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Automatic Control of the Temperature
in

Phase Change Problems with Memory

S. Gatti

Abstract. We study a parabolic two-phase system with memory occupying a bounded and
smooth domain. The heat exchange at part of the boundary is controlled by a thermostat.
Assuming on the phase variable either a relaxation dynamics or a Stefan condition, we prove
existence and uniqueness results for feedback control problems corresponding to two different
types of thermostat: the relay switch and the Preisach operator. These results are strictly
related to the continuous dependence of the solution on the boundary datum, which is inves-
tigated in advance.
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1. Introduction

We consider a bounded and smooth domain Ω ⊂ RN (N ≥ 1) occupied by a two-phase
system whose state is described by a pair of state variables (θ, χ). Here θ is the relative
temperature (θ = 0 being the equilibrium temperature at which the two phases, for
instance solid and liquid, can coexist) and χ is the concentration of the more energetic
phase (i.e. water in a water-ice system).

On account of [8] (see also [5, 7, 17, 18]), we introduce the following constitutive
laws for the internal energy E and the heat flux q:

E(x, t) = ϕ0θ(x, t) + ψ0χ(x, t) +
∫ t

−∞
ϕ(t− s)θ(x, s) ds +

∫ t

−∞
ψ(t− s)χ(x, s) ds

q(x, t) = −k0∇θ(x, t)−
∫ t

−∞
k(t− s)∇θ(x, s) ds

for (x, t) ∈ Ω×R. Here ϕ0, ψ0, k0 are positive constants and ϕ,ψ, k are time-dependent
memory kernels.
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Assuming that the past histories of θ and χ are known up to t = 0 and using the
energy balance

∂tE +∇ · q = g

where g is the heat supply, we deduce the integro-differential equation

∂te− k0∆θ − k ∗∆θ = f in Ω× (0,∞) (1.1)

with
e = ϕ0θ + ψ0χ + ϕ ∗ θ + ψ ∗ χ (1.2)

where ∗ stands for the usual time convolution product over (0, t) and f is the sum of g
with the contribution of the known term containing the past histories of θ and χ up to
t = 0.

In order to describe the evolution of θ and χ, we need to couple (1.1)− (1.2) with a
phase relationship. By considering the relaxation dynamics (cf., e.g., [7, 8, 20, 22, 23])

α∂tχ + λ(χ) 3 β(θ, χ) in Ω× (0,∞) (1.3)

where α is a kinetic parameter, while λ is a maximal monotone graph and β a Lipschitz
continuous function, we represent non-equilibrium phenomena like supercooling or su-
perheating. Alternatively, we replace (1.3) with the standard equilibrium condition of
the Stefan problem (see, e.g., [7, 8, 10, 11, 22])

χ ∈ H(θ) in Ω× (0,∞), (1.4)

where H is the Heaviside graph, i.e. H(η) = 0 if η < 0, H(0) = [0, 1], and H(η) = 1 if
η > 0.

We suppose that part of the boundary is at a given temperature (for instance,
at the equilibrium temperature θ = 0) and we consider the influence of a thermostat
on the heat exchange at the remaining part of the boundary. Hence, we impose the
following mixed boundary conditions. Letting {Γ0,Γ1} be a partition of ∂Ω = Γ into
two measurable subsets (Γ1 of positive Lebesgue measure), we take

θ = 0 on Γ0 × (0,∞)

−k0
∂θ

∂ν
− k ∗ ∂θ

∂ν
= σ(θ − θe) on Γ1 × (0,∞)



 .

Here σ is a positive constant, θe represents the external temperature and may depend
on the past history of θ up to t = 0 as well. As usual, ν stands for the unit outward
normal to ∂Ω.

In addition, regarding the initial conditions, we associate with (1.1) − (1.3) the
following ones

θ(·, 0) = θ0

χ(·, 0) = χ0

}
in Ω

while with (1.1), (1.2) and (1.4) we just need

(ϕ0θ + ψ0χ)(·, 0) = e0 in Ω.

Now, we fix a finite time interval (0, T ) and we consider the following two problems.
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Problem P1. Find a pair (θ, χ) such that

e = ϕ0θ + ψ0χ + ϕ ∗ θ + ψ ∗ χ in Ω× (0, T )

∂te− k0∆θ − k ∗∆θ = f in Ω× (0, T )

α∂tχ + λ(χ) 3 β(θ, χ) in Ω× (0, T )

θ(·, 0) = θ0, χ(·, 0) = χ0 in Ω

θ = 0 on Γ0 × (0, T )

−k0
∂θ
∂ν − k ∗ ∂θ

∂ν = σ(θ − θe) on Γ1 × (0, T )





. (1.5)

Problem P2. Find a pair (θ, χ) such that

e = ϕ0θ + ψ0χ + ϕ ∗ θ + ψ ∗ χ in Ω× (0, T )

∂te− k0∆θ − k ∗∆θ = f in Ω× (0, T )

χ ∈ H(θ) in Ω× (0, T )

(ϕ0θ + ψ0χ)(·, 0) = e0 in Ω

θ = 0 on Γ0 × (0, T )

−k0
∂θ
∂ν − k ∗ ∂θ

∂ν = σ(θ − θe) on Γ1 × (0, T )





. (1.6)

Remark that both problems differ in equations (1.5)3−4 and (1.6)3−4 only. We
will refer to Problems P1 and P2 as to the relaxed problem and the Stefan problem,
respectively. Well-posedness was investigated for both cases in [7, 8]. Moreover, it was
studied in [3] for the relaxed problem under weaker assumptions. In all these papers, a
homogeneous Dirichlet boundary condition was considered. Since we are dealing with a
non-homogeneous mixed (Dirichlet-Robin) boundary condition, the first aim is to obtain
well-posedness for our relaxed and Stefan problems adapting the approach used in [3,
7, 8].

Moreover, when the data enjoy suitable regularity properties, we have a stronger
regularity for the solution.

These well-posedness results are somewhat preliminaries to our feedback control
problems. Actually, a thermostat device influences the evolution of the free boundary
on account of suitable measurements of the temperature (cf., e.g., [9, 14]). First of all,
we assume to detect the temperature θ by a real system of thermal sensors placed in the
interior of the body and on its surface. Hence, according to [9], we suppose to know,
for any t ∈ [0, T ],

M(θ)(t) = −
∫

Ω0

θ(x, t)ωI(x) dx +−
∫

Γ2

(
1 ∗ θ

)
(y, t)ωS(y) dΓ.

Here Ω0 ⊂ Ω and Γ2 ⊂ Γ1 are of positive Lebesgue and surface measures, respectively,∫
stands for the mean value, while ωI : Ω0 → [0,∞) and ωS : Γ2 → [0,∞) are weight

functions related to the characteristics of the sensors.

Now we consider the action of a thermostat. A heating/cooling device acts when
the temperature M(θ) detected by the sensors is ‘too far’ from the critical temperature.
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This fact can be described by introducing a function u(t) which represents the control
input. According to [14] (see also [9, 19]), u modifies a fraction of θe; that is

θe(y, t) .= θA(y, t)u(t) + θB(y, t) ∀ (y, t) ∈ Γ1 × (0, T ), (1.7)

where u is the solution to the Cauchy problem

bu′ + u = W(M(θ)) + θC on [0, T ]

u(0) = u0

}
, (1.8)

and θA, θB : Γ1 × (0, T ) → R and θC : [0, T ] → R are given, b is a positive parameter,
and W represents the action of the thermostat and u0 ∈ R.

Problems of this kind have been investigated, e.g., in [9, 14]. More precisely, the
real-time control of a two-phase parabolic Stefan problem was introduced in [14]. On the
basis of classical well-posedness results on parabolic equations, existence and uniqueness
are obtained for two automatic control problems with mixed boundary conditions: in
the former model, the characteristic function of the thermostat exhibits a simple jump
discontinuity; in the latter, a hysteresis loop. The first analysis of some feedback con-
trol problems with memory, meaning that the memory effects are also included in the
constitutive laws, is contained in [9]. Three types of thermostats are considered: the
ideal switch, the relay switch and the Preisach operator. Existence and/or uniqueness
are shown for the corresponding systems. We observe that [9] deals with a hyperbolic
Stefan problem and that the notion of solution to the direct problem is weakened with
respect to [14], but a Robin boundary condition is assumed on the whole boundary.

Here we extend the analysis of [9] to parabolic Stefan problems with memory with
or without relaxation. Moreover, in this paper mixed boundary conditions will be
considered: as we have pointed out above, this involves the proof of suitable well-
posedness results.

We are going to consider a pair of thermostatic operators: W1, corresponding to
the relay switch, and the Preisach operator W2. The former is characterized by two
threshold functions ρL, ρU ∈ C0([0, T ]) such that, for some δ > 0, ρU (t)− ρL(t) ≥ δ for
any t ∈ [0, T ]. For any r ∈ C0([0, T ]), at time tC , W1(r) jumps up from −1 to +1 or,
vice versa, down from +1 to −1 according to

W1(r)(tc) =
{

+1 if r(tc) = ρL(tc) and W1(r)(t) = −1 just before
−1 if r(tc) = ρU (tc) and W1(r)(t) = +1 just before

The Preisach operator has been extensively studied by Visintin (see, e.g., [21, 24]) and
is defined as follows. Let P = {(ρ1, ρ2) ∈ R2 : ρ1 < ρ2} be the so-called Preisach plane
and ζ : P → {+1,−1} be a Borel measurable function. For any (ρ1, ρ2) ∈ P and any
r ∈ C0([0, T ]) we define

H(ρ1,ρ2)(r, ζ)(0) =





+1 if r(0) ≤ ρ1

ζ(ρ1, ρ2) if ρ1 < r(0) < ρ2

−1 if r(0) ≥ ρ2.
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If t ∈ (0, T ], we set

Tt =
{
τ ∈ (0, t] : r(τ) = ρ1 or r(τ) = ρ2

}

and

H(ρ1,ρ2)(r, ζ)(t) =





H(ρ1,ρ2)(r, ζ)(0) if Tt = ∅
+1 if Tt 6= ∅ and r(max Tt) = ρ1

−1 if Tt 6= ∅ and r(max Tt) = ρ2.

We point out that, for any pair (ρ1, ρ2) ∈ P and any ζ fixed,

H(ρ1,ρ2)(·, ζ) : C0([0, T ]) → C0
r ([0, T )) ∩ BV(0, T ).

Now, if µ is a non-negative Borel measure on P, integrating H(·,·)(r, ζ) with respect to
µ over the half plane P of the admissible thresholds, we obtain the Preisach operator

W2(r)(t) =
∫

P
H(ρ1,ρ2)(r, ζ)(t) dµ(ρ1, ρ2).

The second part of the paper is devoted to study the following problems:

Problem (TPj). For a fixed thermostatic operator Wj (j = 1, 2), find a triplet
(θ, χ, u) such that (θ, χ) is the solution to the relaxed, respectively the Stefan, problem
with θe given by (1.7) and u obeing (1.8).

