s) =
+∞. Hence there exists ε0 > 0 such that

φ(ε0) ≤
(

2N

N

)p+1−q + η. (38)

Because of (37), with ε replaced by ε0, we find from here

(uq − up)(r)

≥ (C(N, ε0) ε−N
0 )q−1

[
uq−1(r(1± ε0))u(r)− ((

2N

N

)p+1−q + η
)
up(r(1± ε0))

]
.

On the other hand, since α ≤ min(A,B) ≤ A, we deduce

αq − ((
2N

N

)p+1−q + η
)
αp = λ > 0.

Consequently, since limr→+∞ u(r) = α, there exists a real r1 ≥ r0 such that

(uq − up)(r) ≥ λ
2 (C(N, ε0)ε−N

0 )q−1

which is equivalent to

(rN−1u′)′(r) ≥ λ
2 (C(N, ε0)ε−N

0 )q−1rN−1

for all r ≥ r1. Two integrations over [r1, r] yield u(r) ≥ Cr2, with C > 0, and we get a
contradiction because u is bounded.

Case 2: p ≤ 1. Then, because of Lemma 7, inequality (37) is replaced by

(uq − up)(r)

≥ (C(N, ε) ε−N )q−1
[
uq−1(r(1± ε))u(r)− C(N, ε)1−qε−N(1−q)up(r)

]
.

With similar arguments we obtain a new contradiction. Finally, in both cases we prove
that u cannot have a limit different from zero
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Proof of Theorem 4. We devide the proof in steps (i) - (iii).
(i) Let u ∈ C2(RN ) be a solution of equation (1). Recall that we introduced the

spherical average in (6). Since p ≥ 1, the Jensen inequality implies that u satisfies (10)
in (α, +∞), with α > 0. Then Lemma 1 entails that u is bounded in (α, +∞).

(ii) We claim that lim inf |x|→+∞ u(x) ≤ 1. Actually, if lim inf |x|→+∞ u(x) > 1, then
there exists a constant l > 1 such that u(x) ≥ l for large x. Thus (uq − up)(x) ≤ −a
for large x, with a = lp − lq > 0. Equation (1) implies u′′(r) + N−1

r u′(r) ≤ −a for
large r. We deduce that (rN−1u′)′(r) ≤ −arN−1 for large r. Indeed, integrating this
inequality twice in some interval (α, r) we obtain u(r) ≤ −ar2 + d with d ∈ R. This is
a contradiction to the conclusion of step (i).

(iii) Assume that u(x) ≥ c > 0 for large x, with some c < 1. If lim sup|x|→+∞ u(x) <

1, then there exists a constant l < 1 such that c ≤ u(x) ≤ l for large x. Thus

(uq − up)(x) ∈ [
min(cq − cp, lq − lp), max(cq − cp, lq − lp)

]

for large x. Equation (1) implies the existence of a constant λ > 0 such that ∆u(x) ≥ λ
for large x which entails (rN−1u′)′(r) ≥ λrN−1 for large r. Integrating this inequality
twice in some interval (α, r) we get u(r) ≥ C(λ,N)r2 which also contradicts the fact
that u is bounded
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