This rough formulation can be made more precise by incorporating the thermo-
stat dynamics into the boundary conditions. Indeed, observe that regarding (1.8) as a
Cauchy problem for u, we obtain

u(t) =
∫ t

0

e−
t−τ

b

(Wj(M(θ))(τ) + θC(τ)
)
dτ + u0e

− t
b (1.9)

for any t ∈ (0, T ), i.e. u is given by a Volterra operator. Inserting (1.9) into (1.7), for
j = 1, 2 we get

θe = F(Wj(M(θ))
)

on Γ1 × (0, T ).

Here, for r ∈ L2(0, T ),

F(r)(y, t) =
∫ t

0

E(y, t, τ)r(τ) dτ + E0(y, t) ∀ (y, t) ∈ Γ1 × (0, T )

wherein E and E0 are easily recovered from (1.8) as

E(·, t, τ) = e−
t−τ

b θA(·, t)

E0(·, t) =
( ∫ t

0

e−
t−τ

b θC(τ)dτ + u0e
− t

b

)
θA(·, t) + θB(·, t)

almost everywhere on Γ1 and t, τ ∈ [0, T ]. However, we can consider a more general
situation (see Section 4 below).

Now we can state our problems as follows, for j = 1, 2 fixed.
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Problem (TPj). Find (θ, χ) solution to the relaxed, respectively the Stefan, prob-
lem with

θe = F(Wj(M(θ))
)

on Γ1 × (0, T ).

We observe that we are dealing with nonlinear parabolic integro-differential prob-
lems with a nonlinear and non-local boundary condition.

Applying an inductive argument as in [14] (see also [9]), we will show that there
exists a unique solution for our problems (relaxed and Stefan) corresponding to the relay
switch. Concerning the Preisach operator, using the Schauder fixed point theorem, we
can prove the existence of the solution. Uniqueness also holds, under suitable hypotheses
on the measure µ, provided that ωI = 0.

The plan of the paper is the following:
Sections 2 and 3 are devoted to the well-posedness for the relaxed and the Stefan

problems, respectively. In Section 4 we will establish our existence and uniqueness
results for the two feedback control problems involving the relay switch, while in Section
5 we study the analogs in the case of the Preisach operator.

2. Relaxed problem: well-posedness

2.1 Variational formulation and main results. Let Ω ⊂ RN be a bounded domain
with boundary ∂Ω of class C2 and QT = Ω × (0, T ); {Γ0,Γ1} is a partition of ∂Ω into
two measurable subsets (Γ1 of positive Lebesgue measure). We introduce the Hilbert
spaces V = {v ∈ H1(Ω) : v = 0 in Γ0} and H = L2(Ω). Since we allow Γ0 to be
a null set, we endow V with the norm ‖v‖V = {∫

Ω

[|∇v|2 + |v|2]dx}1/2, while H is
equipped with the usual norm denoted by ‖ · ‖. Further, V ′ represents the dual space
of V and ‖ · ‖V ′ stands for its norm. Identifying H with its dual space H ′, it turns out
that V ⊂ H ⊂ V ′ with dense and compact injections. In addition, we denote by 〈·, ·〉
the duality pairing between V ′ and V , by (·, ·), ((·, ·)) and ((·, ·))∗ the scalar products
in H, V and V ′, respectively. Also, J : V → V ′ stands for the Riesz isomorphism
〈Ju, v〉 = ((u, v)), for any u, v ∈ V . Let (·, ·)Γ1 and ‖ · ‖L2(Γ1) be the the scalar product
and the norm in L2(Γ1). Henceforth ϕ0, ψ0, k0, α and σ are positive constants.

Our assumptions on the data are the following:

(H1) ϕ ∈ L2(0, T ) and ψ, k ∈ L1(0, T ).

(H2) There exists γ > 0 such that γ
∫ t

0
|v(s)|2ds ≤ ∫ t

0

(
k0v(s) + (k ∗ v)(s)

)
v(s) ds for

any v ∈ L2(0, T ) and any t ∈ [0, T ].
(H3) f ∈ L1(0, T ;H) + L2(0, T ; V ′).
(H4) θe ∈ L2(0, T ; L2(Γ1)).
(H5) λ : R→ 2R is a maximal monotone graph, particularly λ = ∂Λ.
(H6) Λ : R → [0, +∞] is a proper, convex and lower-semicontinuous function such

that Λ(0) = 0 = minΛ.
(H7) There exists L > 0 such that |β(θ1, χ1)− β(θ2, χ2)| ≤ L

{|θ1 − θ2|+ |χ1 − χ2|
}

for any (θ1, χ1), (θ2, χ2) ∈ R2.
(H8) θ0 ∈ H and χ0 ∈ K = {γ ∈ H : γ ∈ D(λ) a.e. inΩ}.
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(H9) Λ(χ0) ∈ L1(Ω).
(H10) h is a Carathéodory function depending on θ in a Lipschitz continuous way

(being M its Lipschitz constant) and such that h(0) = 0.

Observe that assumption (H2) is due to the Second Principle of Thermodynamics (see
[12]).

We shall deal with the following

Problem 1. Find (θ, e, χ, ξ) such that

θ ∈ L∞(0, T ;H) ∩ L2(0, T ; V )

e ∈ W 1,1(0, T ; H) + H1(0, T ; V ′)

χ ∈ H1(0, T ;H), ξ ∈ L2(0, T ; H)





(2.1)

and which, moreover, fulfills

e = ϕ0θ + ψ0χ + ϕ ∗ θ + ψ ∗ χ a.e. in QT

〈∂te + J(k0θ + k ∗ θ), v〉+ σ(θΓ1 , v)Γ1 =

〈f, v〉+
(
h(θ, k ∗ θ), v

)
+ σ(θe, v)Γ1 for all v ∈ V, a.e. in (0, T )

α∂tχ + ξ = β(θ, χ) a.e. in QT

ξ ∈ λ(χ) a.e. in QT

θ(·, 0) = θ0, χ(·, 0) = χ0 a.e. in Ω





. (2.2)

Remark 1. In our Problem P1, h(θ, k ∗ θ) = k0θ + k ∗ θ, but we can consider a
general function enjoying assumption (H10).

Remark 2. We point out that, because of (2.1)1,3, (2.1)2 follows from (2.2)1−3.
Moreover, (2.1)2 implies ∂tθ ∈ L1(0, T ; H)+L2(0, T ;V ′) which, due also to (2.1)1, yields
θ ∈ C0([0, T ]; H) so that the first initial condition of (2.2)6 makes sense as well.

Now we can state the existence and uniqueness of the solution to Problem 1 and the
Lipschitz continuous dependence of θ on θe which we exploit in our feedback problems.
Note that uniqueness is a straightforward consequence of estimate (2.3) below.

Theorem 2.1. If assumptions (H1) − (H10) hold, then the solution to Problem
1 exists. Moreover, if k ∈ W 1,1(0, T ), such solution is unique and there is a constant
C > 0 such that for any pair θe i ∈ L2(0, T ; L2(Γ1)) (i = 1, 2), if we denote by (θi, ei, χi)
the solution to Problem 1 corresponding to θe i, then

‖θ1 − θ2‖L2(0,T ;H)

+‖∇(
1 ∗ (θ1 − θ2)

)‖L∞(0,T ;HN )

+‖1 ∗ (θ1 − θ2)‖L∞(0,T ;L2(Γ1))

+‖χ1 − χ2‖L∞(0,T ;H) ≤ C‖θe 1 − θe 2‖L2(0,T ;L2(Γ1))

(2.3)

where C depends on
Ω, Γ1, T, α, σ, ϕ0, ψ0, k0, L, M
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and on the norms
‖ϕ‖L2(0,T ), ‖k‖W 1,1(0,T ), ‖ψ‖L1(0,T ).

Dealing with the Preisach operator we shall need a uniform bound for

θ ∈ L∞(0, T ;V ) ∩H1(0, T ;H)

in terms of θe. This requires stronger regularity assumptions on the memory kernels
and on the data θ0, θe, f . Indeed, we have

Theorem 2.2. Let assumptions (H2) and (H5) − (H10) hold and suppose ϕ, k ∈
W 1,1(0, T ) as well as ψ ∈ L2(0, T ). Now, if θ0 ∈ V , θe ∈ W 1,1(0, T ; L2(Γ1)) and
f ∈ L2(0, T ; H) + W 1,1(0, T ; V ′), then θ ∈ L∞(0, T ; V ) ∩H1(0, T ;H). Moreover, there
exists a constant C > 0 such that

‖θ‖L∞(0,T ;V )∩H1(0,T ;H) ≤ C
{
1 + ‖θe‖W 1,1(0,T ;L2(Γ1))

}
(2.4)

holds where the constant C depends on

Ω, Γ1, T, M, α, σ, ϕ0, ψ0, k0, |ϕ(0)|, |k(0)|

and on the norms
‖ϕ‖W 1,1(0,T ), ‖k‖W 1,1(0,T ), ‖ψ‖L2(0,T )

‖θ0‖V , ‖χ0‖, ‖Λ(χ0)‖L1(Ω), ‖f‖L2(0,T ;H)+W 1,1(0,T ;V ′).

2.2 Relaxed problem: continuous dependence and uniqueness. As we have
pointed out at the end of Section 1, we will deal with Problem 1 which is the variational
formulation of a more general problem. We observe that it suffices to prove (2.3) since
uniqueness is a direct consequence; let the quadruple (θi, ei, χi, ξi) be a solution to
Problem 1 corresponding to θe i for i = 1, 2. Taking the difference of all equations in
(2.2) written for the two solutions and denoting

Θ = θ1 − θ2, E = e1 − e2, X = χ1 − χ2, Ξ = ξ1 − ξ2, Θe = θe 1 − θe 2

we infer that the quadruple (Θ, E,X, Ξ) solves the following problem with homogeneous
initial conditions:

〈∂tE + J(k0Θ + k ∗Θ), v〉+ σ(Θ, v)Γ1

=
(
h(θ1, k ∗ θ1)− h(θ2, k ∗ θ2), v

)
+ σ(Θe, v)Γ1 ∀ v ∈ V, a.e. in (0, T )

α∂tX + Ξ = β(θ1, χ1)− β(θ2, χ2) a.e. in QT

E = ϕ0Θ + ψ0X + ϕ ∗Θ + ψ ∗X a.e. inQT





. (2.5)

In order to get an estimate for X, we multiply (2.5)3 by X and integrate over Qt.
Assumptions (H5), (H7), (H8), the Hölder inequality and the standard Young inequality

ab ≤ δ
2a2 + 1

2δ b2 (a, b ∈ R, δ > 0) (2.6)
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yield, for any t ∈ [0, T ],

α
2 ‖X(t)‖2 ≤ ϕ0γ

4

∫ t

0

‖Θ(s)‖2ds +
(

L2

ϕ0γ + L
) ∫ t

0

‖X(s)‖2ds. (2.7)

Now we integrate (2.5)1−2 over (0, t) and choose as test function v = Θ; integrating
with respect to time, we get

ϕ0‖Θ‖2L2(0,t;H) + k0
2 ‖(1 ∗Θ)(t)‖2V + σ

2 ‖(1 ∗Θ)(t)‖2L2(Γ1)

= −
∫ t

0

(ϕ ∗Θ, Θ)− ψ0

∫ t

0

(X, Θ)−
∫ t

0

(ψ ∗X, Θ)−
∫ t

0

〈J(k ∗ 1 ∗Θ), Θ〉

+
∫ t

0

(
1 ∗ [

h(θ1, k ∗ θ1)− h(θ2, k ∗ θ2)
]
, Θ

)
+ σ

∫ t

0

(
1 ∗Θ, Θe

)
Γ1

=
6∑

i=1

Bi(t).

By Hölder inequality we have

|B1(t)| ≤ ‖ϕ‖L2(0,T )

{ ∫ t

0

‖Θ‖2L2(0,s;H)ds
}1/2

‖Θ‖L2(0,t;H)

|B2(t)| ≤ ψ0‖X‖L2(0,t;H)‖Θ‖L2(0,t;H).

By the Young inequality for convolution (see, e.g., [13]) we estimate the third integral
as

|B3(t)| ≤ ‖ψ‖L1(0,T )‖X‖L2(0,t;H)‖Θ‖L2(0,t;H).

The same inequality, integration by parts and properties of convolution yield

|B4(t)| ≤ ‖k‖L2(0,T )‖1 ∗Θ‖L2(0,t;V )‖(1 ∗Θ)(t)‖V

+
[|k(0)|+ ‖k′‖W 1,1(0,T )

]‖1 ∗Θ‖2L2(0,t;V )

|B5(t)| ≤ C

{ ∫ t

0

‖Θ‖2L2(0,s;H)ds

}1/2

‖Θ‖L2(0,t;H)

|B6(t)| ≤ σ‖(1 ∗Θe)(t)‖L2(Γ1)‖(1 ∗Θ)(t)‖L2(Γ1)

+ σ‖Θe‖L2(0,t;L2(Γ1))‖1 ∗Θ‖L2(0,t;L2(Γ1)).

Collecting all estimates above for B1(t), . . . , B6(t) and using (2.6), we get

ϕ0
2 ‖Θ‖2L2(0,t;H) + k0

4 ‖(1 ∗Θ)(t)‖2V + σ
4 ‖(1 ∗Θ)(t)‖2L2(Γ1)

≤ C

{ ∫ t

0

‖Θ‖2L2(0,s;H)ds + ‖1 ∗Θ‖2L2(0,t;V ) + ‖1 ∗Θ‖2L2(0,t;L2(Γ1))

+ ‖X‖2L2(0,t;H) + ‖Θe‖2L2(0,T ;L2(Γ1))

}
.
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Adding herein (2.7) multiplied by 1
γ and using a standard inequality, we obtain

ϕ0
4 ‖Θ‖2L2(0,t;H) + k0

4 ‖(1 ∗Θ)(t)‖2V + σ
4 ‖(1 ∗Θ)(t)‖2L2(Γ1)

+ α
2γ ‖X(t)‖2

≤ C

{ ∫ t

0

‖Θ‖2L2(0,s;H)ds + ‖1 ∗Θ‖2L2(0,t;V ) + ‖1 ∗Θ‖2L2(0,t;L2(Γ1))

+ ‖X‖2L2(0,t;H) + ‖Θe‖2L2(0,T ;L2(Γ1))

}
.

Now the Gronwall lemma implies (2.3).

2.3 Relaxed problem: existence. In order to show that the solution to Problem
1 exists, we will study a sequence of approximating Problems Pn characterized by
smoother kernels. By a fixed point argument, we infer that there exists a unique solution
(θn, en, χn, ξn) to Problem Pn. Moreover, we can prove that an a priori bound holds:
then, at least for a subsequence, weak or weak star convergences are deduced, but
due to the non-linearities due to λ, β and h, they do not allow to pass to the limit in
the nonlinear terms. We overcome this obstacle by showing that the solutions to the
approximating problems are Cauchy sequences with respect to suitable norms. Finally,
an appropriate subsequence will converge to a solution to Problem 1. Indeed, due to
uniqueness, the whole approximating sequence will converge to the solution.

First of all, we observe that, since ϕ ∈ L2(0, T ) and k ∈ L1(0, T ), it is possible to
find two sequences {ϕn} and {kn} in W 1,1(0, T ) such that

ϕn → ϕ in L2(0, T )

kn → k in L1(0, T ).
(2.8)

By assumption (H2), (2.8)2 and [3: Inequality (3.7)], without loss of generality, we can
assume that, for any n ∈ N, for any v ∈ L2(0, T ) and any t ∈ [0, T ],

γ
2

∫ t

0

|v(s)|2ds ≤
∫ t

0

(
k0v(s) + (kn ∗ v)(s)

)
v(s) ds. (2.9)

We will study the following approximating problems:

Problem Pn. Find (θn, en, χn, ξn) such that

θn ∈ C0([0, T ]; H) ∩ L2(0, T ;V )

∂tθn ∈ L1(0, T ; H) + L2(0, T ;V ′)

χn ∈ H1(0, T ; H), ξn ∈ L2(0, T ; H)





and, moreover,

ϕ0θn + ψ0χn + ϕn ∗ θn + ψ ∗ χn = en a.e. in QT

〈∂ten + J(k0θn + kn ∗ θn), v〉+ σ(θn, v)Γ1

= 〈f, v〉+
(
h(θn, k ∗ θn), v

)
+ σ(θe, v)Γ1 ∀ v ∈ V, a.e. in (0, T )

α∂tχn + ξn = β(θn, χn) a.e. in QT

ξn ∈ λ(χn) a.e. in QT

θn(·, 0) = θ0, χn(·, 0) = χ0 a.e. in Ω





(2.10)
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Lemma 2.1 If assumptions (H1) - (H10) hold, let ϕn, kn ∈ W 1,1(0, T ) be such that
(2.8) is satisfied. Then, for any fixed n, there exists a unique solution to Problem Pn.

Proof. We drop n for simplicity. Our argument is based on the Banach Fixed Point
Theorem. Let us introduce the Hilbert spaces

XT =
{

(u, η) ∈ L2(0, T ; H ×H) : 1 ∗ u ∈ L∞(0, T ; V )
}

endowed with the norm

‖(u, η)‖2t = ‖u‖2L2(0,t;H) + ‖1 ∗ u‖2L∞(0,t;V ) + ‖η‖2L2(0,t;H)

and
YT =

{
(u, η) ∈ XT : η(·, t) ∈ K a.e. in (0, T )

}
.

Note that YT is a closed and convex subset of XT . Now we consider the following
problem:

Problem (P). For any (u, η) ∈ YT fixed, find a pair (θ, χ) such that

θ ∈ C0([0, T ];H) ∩ L2(0, T ;V )

∂tθ ∈ L1(0, T ;H) + L2(0, T ; V ′)

χ ∈ H1(0, T ;H), χ(·, t) ∈ K ∀ t ∈ [0, T ]





and which, moreover, fulfills
ϕ0〈∂tθ, v > + < J(k0θ), v > +σ(θ, v)Γ1

= 〈f, v〉+
(
h(u, k ∗ u), v

)
+ σ(θe, v)Γ1

−〈∂t

(
ψ0χ + ϕ ∗ u + ψ ∗ χ

)
+ J(k ∗ u), v〉 ∀ v ∈ V, a.e. in (0, T )

α〈∂tχ, χ− γ〉 ≤ 〈β(u, η), χ− γ〉 ∀ γ ∈ K, a.e. in (0, T )

θ(·, 0) = θ0, χ(·, 0) = χ0 a.e. in Ω





.

By the same argument used in [8], we can easily see that there exists a unique
solution to such problem; it turns out that a nonlinear and continuous operator R :
YT → YT is defined as R(u, η) = (θ, χ), where (θ, χ) solves the corresponding Problem
(P). As in [8: Lemma 3.2], it is possible to prove that there exists a positive constant
C such that, for any (u1, η1), (u2, η2) ∈ YT ,

∥∥R(u1, η1)−R(u2, η2)
∥∥2

t
≤ C

∫ t

0

∥∥(u1, η1)− (u2, η2)
∥∥2

τ
dτ.

Owing to this inequality we can deduce that
∥∥R(u1, η1)−R(u2, η2)

∥∥2

t
≤ Ct

∥∥(u1, η1)− (u2, η2)
∥∥2

t
.

Then ∥∥R2(u1, η1)−R2(u2, η2)
∥∥2

t
≤ C

∫ t

0

∥∥R(u1, η1)−R(u2, η2)
∥∥2

τ
dτ

≤ C2t2

2

∥∥(u1, η1)− (u2, η2)
∥∥2

t
.

By induction,
∥∥Rm(u1, η1)−Rm(u2, η2)

∥∥2

t
≤ CmT m

m!

∥∥(u1, η1)− (u2, η2)
∥∥2

t
.

Then, if m is large enough, Rm is a contraction mapping in YT and the solution to
Problem Pn exists and is unique
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We point out that en ∈ W 1,1(0, T ; H) + H1(0, T ; V ′). We can now prove that the
following a priori estimates hold.

Lemma 2.2. Under the assumptions of Lemma 2.1, if we write f = f1 + f2, where
f1 ∈ L1(0, T ;H) and f2 ∈ L2(0, T ; V ′), there exist two constants C1, C2 > 0 both
independent of n such that, for any n ∈ N, the solution (θn, en, χn, ξn) to Problem Pn

satisfies

‖θn‖C0([0,T ];H)∩L2(0,T ;V ) + ‖χn‖H1(0,T ;H) ≤ C1

‖en‖C0([0,T ];H) + ‖en − 1 ∗ f1‖H1(0,T ;V ′) + ‖ξn‖L2(0,T ;H) ≤ C2.
(2.11)

Proof. We multiply (2.10)4 by χn and integrate over Qt. Then, taking account of
assumptions (H5), (H7), (H8) and (2.10)5−6, we get

α
2

{‖χn(t)‖2 − ‖χ0‖2
} ≤ C

{
1 +

∫ t

0

[‖χn(s)‖2 + ‖θn(s)‖2]ds

}
(2.12)

where C > 0 is independent of n. Let us recall that χn is a solution to (2.10)4−6. Then
assumptions (H5) - (H9) entail, by the third inequality in [4: p. 72/Theorem 3.6],

α

∫ t

0

‖∂tχn(s)‖2ds ≤ 2‖Λ(χ0)‖L1(Ω) + C

{
1 +

∫ t

0

[‖θn(s)‖2 + ‖χn(s)‖2]ds

}
. (2.13)

Now we choose v = ϕ0θn + ϕn ∗ θn in (2.10)2−3: integrating with respect to time and
taking account of (2.9), we deduce

1
2

∥∥(ϕ0θn + ϕn ∗ θn)(t)
∥∥2 + ϕ0γ

2 ‖θn‖2L2(0,t;V ) + σϕ0‖θn‖2L2(0,t;L2(Γ1))

≤ ϕ2
0
2 ‖θ0‖2 +

7∑

i=1

|Ii(t)|
(2.14)

where

I1(t) = ψ0

∫ t

0

〈∂tχn, ϕ0θn + ϕn ∗ θn〉dτ

I2(t) =
∫ t

0

〈∂t(ψ ∗ χn), ϕ0θn + ϕn ∗ θn〉dτ

I3(t) =
∫ t

0

(
k0θn + kn ∗ θn, ϕn ∗ θn

)
dτ

I4(t) = σ

∫ t

0

(θn, ϕn ∗ θn)Γ1dτ

I5(t) =
∫ t

0

〈f, ϕ0θn + ϕn ∗ θn〉dτ

I6(t) =
∫ t

0

(
h(θn, k ∗ θn), ϕ0θn + ϕn ∗ θn

)
dτ

I7(t) = σ

∫ t

0

(
θe, ϕ0θn + ϕn ∗ θn

)
Γ1

dτ.
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We can estimate Ii(t) for i = 1, 2, 3 as in [3: Formulas (4.22), (4.25), (4.26)] (henceforth
δ > 0 stands for a constant suitably chosen in any estimate). Namely,

|I1(t)| ≤ δ
2‖∂tχn‖2L2(0,t;H) + ψ2

0
2δ

∫ t

0

‖(ϕ0θn + ϕn ∗ θn)(s)‖2ds.

Let us recall that ∂t(ψ ∗ χn) = χ0ψ + ψ ∗ ∂tχn. Then we get

|I2(t)| ≤ ‖χ0‖
∫ t

0

|ψ(s)| ‖(ϕ0θn + ϕn ∗ θn)(s)‖ds

+ δ
2‖ψ‖2L1(0,T )‖∂tχn‖2L2(0,t;H)

+ 1
2δ

∫ t

0

‖(ϕ0θn + ϕn ∗ θn)(s)‖2ds.

From (2.8) we infer

|I3(t)| ≤ k0+C
2

{
δ‖θn‖2L2(0,t;V ) + C

δ

∫ t

0

‖θn‖2L2(0,s;V )ds

}
.

Now we consider the first term due to the boundary condition:

|I4(t)| ≤ σδ
2 ‖θn‖2L2(0,t;L2(Γ1))

+ σC
2δ

∫ t

0

‖θn‖2L2(0,s;L2(Γ1))
ds.

We write f = f1 + f2. Then we get

|I5(t)| ≤
∫ t

0

‖f1(s)‖
∥∥(ϕ0θn + ϕn ∗ θn)(s)

∥∥ds + C̃ 1
δ‖f2‖2L2(0,T ;V ′) + C̃ δ

2‖θn‖2L2(0,t;V )

|I6(t)| ≤ M
2

∫ t

0

‖θn(s)‖2ds + M
2

∫ t

0

‖(ϕ0θn + ϕn ∗ θn)(s)‖2ds

|I7(t)| ≤ σ
δ ‖θe‖2L2(0,t;L2(Γ1))

+ σδ
2 ‖θn‖2L2(0,t;L2(Γ1))

+ σCδ
2

∫ t

0

‖θn‖2L2(0,s;L2(Γ1))
ds.

It is easy to see that

ϕ2
0
8 ‖θn(t)‖2 ≤ 1

4‖(ϕ0θn + ϕn ∗ θn)(t)‖2 + C

∫ t

0

‖θn(s)‖2ds.

By this remark, inserting the above estimates for I1(t), . . . , I7(t) into (2.14) and taking
advantage of (2.12) and (2.13), we obtain

1
4

∥∥(ϕ0θn + ϕn ∗ θn)(t)
∥∥2 + ϕ0γ

4 ‖θn‖2L2(0,t;V )

+ σϕ0
2 ‖θn‖2L2(0,t;L2(Γ1))

+ ϕ2
0
8 ‖θn(t)‖2 + α

2 ‖χn(t)‖2 + α
2 ‖∂tχn‖2L2(0,t;H)

≤ C

{
1 +

∫ t

0

[
‖θn(s)‖2 + ‖χn(s)‖2 +

∥∥(ϕ0θn + ϕn ∗ θn)(s)
∥∥2

+ ‖θn(s)‖2L2(0,s;L2(Γ1))

]
ds +

∫ t

0

‖θn‖2L2(0,s;V )ds

+
∫ t

0

(‖χ0‖ |ψ(s)|+ ‖f1(s)‖
)∥∥(ϕ0θn + ϕn ∗ θn)(s)

∥∥ds

}
.

(2.15)

By a generalization of the Gronwall lemma [1: Teorema 2.1] we deduce (2.11)1 while
(2.11)2 follows from (2.15) and (2.10)1−3
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From the a priori estimates we can conclude that, at least for a subsequence,

θn → θ weakly star in L∞(0, T ; H) ∩ L2(0, T ;V )

χn → χ weakly in H1(0, T ; H)

en → e weakly star in L∞(0, T ; H)

en − 1 ∗ f1 → e− 1 ∗ f1 weakly in H1(0, T ; V ′)

ξn → ξ weakly in L2(0, T ; H)





. (2.16)

As we have pointed out, these convergences are not enough in order to pass to the limit
in (2.10); we also need some strong convergence.

By comparison in (2.10)2−3, (2.11)1 yields the existence of a constant C3 > 0 such
that for any n ∈ N, ‖∂tθn‖2L2(0,T ;V ′) ≤ C3. Then, by compactness,

θn → θ strongly in L2(0, T ; H). (2.17)

Writing (2.10)4 for n,m ∈ N and taking the difference, we get

α∂t(χn − χm) + ξn − ξm = β(θn, χn)− β(θm, χm) a.e. in QT .

Choose v = χn − χm herein and integrate over Ω× (0, t) to get

α
2 ‖(χn − χm)(t)‖2 +

∫ t

0

(ξn − ξm, χn − χm)

=
∫ t

0

([
β(θn, χn)− β(θm, χm)

]
, χn − χm

)
.

Observe that assumptions (H5) and (H6) entail

α
2

∥∥(χn − χm)(t)
∥∥2

≤ L
{
‖θn − θm‖L2(0,t;H) + ‖χn − χm‖L2(0,t;H)

}
‖χn − χm‖L2(0,t;H).

By the Gronwall lemma and the strong convergence (2.17), we deduce that

χn → χ strongly in L∞(0, T ;H). (2.18)

Now we proceed along the lines of [3]: we write a sketch of the proof for reader’s
convenience. Now (2.8), (2.16)1−4 and (2.17) - (2.18) allow to pass to the limit in
(2.10)1−3 ending up with (2.2)1−3. The pair (θ, χ) satisfies the initial conditions (2.2)6
because of (2.10)6. Relation (2.2)4 is fulfilled since assumption (H7) and (2.17) - (2.18)
yield β(θn, χn) → β(θ, χ) in L2(QT ). Exploiting the monotonicity of λ, by [2: p.
42/Lemma 1.3], relation (2.2)5 follows from

lim sup
n→∞

∫∫

Q

ξnχn ≤
∫∫

Q

ξχ.
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This condition holds true because of (2.10)5, (2.16)5 and (2.18).

2.4 Relaxed problem: regularity. Let (θ, χ) be the solution to Problem 1. Since
θ ∈ L2(0, T ;V )∩C0([0, T ];H) and χ ∈ H1(0, T ;H), by Faedo-Galerkin method, we can
easily prove that θ ∈ L∞(0, T ; V ) ∩H1(0, T ; H).

Now we will prove that estimate (2.4) holds as well. We can write (2.2)1−3,6 as

ϕ0〈∂tθ, v〉+ k0〈J(θ), v〉+ σ(θ, v)Γ1 + 〈G(θ), v〉
= 〈F, v〉+ σ(θe, v)Γ1 ∀ v ∈ V, a.e. in (0, T )

θ(0) = θ0 a.e. in Ω





(2.19)

where
〈G(θ), v〉 = 〈∂t(ϕ ∗ θ), v〉+ 〈J(k ∗ θ), v〉
〈F, v〉 = 〈f − ∂t(ψ0χ + ψ ∗ χ), v〉+

(
h(θ, k ∗ θ), v

)
.

Under the assumptions of Theorem 2.2, since χ ∈ H1(0, T ;H), it turns out that F ∈
L2(0, T ; H) + W 1,1(0, T ; V ′). Moreover, G is linear and continuous from L∞(0, T ; V ) ∩
H1(0, T ; H) to L2(0, T ; H) + W 1,1(0, T ; V ′).

First of all we point out that

‖χ‖H1(0,T ;H) ≤ C
{
1 + ‖θe‖L1(0,T ;L2(Γ1))

}
(2.20)

where the constant C depends on

ϕ0, ψ0, σ, M

and on the norms

‖ϕ‖L2(0,T ), ‖ψ‖L1(0,T ), ‖k‖W 1,1(0,T ), ‖f‖L1(0,T ;H)+L2(0,T ;V ′)‖χ0‖, ‖Λ(χ0)‖L1(Ω).

In order to get (2.20), we infer as in (2.12) that

‖χ(t)‖2 ≤ ‖χ0‖2 + C

∫ t

0

(‖χ(s)‖2 + ‖θ(s)‖2)ds. (2.21)

We need an estimate for ‖θ‖L2(0,t;H) which can be obtained by integrating (2.2)2−3

over (0, t), choosing θ as test function and performing a further integration with respect
to time. Then, owing to the properties of convolution and Gronwall Lemma, we get

‖θ‖L2(0,t;H) ≤ C
{
1 + ‖θe‖L1(0,t;L2(Γ1)) + ‖χ‖L2(0,t;H)

}
.

Substituting this inequality into (2.21), we derive

‖χ(t)‖ ≤ C
(
1 + ‖θe‖L1(0,t;L2(Γ1))

)

‖θ‖L2(0,t;H) ≤ C
(
1 + ‖θe‖L1(0,t;L2(Γ1))

)
.
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Arguing as in (2.13), we obtain (2.20) by [4: p. 72/Theorem 3.6].
Now, in order to prove (2.4), we introduce the bilinear, continuous, symmetric and

coercive form a(u, v) = k0〈Ju, v〉 on V × V . Then if J : V → V ′ is the Riesz isomor-
phism and I : V → V ′ the injection operator, a satisfies the compatibility condition
a(Jv1, v2) = a(v1, Jv2) for all v1, v2 ∈ J−1(I(V )). We recall that

F = F1 + F2 ∈ L2(0, T ; H) + W 1,1(0, T ; V ′)

where
F1 = f1 − ∂t(ψ0χ + ψ ∗ χ) + h(θ, k ∗ θ)

F2 = f2.

We are going to apply a regularization procedure introduced in [16] and whose main
properties are summarized in [6: Appendix].

For ε > 0, we define uε(t) as

uε(t) ∈ V such that (I + ε2J)uε(t) = θ(t) a.e. in (0, T ).

Since θ ∈ L∞(0, T ;V ) ∩ H1(0, T ;H), by [6: Proposition 6.1] we deduce that uε ∈
H1(0, T ; V ). Choosing u′ε(t) as test function in (2.19)1−2 and integrating over (0, t), we
get

ϕ0

∫ t

0

〈∂tθ, u
′
ε〉ds +

∫ t

0

a(θ, u′ε) ds + σ

∫ t

0

(θ, u′ε)Γ1ds

= σ

∫ t

0

(θe, u
′
ε)Γ1ds +

∫ t

0

〈F, u′ε〉ds−
∫ t

0

〈G(θ), u′ε〉ds.

(2.22)

By definition of uε we have

ϕ0

∫ t

0

〈∂tθ, u
′
ε〉 ds = ϕ0

∫ t

0

〈∂tθ − u′ε, u
′
ε
6 ds + ϕ0

∫ t

0

〈u′ε, u′ε〉 ds

= ϕ0ε
2

∫ t

0

〈J u′ε, u
′
ε〉ds + ϕ0

∫ t

0

‖u′ε(s)‖2Hds

= ϕ0ε
2‖u′ε ‖2L2(0,t;V ) + ϕ0‖u′ε ‖2L2(0,t;H).

(2.23)

As ε → 0, by [6: Proposition 6.1/Formulas (6.7) and (6.8)], the right-hand side of (2.23)
tends to ϕ0‖∂tθ‖2L2(0,t;H). Though θ ∈ L∞(0, T ;V ) ∩ H1(0, T ; H), arguing as in [6:
Proposition 6.3], we see that

lim
ε→0

∫ t

0

a(θ, u′ε) ds = 1
2

{
a(θ(t), θ(t))− a(θ(0), θ(0))

}
= k0

2

{‖θ(t)‖2V − ‖θ0‖2V
}

a.e. in (0, T ). Integrating by parts, by [6: Formulas (6.11) and (6.7)] we obtain
∣∣∣∣
∫ t

0

(θe, u
′
ε)Γ1ds

∣∣∣∣ ≤ ‖θe‖L∞(0,T ;L2(Γ1))

{‖θ0‖V + ‖θ‖L∞(0,T ;V )

}

+ ‖∂tθe‖L1(0,T ;L2(Γ1))‖θ‖L∞(0,T ;V )

≤ ‖θe‖W 1,1(0,t;L2(Γ1))

{‖θ0‖V + ‖θ‖L∞(0,t;V )

}
.
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The last two terms on the right-hand side of (2.22) can be estimated as above, that is

∣∣∣∣
∫ t

0

〈F, u′ε〉ds

∣∣∣∣ ≤ ‖F1‖L2(0,t;H)‖∂tθ‖L2(0,t;H)

+ ‖F2‖W 1,1(0,T ;V ′)
{‖θ‖L∞(0,t;V ) + ‖θ0‖V

}

and ∣∣∣∣
∫ t

0

〈G(θ), u′ε〉ds

∣∣∣∣ ≤
[|ϕ(0)|+ ‖ϕ′‖L1(0,T )

]‖θ‖L2(0,t;H)‖∂tθ‖L2(0,t;H)

+ ‖k‖L2(0,T )‖θ‖L2(0,t;V )‖∇θ(t)‖HN

+
[|k(0)|+ ‖k′‖L1(0,T )

]‖θ‖L2(0,t;V )‖∇θ‖L2(0,t;HN )

+ M‖θ‖L2(0,t;H)‖∂tθ‖L2(0,t;H).

Collecting the previous estimates, it turns out that

‖∂tθ‖L2(0,t;H) + ‖θ‖L∞(0,t;V ) + ‖θ‖L∞(0,t;L2(Γ1))

≤ C
{
‖F‖L2(0,t;H) +W 1,1(0,T ;V ′) + ‖θe‖W 1,1(0,T ;L2(Γ1)) + ‖θ0‖V

} (2.24)

where the constant C depends on

‖ϕ‖W 1,1(0,T ), ‖k‖W 1,1(0,T ), ‖ψ‖L1(0,T ), |ϕ(0)|, |k(0)|, σ, α, ϕ0, ψ0 k0.

By the definition of F and (2.19)1−2, it is easy to see that

‖F‖L2(0,T ;H)∩W 1,1(0,T ;V ′) ≤ C
{
1 + ‖θe‖L1(0,T ;L2(Γ1))

}

where the constant C depends on

‖f‖L2(0,T ;H)+W 1,1(0,T ;V ′), ψ0, ‖ψ‖L2(0,T ), ‖χ0‖, M, ‖k‖W 1,1(0,T ), ‖Λ(χ0)‖L1(Ω).

Inserting this inequality into (2.24), (2.4) follows.

3. Stefan problem: well-posedness

In this section we state our main results concerning the Stefan problem. First of all, we
slightly modify the hypotheses on the memory kernels and the initial data:

(K1) ϕ,ψ ∈ W 1,1(0, T ) and k ∈ L2(0, T ).

(K2) e0 ∈ H.

Also, we suppose that assumptions (H2) - (H4) hold. With the same choice of V and
H of Section 2, the variational formulation of Problem P2 reads
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Problem 2. Find a triplet (θ, e, χ) such that

θ ∈ L∞(0, T ; H) ∩ L2(0, T ; V )

e ∈ W 1,1(0, T ;H) + H1(0, T ;V ′)

χ ∈ L∞(QT )

and which, moreover, satisfies the equations

e = ϕ0θ + ψ0χ + ϕ ∗ θ + ψ ∗ χ in V ′, a.e. in (0, T ) (3.1)
〈∂te, v〉+

(∇(k0θ + k ∗ θ),∇v
)

+ σ(θ, v)Γ1

= 〈f, v〉+ σ(θe, v)Γ1 ∀ v ∈ V, a.e. in (0, T ) (3.2)
χ ∈ H(θ) a.e. in QT (3.3)

(ϕ0θ + ψ0χ)(·, 0) = e0 in V ′. (3.4)

Theorem 3.1. If assumptions (K1) - (K2) and (H2) - (H4) hold, then there exists
at least one solution to Problem 2.

Since we can not obtain any continuous dependence estimate for χ from (3.3), we
apply as in [8] an inversion formula for Volterra integral equations (see [13]). It requires
stronger regularity on memory kernels, but allows us to get rid of the convolution term
in χ. Then, exploiting the monotonicity of H, it is possible to control this term. It
remains to seek for an estimate for θ which is easy to derive.

Theorem 3.2. If assumptions (K2) and (H2) hold and, moreover,

ϕ,ψ, k ∈ W 1,1(0, T ), (3.5)

then there exists a constant C > 0 such that, denoting for any θe i ∈ L2(0, T ; L2(Γ1)) by
(θi, χi) (i = 1, 2) the solution to Problem 2 corresponding to θe i, the estimate

‖θ1 − θ2‖L2(0,T ;H) + ‖1 ∗ (θ1 − θ2)‖L∞(0,T ;V ) ≤ C‖θe 1 − θe 2‖L2(0,T ;L2(Γ1)) (3.6)

holds where C depends on ϕ0, ψ0, k0, σ, γ, |k(0)| and on the norms of ϕ,ψ and k in
L2(0, T ),W 1,1(0, T ) and W 1,1(0, T ), respectively.

Finally, we can prove the following regularity result.

Theorem 3.3. If assumptions (K2), (H2) and (3.5) hold, let us suppose that

f ∈ L2(0, T ;H) + W 1,1(0, T ;V ′)

θe ∈ W 1,1(0, T ; L2(Γ1))

θ0 = (ϕ0I + ψ0H)−1(e0) ∈ V





. (3.7)

Then θ ∈ L∞(0, T ;V ) ∩H1(0, T ;H) and there exists a constant C > 0 such that

‖θ‖L∞(0,T ;V )∩H1(0,T ;H) ≤ C
{
1 + ‖θe‖W 1,1(0,T ;L2(Γ1))

}
. (3.8)
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The constant C depends on the norms ‖ϕ‖W 1,1(0,T ), ‖k‖W 1,1(0,T ), ‖ψ‖W 1,1(0,T ), ‖θ0‖V

and ‖f‖L2(0,T ;H)+W 1,1(0,T ;V ′).

3.1 Stefan problem: existence. We will show that there exists at least one solution
to Problem 2 by the same procedure as in [8: Theorem 2.2], i.e. by obtaining as limit
of a sequence of solutions of relaxed problems whose kinetic parameters tend to zero.
Let θ0 ∈ H and χ0 ∈ K, with K defined by

H =
{

γ ∈ H : 0 ≤ γ ≤ 1 a.e. in Ω
}

,

be such that ϕ0θ0 + ψ0χ0 = e0 a.e. in Ω. Assumption (K1) allows us to introduce a
sequence {kn} in C1([0, T ]) such that kn → k in L2(0, T ).

Now we consider the following approximating problems.

Problem P1n. Find a pair (θn, χn) such that

θn ∈ L∞(0, T ;H) ∩ L2(0, T ; V )

χn ∈ H1(0, T ;H), χn(·, t) ∈ K ∀ t ∈ [0, T ]

}

and which, moreover, satisfies

〈∂t(ϕ0θn + ψ0χn), v〉+ 〈∂t(ϕ ∗ θn + ψ ∗ χn), v〉
+

(∇(k0θn + kn ∗ θn),∇v
)

+ σ(θn, v)Γ1

= 〈f, v〉+ σ(θe, v)Γ1 ∀ v ∈ V, a.e. in (0, T ) (3.9)
1
n∂tχn + H−1(χn) 3 θn in QT (3.10)

θn(·, 0) = θ0, χn(·, 0) = χ0 in Ω. (3.11)

We point out that (3.10) is a particular case of (2.2)4, with λ = H−1 and β(θ, χ) = θ.
Then by Theorem 2.1 it is easy to see that Problem P1n is well posed for any n ∈ N.
The following a priori estimate also holds:

Lemma 3.1. If assumptions (K1) - (K2) and (H2) - (H4) hold, then there exists a
constant C > 0 such that, for any n ∈ N, the solution (θn, χn) to Problem P1n satisfies

‖θn‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖χn‖L∞(QT ) + 1
n‖∂tχn‖L2(0,T ;H) ≤ C.

Proof. It is easy to recover such estimate because χn(·, t) ∈ K for any t ∈ [0, T ] and
any n ∈ N. Moreover, the estimate for 1

n‖∂tχn‖L2(0,T ;H) follows from [4: p. 72/Theorem
3.6]. Finally, we take v = ϕ0θn +ϕn ∗θn in our variational equation (3.9) and, reasoning
as in Lemma 2.2, we get the desired estimate

From Lemma 3.1 we deduce that, at least for a subsequence,

θn → θ weakly star in L∞(0, T ;H) ∩ L2(0, T ; V )

χn → χ weakly star in L∞(QT )
1
n∂tχn → 0 strongly in L2(0, T ;H)





(3.12)
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as n → ∞. Now our aim is to prove that (θ, χ) solves Problem 2. We observe that,
taking advantage of assumption (K1), we infer

ϕn ∗ θn → ϕ ∗ θ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ; V )

ψ ∗ χn → ψ ∗ χ weakly star in W 1,∞(0, T ; H)

kn ∗ θn → k ∗ θ weakly star in L∞(0, T ; H) ∩ L2(0, T ;V ).

Taking now ξn = ∂t(ϕ0θn + ψ0χn) − f1, from (3.9) and the previous convergences we
get that {ξn} is bounded in L2(0, T ; V ′) and, possibly taking a subsequence, ξn → ξ
weakly in L2(0, T ; V ′). Moreover, for any v ∈ H1

0 (0, T ; V ) we have, integrating by parts
with respect to time,

∫ T

0

〈ξn, v〉ds =
∫ T

0

〈
∂t(ϕ0θn + ψ0χn), v

〉
ds−

∫ T

0

〈f1, v〉ds

= −
∫ T

0

〈
ϕ0θn + ψ0χn), ∂tv

〉
ds−

∫ T

0

〈f1, v〉ds.

Hence, because of (3.12)1−2, we can pass to the limit and obtain that ξ = ∂t(ϕ0θ +
ψ0χ)− f1, that is

∂t(ϕ0θn + ψ0χn)− f1 → ∂t(ϕ0θ + ψ0χ)− f1 weakly in L2(0, T ;V ′). (3.13)

On account of (3.12)1−2 and (3.13), apply a compactness theorem [15: p. 58] to infer
that

(ϕ0θn + ψ0χn)− 1 ∗ f1 → (ϕ0θ + ψ0χ)− 1 ∗ f1

weakly star in H1(0, T ;V ′)∩L∞(0, T ;H) and strongly in L2(0, T ;V ′). Now it is allowed
to pass to the limit in (3.9) and (3.11) ending up with (3.2) and (3.4).

It remains to show that (3.3) holds, too. Though the proof is the same as in
[8: Theorem 2.2], we sketch it for the readers’ convenience. Since χn(·, t) ∈ K, then
0 ≤ χ ≤ 1 a.e. in QT . We are going to show that

∫ T

0

〈
θ(·, t), (χ− γ)(·, t)〉dt ≥ 0 ∀ γ ∈ K (3.14)

where
K =

{
η ∈ L2(0, T,H) : η(·, t) ∈ K for a.e. t ∈ (0, T )

}
.

In the variational formulation of (3.10), we choose γ ∈ K. Integrating over (0, T ), we
get

1
n

∫ T

0

〈
∂tχn(·, t), (χn − γ)(·, t)〉dt

≤
∫ T

0

〈
χn(·, t), θn(·, t)〉dt−

∫ T

0

〈
θn(·, t), γ(·, t)〉dt

(3.15)
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for any γ ∈ K. Due to (3.12), (3.14) holds true if

lim sup
n→∞

∫ T

0

〈
χn(·, t), θn(·, t)〉dt ≤

∫ T

0

〈
χ(·, t), θ(·, t)〉dt. (3.16)

Exploiting the previous compactness argument and the weak lower semicontinuity of
the norms, from (3.15) we deduce

lim sup
n→∞

∫ T

0

〈
χn(·, t), θn(·, t)〉dt

= lim sup
n→∞

{
1

ψ0

∫ T

0

〈
(ϕ0θn + ψ0χn − 1 ∗ f1)(·, t), θn(·, t)〉dt

− ϕ0
ψ0
‖θn‖2L2(0,T,H) + 1

ψ0

∫ T

0

〈
(1 ∗ f1)(·, t), θn(·, t)〉dt

}

≤ 1
ψ0

∫ T

0

〈
(ϕ0θ + ψ0χ− 1 ∗ f1)(·, t), θ(·, t)

〉
dt

− ϕ0
ψ0
‖θ‖2L2(0,T,H) + 1

ψ0

∫ T

0

〈
(1 ∗ f1)(·, t), θ(·, t)

〉
dt,

that is (3.16).

3.2 Stefan problem: continuous dependence and uniqueness. As we wrote at
the beginning of this section, we can not derive any estimate for χ from (3.3). Hence,
assuming that the memory kernels are absolutely continuous and taking advantage of
an inversion formula for Volterra integral equations (see [13]) and of the monotonicity
of H, we can control only the variation of θ. Indeed, let (θi, ei, χi) be the solution
to Problem 2 corresponding to θe i (i = 1, 2) and denote Θ = θ1 − θ2, E = e1 − e2,
X = χ1 − χ2 and Θe = θe 1 − θe 2. Then (Θ, E, X) solves the problem

E = ϕ0Θ + ψ0X + ϕ ∗Θ + ψ ∗X in V ′

〈∂tE, v〉+
(∇(k0Θ + k ∗Θ),∇v

)
+ σ(Θ, v)Γ1 = σ(Θe, v)Γ1 ∀ v ∈ V

a.e. in (0, T ). Integrating herein the second relation over (0, t) and taking account the
first relation we get

〈ψ0X + ψ ∗X, v〉 = −〈ϕ0Θ + ϕ ∗Θ, v〉
− (∇(k01 ∗Θ + k ∗ 1 ∗Θ),∇v

)

− σ(1 ∗Θ, v)Γ1 + σ(1 ∗Θe, v)Γ1

=: 〈F , v〉

(3.17)

for any v ∈ V and a.e. in (0, t). We observe that F ∈ L∞(0, T ;V ′). Since ψ ∈
W 1,1(0, T ), by [13: p. 42/Theorem 3.1] we know that there exists a unique Ψ ∈
W 1,1(0, T ) (named the resolvent of ψ

ψ0
) solution to ψ0Ψ + ψ ∗ Ψ = ψ in [0, T ]. By
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[13: p. 44/Theorem 3.5], (3.17) is equivalent to ψ0X = F −Ψ ∗ F in V ′, a.e. in (0, T ).
Then, for any v ∈ V and a.e. in (0, T ),

〈ψ0X, v〉 = −〈ϕ0Θ + ϕ ∗Θ, v〉 − (
k0∇(1 ∗Θ) + k ∗ ∇(1 ∗Θ),∇v

)

− σ(1 ∗Θ, v)Γ1 + σ(1 ∗Θe, v)Γ1 +
〈
ϕ0(Ψ ∗Θ) + Ψ ∗ ϕ ∗Θ, v

〉

+
(
k0Ψ ∗ ∇(1 ∗Θ) + k ∗Ψ ∗ ∇(1 ∗Θ),∇v

)

+ σ(Ψ ∗ 1 ∗Θ, v)Γ1 − σ(Ψ ∗ 1 ∗Θe, v)Γ1 .

Choosing v = Θ, integrating over (0, t) and taking account of the monotonicity of H,
we infer

ϕ0‖Θ‖2L2(0,t;H) + k0
2 ‖∇(1 ∗Θ)(t)‖2HN + σ

2 ‖(1 ∗Θ)(t)‖2L2(Γ1)

≤
∣∣∣∣
∫ t

0

(ϕ ∗Θ, Θ) ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

(∇(k ∗ 1 ∗Θ),∇Θ
)
ds

∣∣∣∣

+ σ

∣∣∣∣
∫ t

0

(1 ∗Θe, Θ)Γ1ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

(
ϕ0(Ψ ∗Θ) + Ψ ∗ ϕ ∗Θ,Θ

)
ds

∣∣∣∣

+
∣∣∣∣
∫ t

0

(
k0Ψ ∗ ∇(1 ∗Θ) + k ∗Ψ ∗ ∇(1 ∗Θ),∇Θ

)
ds

∣∣∣∣

+ σ

∣∣∣∣
∫ t

0

(Ψ ∗ 1 ∗Θ, Θ)Γ1ds

∣∣∣∣ + σ

∣∣∣∣
∫ t

0

(Ψ ∗ 1 ∗Θe, Θ)Γ1ds

∣∣∣∣

=:
7∑
1

|Ii(t)|.

(3.18)

We estimate these integrals by the usual inequality (2.6), the Hölder inequality and
properties of the convolution. Moreover, recall that, since k ∈ W 1,1(0, T ), then k∗∇Θ =
k(0)(1 ∗ ∇Θ) + k′ ∗ 1 ∗ ∇Θ. On account of that, we deduce

|I1(t)| ≤ ‖ϕ ∗Θ‖L2(0,t;H)‖Θ‖L2(0,t;H)

|I2(t)| ≤
(|k(0)|+ ‖k′‖L1(0,T )

)‖∇(1 ∗Θ)‖2L2(0,t;HN )

+ ‖∇(k ∗ 1 ∗Θ)(t)‖HN ‖∇(1 ∗Θ)(t)‖HN

|I3(t)| ≤ σ
{
‖(1 ∗Θ)(t)‖L2(Γ1)‖(1 ∗Θe)(t)‖L2(Γ1)

+ ‖1 ∗Θ‖L2(0,t;L2(Γ1))‖Θe‖L2(0,t;L2(Γ1))

}

|I4(t)| ≤
{

ϕ0‖Ψ ∗Θ‖L2(0,t;H) + ‖ϕ ∗Ψ ∗Θ‖L2(0,t;H)

}
‖Θ‖L2(0,t;H)

|I5(t)| ≤
(
k0 + ‖k‖L1(0,T )

)‖Ψ ∗ ∇(1 ∗Θ)‖L∞(0,t;HN )‖∇(1 ∗Θ)(t)‖HN

+
(
k0|Ψ(0)|+ k0‖Ψ′‖L1(0,T ) + ‖(k ∗Ψ)′‖L1(0,T )

)

× ‖∇(1 ∗Θ)‖2L2(0,t;HN )

|I6(t)| ≤ σ
(|Ψ(0)|+ ‖Ψ′‖L1(0,T )

)‖1 ∗Θ‖2L2(0,t;L2(Γ1))

+ σ‖(Ψ ∗ 1 ∗Θ)(t)‖L2(Γ1)‖(1 ∗Θ)(t)‖L2(Γ1)

|I7(t)| ≤ σ
{
‖(Ψ ∗ 1 ∗Θe)(t)‖L2(Γ1)‖(1 ∗Θ)(t)‖L2(Γ1)

+ ‖Ψ ∗Θe‖L2(0,t;L2(Γ1))‖1 ∗Θ‖L2(0,t;L2(Γ1))

}
.
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Taking account of these estimates in (3.18), we obtain that there exists a constant C > 0
such that

ϕ0
2 ‖Θ‖2L2(0,t;H) + k0

4 ‖∇(1 ∗Θ)‖2L∞(0,t,HN ) + σ
4 ‖(1 ∗Θ)(t)‖2L2(Γ1)

≤ C

{
‖Θe‖2L2(0,t;L2(Γ1))

+ ‖∇(1 ∗Θ)‖2L2(0,t;HN )

+ ‖1 ∗Θ‖2L2(0,t;L2(Γ1))
+

∫ t

0

‖Θ‖2L2(0,s;H)ds

}

and by the Gronwall lemma we get the desired estimate (3.6). Of course, uniqueness is
a straightforward consequence of the continuous dependence estimate.

3.3 Stefan problem: regularity. Integrating (3.2) over (0, t), we obtain

〈ψ0χ + ψ ∗ χ, v〉 = 〈G, v〉 ∀ v ∈ V, a.e. in (0, T ) (3.19)

where
〈G, v〉 = −〈ϕ0θ + ϕ ∗ θ, v〉 − (

k0∇(1 ∗ θ) + k ∗ ∇(1 ∗ θ),∇v
)

− σ(1 ∗ θ, v)Γ1 + σ(1 ∗ θe, v)Γ1 + 〈1 ∗ f, v〉.
Arguing as in Subsection 3.2, we write (3.19) as

ψ0χ = G −Ψ ∗ G in V ′, a.e. in (0, T )

where Ψ ∈ W 1,1(0, T ). Now, for ε ∈ (0, 1], we define a smooth approximation Hε of H,
for instance,

Hε(s) =

{ 0 if s ≤ 0
ε−5

(
10ε2s3 − 15εs4 + 6s5

)
if 0 < s < ε

1 if s ≥ ε.

We point out that Hε : R → [0, 1] is a maximal monotone graph and Hε ∈ C2(R) ∩
W 2,∞(R). Since f = f1 + f2 ∈ L2(0, T ;H) + W 1,1(0, T ; V ′), we can find two sequences
{f1

ε } and {f2
ε } such that

f1
ε ∈ W 1,1(0, T ;H), f2

ε ∈ L2(0, T ; H), ∂tf
2
ε ∈ L2(0, T ; V ′)

and
f1

ε → f1 in L2(0, T ; H)

f2
ε → f2 in W 1,1(0, T ;V ′)

}
(3.20)

as ε → 0. It turns out that f2
ε ∈ C0([0, T ];V ′) and f2

ε → f2 in L∞(0, T ;V ′). We will
denote by fε = f1

ε + f2
ε . Moreover, we introduce

θ0ε ∈ V such that θ0ε → θ0 := (ϕ0I + ψ0H)−1(e0) in V

θe ε ∈ H1(0, T ; L2(Γ1)) such that θe ε → θe in W 1,1(0, T ;L2(Γ1)).
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We will deal with the approximating problems to find a pair θε, χε ∈ H1(0, T ; H) ∩
L2(0, T ; V ) such that

〈∂t(ϕ0 θε +ψ0 χε +ϕ ∗ θε), v〉
+k0(∇ θε,∇v) + σ(θε, v)Γ1

= −(k ∗ ∇ θε,∇v) + σ(θe ε, v)Γ1 + 〈fε, v〉
+

〈
ϕ0∂t(Ψ ∗ θε) + ∂t(Ψ ∗ ϕ ∗ θε), v

〉

+
(
k0Ψ ∗ ∇ θε +k ∗Ψ ∗ ∇ θε,∇v

)

+σ(Ψ ∗ θε, v)Γ1 − σ(Ψ ∗ θe ε, v)Γ1 − 〈Ψ ∗ fε, v〉 ∀ v ∈ V, a.e. in (0, T ) (3.21)
χε ∈ Hε(θε) a.e. in QT (3.22)

θε(·, 0) = θ0ε, χε(·, 0) = Hε(θ0ε) a.e. in Ω. (3.23)

Using the same argument as in [8: Theorems 2.2 and 2.3], it is easy to see that the
solution to this problem exists and is unique. Arguing formally, choose v = ∂t θε as test
function in (3.21) and integrate over (0, t). Recalling that ∂t χε = H ′

ε(θε)∂t θε and Hε

is increasing, we obtain

ϕ0‖∂t θε ‖2L2(0,t;H) + k0
2 ‖∇ θε(t)‖2HN + σ

2 ‖ θε(t)‖2L2(Γ1)

≤ (
k0
2 ‖∇ θ0ε ‖2HN + σ

2 ‖ θ0ε ‖2L2(Γ1)

)

+
∣∣∣∣
∫ t

0

〈∂t(ϕ ∗ θε), ∂t θε〉ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

(k ∗ ∇ θε,∇∂t θε)ds

∣∣∣∣

+ σ

∣∣∣∣
∫ t

0

(θe ε, ∂t θε)Γ1ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

〈fε, ∂t θε〉ds

∣∣∣∣

+
∣∣∣∣
∫ t

0

〈
ϕ0∂t(Ψ ∗ θε) + ∂t(Ψ ∗ ϕ ∗ θε), ∂t θε

〉
ds

∣∣∣∣

+
∣∣∣∣
∫ t

0

(
k0Ψ ∗ ∇ θε +k ∗Ψ ∗ ∇ θε,∇∂t θε

)
ds

∣∣∣∣

+ σ

∣∣∣∣
∫ t

0

(Ψ ∗ θε, ∂t θε)Γ1ds

∣∣∣∣ + σ

∣∣∣∣
∫ t

0

(Ψ ∗ θe ε, ∂t θε)Γ1ds

∣∣∣∣

+
∣∣∣∣
∫ t

0

〈Ψ ∗ fε, ∂t θε〉ds

∣∣∣∣

=
(

k0
2 ‖∇ θ0ε ‖2HN + σ

2 ‖ θ0ε ‖2L2(Γ1)

)
+

9∑

i=0

Si(t).

Henceforth, C stands for a positive constant depending on ϕ0, ψ0, k0, σ, Ω and on the
norms of ϕ,ψ, k in W 1,1(0, T ). Exploiting the properties of convolution and integrating
by parts, we derive the following estimates:

|S1(t)| ≤ ‖ϕ‖L2(0,T )‖ θ0ε ‖H‖∂t θε ‖L2(0,t;H)

+ ‖ϕ ∗ ∂t θε ‖L2(0,t;H)‖∂t θε ‖L2(0,t;H)

|S2(t)| ≤ ‖k ∗ ∇ θε ‖L∞(0,t;HN )‖∇ θε ‖L∞(0,t;HN )

+
(|k(0)|+ ‖k′‖L1(0,T )

)‖∇ θε ‖2L2(0,t;HN )



Automatic Control in Phase Change 907

|S3(t)| ≤ σ
{
‖ θe ε ‖L∞(0,T ;L2(Γ1))‖ θε ‖L∞(0,t;L2(Γ1))

+ ‖ θe ε(0)‖L2(Γ1)‖ θ0ε ‖L2(Γ1)

+ ‖∂t θe ε ‖L1(0,t;L2(Γ1))‖ θε ‖L∞(0,t;L2(Γ1))

}

|S4(t)| ≤ ‖f1
ε ‖L2(0,T ;H)‖∂t θε ‖L2(0,t;H) + ‖f2

ε ‖L∞(0,T ;V ′)‖ θε ‖L∞(0,t;V )

+ ‖f2
ε ‖L∞(0,T ;V ′)‖ θ0ε ‖V + ‖∂tf

2
ε ‖L1(0,T ;V ′)‖ θε ‖L∞(0,t;V )

|S5(t)| ≤
(
ϕ0 + ‖ϕ‖L1(0,T )

)

× {‖Ψ‖L2(0,T )‖ θ0ε ‖H + ‖Ψ ∗ ∂t θε ‖L2(0,t;H)

}‖∂t θε ‖L2(0,t;H)

|S6(t)| ≤
(
k0 + ‖k‖L1(0,T )

)‖Ψ ∗ ∇ θε ‖L∞(0,t:HN )‖∇ θε ‖L∞(0,t;HN )

+
{
k0

(|Ψ(0)|+ ‖Ψ′‖L1(0,T )

)
+ ‖(k ∗Ψ)′‖L1(0,T )

}

× ‖∇ θε ‖2L2(0;t;HN )

|S7(t)| ≤ σ
{
‖Ψ‖L2(0,T )‖ θε ‖L2(0,t;L2(Γ1))‖ θε ‖L∞(0,t;L2(Γ1))

+
(|Ψ(0)|+ ‖Ψ′‖L1(0,T )

)‖ θε ‖2L2(0,t;L2(Γ1))

}

|S8(t)| ≤ σ
{
‖Ψ ∗ θe ε ‖L∞(0,t;L2(Γ1))‖ θε ‖L∞(0,t;L2(Γ1))

+
(|Ψ(0)|+ ‖Ψ′‖L1(0,T )

)‖ θe ε ‖L2(0,t;L2(Γ1))‖ θε ‖L2(0,t;L2(Γ1))

}

|S9(t)| ≤ ‖Ψ ∗ f1
ε ‖L2(0,T ;H)‖∂t θε ‖L2(0,t;H)

+ ‖Ψ‖W 1,1(0,T )‖f2
ε ‖W 1,1(0,T ;V ′)‖ θε ‖L∞(0,t;V ).

Collecting the estimates above, by the Gronwall lemma we see that there is a constant
C > 0 independent of ε such that

‖∂t θε ‖2L2(0,t;H) + ‖∇ θε ‖2L∞(0,t;HN ) + ‖ θε ‖2L∞(0,t;L2(Γ1))

≤ C
{
‖ θ0ε ‖2V + ‖ θe ε ‖2W 1,1(0,T ;L2(Γ1))

+ ‖f1
ε ‖2L2(0,t;H) + ‖f2

ε ‖W 1,1(0,T ;V ′)‖ θε ‖L∞(0,T ;V )

}
.

(3.24)

Now we need to deduce an estimate for ‖ θε ‖L∞(0,t;H); thus we choose as test func-
tion v = θε in (3.21). Integrating (3.21) with respect to time and by definition of Hε

we see that there is a constant C > 0 such that

‖ θε ‖2L∞(0,t;H) ≤ C
{√

|Ω|T ‖∂t θε ‖L2(0,t;H) + ‖ θ0ε ‖2 + ‖f1
ε ‖2L2(0,t;H)

+ ‖f2
ε ‖W 1,1(0,T ;V ′)‖ θε ‖L∞(0,t;V )

}
.

(3.25)

From (3.24) and (3.25), by (2.6) and (3.20), we see that there is a constant C > 0
independent of ε such that, for any ε ∈ (0, 1], the inequality

‖ θε ‖L∞(0,T ;V )∩H1(0,T ;H) ≤ C
{

1 + ‖θ0‖V + ‖f1‖L2(0,T ;H)

+ ‖f2‖W 1,1(0,T ;V ′) + ‖θe‖W 1,1(0,T ;L2(Γ1))

}
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holds. Possibly taking a subsequence,

θε → θ weakly in H1(0, T ; H) and weakly star in L∞(0, T ; V )

χε → χ weakly star in L∞(QT )

as ε → 0. But the first weak convergence therein yields θε → θ strongly in C0([0, T ];H).
Now it is allowed to pass to the limit in (3.21) - (3.23), and (3.8) holds by the weak star
lower semicontinuity of norms.

4. The relay switch

We can assume that the relay is initially switched on. Let us denote by (TP1) the
feedback control problem corresponding to the relay switch, i.e. we shall deal with the
following

Problem (TP1). Find a triplet (θ, χ, z) and a finite sequence of switching times
0 = t0 < t1 < ... < tm = T such that z ∈ L∞(0, T ), (θ, χ) solves the relaxed
(respectively, the Stefan) problem with θe = F(z),

z(t) = (−1)h if t ∈ [th, th+1)

th+1 = inf
{{T} ∪Kh+1

}

where, for h = 0, 1, ...,m− 1,

Kh+1 =
{

t ∈ (th, T ] : M(θ)(t) =
{ ρU (t) if h is even

ρL(t) if h is odd

}
.

Let us recall that

M(θ)(t) = −
∫

Ω0

θ(x, t)ωI(x) dx +−
∫

Γ2

(1 ∗ θ)(y, t)ωS(y) dΓ

and, for r ∈ L2(0, T ),

F(r)(y, t) =
∫ t

0

E(y, t, τ)r(τ) dτ + E0(y, t) ∀ (y, t) ∈ Γ1 × (0, T ).

We assume the following:

(H11) ωI ∈ L2(Ω0; [0, +∞)) and ωS ∈ L2(Γ2; [0,+∞)).

(H12) E ∈ L2(Γ1 × (0, T )2), Et, Eτ ∈ L1(Γ1 × (0, T )2), E0 ∈ W 1,1(0, T ;L2(Γ1)).

Now we can state our existence and uniqueness results.
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Theorem 4.1. If assumptions (H2), (H5) - (H9), (H11) - (H12) hold and

ϕ,ψ, k ∈ W 1,1(0, T )

f ∈ L2(0, T ; H) + W 1,1(0, T ; V ′), θ0 ∈ V

}
, (4.1)

then there exists a unique solution to problem (TP1) in the relaxed problem case. Re-
placing assumption (H8) by assumption (K2) and adding (3.7)3, the same result holds
for problem (TP1) in the Stefan problem case.

First of all we shall prove that for both problems the number of switching times
is finite. In order to do that, we need some properties of the operators F and M. If
assumption (H12) holds, then observe that F is a continuous operator from L∞(0, T )
to W 1,1(0, T ;L2(Γ1)) such that F(r)(·, 0) = E0(·, 0) a.e. on Γ1, for any r ∈ L∞(0, T ).
Moreover, there exists a constant Λ1 > 0 such that

‖F(r)‖W 1,1(0,T ;L2(Γ1)) ≤ Λ1

{
1 + ‖r‖L∞(0,T )

}

‖(F(r1)−F(r2))(t)‖L2(Γ1) ≤ Λ1‖r1 − r2‖L2(0,t)

}
(4.2)

for any t ∈ [0, T ] and all r, r1, r2 ∈ L∞(0, T ) (see [9: Proposition 2.2] for details).

On the other hand, if assumption (H11) holds, then M : L∞(0, T ; V ) → L∞(0, T )
turns out to be a linear and continuous operator such that, for any v1, v2 ∈ L∞(0, T ;V ),

∣∣M(v1)(t)−M(v2)(t)
∣∣

≤ (‖ωI‖L2(Ω0) + ‖ωS‖L2(Γ2)

)

× {‖(v1 − v2)(·, t)‖H + ‖1 ∗ (v1 − v2)(·, t)‖L2(Γ1)

} (4.3)

for almost any t ∈ (0, T ). Moreover, for any v ∈ L∞(0, T ;V ) ∩ H1(0, T ;H), M(v) ∈
C0, 1

2 ([0, T ]) and

∣∣M(v)(t)−M(v)(τ)
∣∣

≤
{
‖ωI‖L2(Ω0)‖∂tv‖L2(0,T ;H) + ‖ωS‖L2(Γ2)‖v‖L2(0,T ;L2(Γ1))

}
|t− τ | 12 (4.4)

for any t, τ ∈ [0, T ]. Particularly, if ωI = 0, then

‖M(v1)−M(v2)‖C0([0,T ]) ≤ Λ2‖1 ∗ (v1 − v2)‖L∞(0,T ;V ) (4.5)

where Λ2 = ‖ωs‖L2(Γ2).

Now we can prove

Lemma 4.1. Let assumptions (H2), (H5) - (H9), (H11) - (H12) and (4.1) hold and
M(θ(·, 0)) ≤ ρL(0). Then, for any

w ∈ B =
{
r ∈ L∞(0, T ) : ‖r‖L∞(0,T ) ≤ 1

}
,
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letting (θ(w), χ(w)) be the solution to Problem 1 with θe = F(w), there exists γ > 0
such that, for any w ∈ B and any pair tL, tU ∈ [0, T ] fulfilling

M(θ(w))(tL) = ρL(tL)

M(θ(w))(tU ) = ρU (tU )
(4.6)

we have
|tL − tU | ≥ γ.

In particular, M(θ(w)) commutes at most
[

T
γ

]
times between the threshold functions ρL

and ρU (
[

T
γ

]
being the integer part of T

γ ). The same result holds for Problem 2, provided
assumption (H8) is replaced by assumption (K2) and (3.7)3 holds.

Proof. Taking into account (2.4), (4.2)1 and (4.4) we have, for any w ∈ B,
∣∣M(θ(w))(tL)−M(θ(w))(tU )

∣∣

≤
(
‖ωI‖L2(Ω0)‖∂tθ(w)‖L2(0,T ;H)

+ ‖ωS‖L2(Γ2)‖θ(w)‖L2(0,T ;L2(Γ1))

)
|tL − tU | 12

≤ C
(
1 + ‖F(w)‖W 1,1(0,T ;L2(Γ1))

)|tL − tU | 12

≤ C
(
2 + ‖w‖L∞(0,T )

)|tL − tU | 12

≤ Λ3|tL − tU | 12 .

(4.7)

Because of the uniform continuity of ρL, there exists a constant γ1 > 0 such that, for
any t, τ ∈ [0, T ] with |t−τ | ≤ γ1, we have |ρL(t)−ρL(τ)| ≤ δ

2 . Then either |tL−tU | ≥ γ1

or |tL − tU | < γ1. In the second case, by (4.6) and (4.7), we deduce

Λ3|tL − tU | 12 ≥
∣∣M(θ(w))(tL)−M(θ(w))(tU )

∣∣
=

∣∣ρL(tL)− ρU (tU )
∣∣

≥ ρU (tU )− ρL(tU )− ∣∣ρL(tL)− ρL(tU )
∣∣

≥ δ
2 .

If γ := min{γ1,
δ2

(2Λ3)2
}, we have the first part of the thesis. The second follows from

M(θ(·, 0)) ≤ ρL(0)

In both cases, there exists a unique solution to Problem (TP1) because we can apply
the inductive argument of [14] (see also [9: Theorem 4.1]).

4.1 Proof of Theorem 4.1. Since we have supposed that the relay is initially switched
on, we define

w0(t) = +1 ∀ t ∈ [0, T ].

Let us consider the triplet (θ(w0), χ(w0), w0), where (θ(w0), χ(w0)) solves the relaxed
(respectively, the Stefan) problem with θe = F(w0), and set

D1 =
{
t ∈ [0, T ] : M(θ(w0))(t) = ρU (t)

}
.



Automatic Control in Phase Change 911

If D1 = ∅, then we are done because (θ(w0), χ(w0), w0) solves problem (TP1). Oth-
erwise, we pick t1 = inf D1 (it is a minimum because of the continuity of M) and by
Lemma 4.1 we see that t1 ≥ γ. Now we define

w1(t) =
{

w0(t) if t ∈ [0, t1)
−1 if t ∈ [t1, T ].

Then (θ(w1), χ(w1)) solves the relaxed (respectively the Stefan) problem with θe =
F(w1) and

D2 :=
{
t ∈ (t1, T ] : M(θ(w1))(t) = ρL(t)

}
.

If D2 = ∅, then the solution is
(
θ(w1), χ(w1), w1), otherwise we consider t2 = inf D2

and we proceed as above, recalling that t2 ≥ 2γ. Finally, there exist m ∈ N, a triplet(
θ(wm), χ(wm), wm

)
and a sequence of switching times {th}m

h=0 such that m ≤ T
γ ,

tm = T and θ = θ(wm), χ = χ(wm), z = wm uniquely satisfies problem (TP1).

5. The Preisach operator

We will take advantage of some properties of the Preisach operator (see, e.g., [24:
Chapter IV] for details). First of all, we are concerned with the continuity of this
operator (see [24: Theorems 3.1 and 3.2]). We recall that if µ is a non-negative Borel
measure on P with bounded density such that, for any (ρ1, ρ2) ∈ P,

µ({ρ1} ×R) = µ(R× {ρ2}) = 0, (5.1)

then
‖W2(r)‖L∞(0,T ) ≤ µ(P) < ∞ ∀ r ∈ C0([0, T ])

W2 is strongly continuous from C0([0, T ]) to C0([0, T ])

}
. (5.2)

Moreover, as is shown in [24: Theorem 3.5], denoting by l the bidimensional Lebesgue
measure, if the assumption

(K3) There exists a constant Λµ > 0 such that µ(A) ≤ Λµl(A) for all Lebesgue
measurable sets A ⊂ P

is fulfilled, then there exists a constant Λ4 > 0 such that, for all r1, r2 ∈ C0([0, T ]) and
for any t ∈ [0, T ],

∣∣(W2(r1)−W2(r2)
)
(t)

∣∣ ≤ Λ4‖r1 − r2‖C0([0,t]) (5.3)

where the constant Λ4 > 0 depends only on µ(P) and Λµ.
We now consider the following

Problem (TP2). Find (θ, χ) solution to the relaxed (respectively, the Stefan)
problem with θe = F(W2(M(θ))) on Γ1 × (0, T ).

Exploiting the results of Sections 2 and 3 and the properties of the operators
F ,M,W2, we are going to prove
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Theorem 5.1. Under assumptions (H2), (H5) - (H9), (H11) - (H12) and (4.1) and
(5.1), there exists a solution to problem (TP2) corresponding to the relaxed problem.
Moreover, if ωI = 0 and assumption (K3) holds, then the solution is unique. Replacing
assumption (H8) by assumption (K2) and assuming in addition (3.7)3, then under the
same hypotheses this result holds for problem (TP2) in the Stefan problem case.

Proof. We consider the feedback control problem corresponding to the relaxed
condition. As in [9: Theorem 5.2], we apply a fixed point argument to the operator

S : C0([0, T ]) → C0([0, T ]), S(r) = M(θ(r))

where, as usual, (θ(r), χ(r)) is the solution to Problem 1 with θe = F(W2(r)). More
precisely, the continuity of F and (4.4) yield that S takes values in C0, 1

2 ([0, T ]) and,
by (5.2)1, there exists a constant Λ5 > 0 such that ‖S(r)‖

C0, 1
2 ([0,T ])

≤ Λ5. Then S is
compact provided we show that it is continuous.

If {rj} is a sequence converging in C0([0, T ]) to some r, then by (5.2)2 we deduce
that W2(rj) → W2(r) in C0([0, T ]). Taking account of (4.2)2 we infer F(W2(rj)) →
F(W2(r)) in C0([0, T ];L2(Γ1)). Now, from the continuous dependence of θ with respect
to θe, we can deduce only that θ(rj) → θ(r) in L2(0, T ; H) and (1 ∗ θ)(rj) → (1 ∗ θ)(r)
in L2(0, T, L2(Γ1)). But, by (4.3), it is enough to deduce that S(rj) → S(r) in L2(0, T ).
Then, arguing as in [9], we can conclude that such convergence holds in C0([0, T ]) and,
by the Schauder fixed point theorem, there exists at least one solution to problem (TP2).

We now prove that such solution is unique, provided ωI = 0 and assumption (K3)
holds. Let us suppose that (θ1, χ1), (θ2, χ2) are two different solutions to problem
(TP2) and set θe i = F(W2(M(θi))) for i = 1, 2. By the continuity of F and recalling
(5.2)2, (4.2)1 and (2.3), we get

∥∥(θe 1 − θe 2)(t)
∥∥2

L2(Γ1)
≤ Λ2

1

∥∥W2(M(θ1))−W2(M(θ2))
∥∥2

L2(0,t)

≤ (Λ1Λ4)2
∫ t

0

∥∥M(θ1)−M(θ2)
∥∥2

C0[0,s]
ds

≤ (Λ1Λ2Λ4)2
∫ t

0

∥∥1 ∗ (θ1 − θ2)
∥∥2

L∞(0,s;V )
ds

≤ C

∫ t

0

∥∥θe 1 − θe 2

∥∥2

L2(0,s;L2(Γ1))
ds

≤ C

∫ t

0

∥∥(θe 1 − θe 2)(s)
∥∥2

L2(Γ1)
ds

and uniqueness follows from the Gronwall lemma. Arguing as above, we can prove the
same result for Problem (TP2) with the Stefan condition.
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