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On Fourier Transforms of Wavelet Packets

K. Ahmad, R. Kumar and L. Debnath

Abstract. This paper deals with the Fourier transform bωn of wavelet packets ωn ∈ L2(R)
relative to the scaling function ϕ = ω0. Included there are proofs of the following statements:

(i) bωn(0) = 0 for all n ∈ N.

(ii) bωn(4nkπ) = 0 for all k ∈ Z, n = 2j for some j ∈ N0, provided |bϕ|, |m0| are continuous.

(iii) |bωn(ξ)|2 =
P2r−1

s=0 |bω2rn+s(2
rξ)|2 for r ∈ N.

(iv)
P∞

j=1

P2r−1
s=0

P
k∈Z |bωn(2j+r(ξ + 2kπ))|2 = 1 for a.a. ξ ∈ R where r = 1, 2, . . . , j.

Moreover, several theorems including a result on quadrature mirror filter are proved by using
the Fourier transform of wavelet packets.

Keywords: Wavelet packets, multi-resolution analysis, Fourier transform, quadrature mirror
filter
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1. Introduction

The concsept of wavelets refers to a family of functions of the form (see Daubechies [4])

ψa,b(x) = |a|− 1
2 ψ

(x− a

a

)
(1.1)

normalized by the factor |a|− 1
2 where ψ ∈ L2(R) and a, b ∈ R with a 6= 0 (see Debnath

and Mikusinski [5]). Thus, ψa,b is constructed from translation and dilation of a single
function ψ, called mother wavelet. Physically, the mother wavelet appears as a local
oscillation (or wave) on which most of the energy of the oscillation is concentrated in
the frequency (or wave number) domain due to the Heisenberg uncertainty principle.
The scaling (or dilation) parameter a controls the width and the rate of oscillation
and intuitively can be thought of controlling the frequency of the wavelets ψa,b. The
translation parameter b simply moves the wavelet throughout the domain.

If the dilation and translation parameters a and b are chosen such that a = 2m and
b = n2m where m,n ∈ N, then there exists a wavelet ψ such that the family of funtions
{ψm,n},

ψm,n(x) = 2−
m
2 ψ(2−mx− n)
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constitute an orthonormal basis of the space of functions or signals in L2(R) which
have finite energy (see Daubechies [4], and Debnath and Mikusinski [5]). Thus, the
two discrete parameters m and n can be varied for the analysis of local features of
a given function. These two degrees of freedom m and n have the natural ability to
describe features at a variety of scales by adjusting m and at any location by changing
n. On the other hand, in a Fourier basis, by contrast, the basis functions represent a
one-parametric family (eix)n, indexed by the frequency parameter n, and hence, one
can effectively analyze global, periodic and smooth features by varying this frequency
parameter n. Consequently, a Fourier basis is, however, less effective for the analysis of
located oscillations or structure.

If ψ ∈ L2(R) and ψa,b is given by (1.1), then the integral transformation Wψ defined
on L2(R) by

Wψ[f ](a, b) = (f, ψa,b) =
∫ ∞

−∞
f(x)ψa,b(x) dx

is called a continuous wavelet transform of f .

Coifman at al. [2] introduced the concept of wavelet packets. The wavelet transform
is generalized to produce a library of orthonormal basis of modulated wavelet packets,
where each basis comes with a fast transform. By generalyzing the method of multi-
resolution decomposition, it is possible to construct orthonormal bases for L2(R) (see
Daubechies [4]). Discrete wavelet packets have been thoroughly studied by Wickerhauser
[11] who has also developed computer programs and implemented them. The wavelet
packets allow more flexibility in adapting the bases to the frequency contents of a signal
and it is easy to develop a fast wavelet packet transform. The power of wavelet packet
lies on the fact that we have much more freedom in deciding which basis function can
represent the given function. The best basis selection criteria and application to image
processing can be found in [10, 11].

Several authors including Daubechies [3], Chui [1] , Mallat [7, 8] and Meyer [9]
have studied Fourier transforms of wavelets and scaling functions. On the other hand,
Coifman et al. [2], Wickerhauser [11] and Hernandez and Weiss [6] have obtained some
results on Fourier transforms of wavelet packets.

The main objective of this paper is to study the Fourier transform of wavelet packets
in order to generalize some results due to authors listed in the preceding paragraph.
This is followed by a result on quadrature mirror filter based on the Fourier transform
of wavelet packets.

2. Notations and terminology

We let Z and R denote the set of integers and real numbers, respectively. The inner
product of two functions f, g ∈ L2(R) is denoted by 〈f, g〉 and is defined (see Debnath
and Mikusinski [5]) by 〈f, g〉 =

∫∞
−∞ f(x)g(x) dx. The norm of f ∈ L2(R) is denoted by

‖f‖. The Fourier transform of any function f ∈ L2(R) is denoted by f̂ and is defined
as usual by f̂(ξ) =

∫∞
−∞ f(x)e−iξxdx. The set `2(Z) is the vector space of absolutno

square-summable sequences.
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Definition 2.1. A multi-resolution analysis consists of a sequence of closed sub-
spaces {Vj}j∈Z of L2(R) satisfying the following properties:

(i) Vj ⊂ Vj+1 for all j ∈ Z.

(ii) ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0}.
(iii) For f ∈ L2(R), f(x) ∈ Vj if and only if f(2x) ∈ Vj+1 for all j ∈ Z.
(iv) For some ϕ ∈ V0, {ϕ(· − k)}k∈Z is an orthonormal basis for V0.
(v) There exists an isomorphism I : V0 → `2(Z).

The function ϕ whose existence is implied by condition (iv) is called scaling function
of the given multi-resolution analysis. For every f ∈ V0, there exists a unique sequence
{ak}k∈Z ∈ `2(Z) such that

f(x) =
∑

k∈Z
akϕ(x− k).

We assume
ϕj,k(x) = 2

j
2 ϕ(2jx− k).

Since ϕ0,k(x) = ϕ(x − k), in view of condition (iv) ϕ0,k ∈ V0 follows for all k ∈ Z.
Moreover, if j ∈ Z, condition (iii) implies that {ϕj,k}k∈Z is an orthonormal basis for Vj .

Let W0 be the orthonormal complement of V0 in V1, that is V1 = V0 ⊕W0. Then if
we dilate the elements of W0 by 2j , we obtain a closed subspace Wj of Vj+1 as

Vj+1 = Vj ⊕Wj (j ∈ Z).

We consider V0 = W−1 ⊕ V−1 and observe that 1√
2
ϕ( ·2 ) ∈ V−1 ⊂ V0. By condition (iv)

we can express this function in terms of the basis {ϕ(· − k)}k∈Z to obtain

ϕ
(x

2

)
=
√

2
∑

k∈Z
hkϕ(x− k) (2.1)

where hk = 1√
2

∫
R ϕ(x

2 )ϕ(x− k) dx, the convergence of the series is in L2(R) and∑
k∈Z |hk|2 < ∞. We take the Fourier transform of (2.1) to obtain

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ) (2.2)

where
m0(ξ) = 1√

2

∑

k∈Z
hke−iξk. (2.3)

This gives the result

ϕ̂(ξ) =
{ j∏

n=1

m0(2−nξ)
}

ϕ̂(2−jξ).

If j →∞ and ϕ̂(0) = 1, then ϕ̂(ξ) =
∏∞

n=1 m0(2−nξ). It follows from (2.2) that

m0(0) = 1. (2.4)
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The sequence {hk} and its Fourier series m0(ξ) need to satisfy specific constraints that
are related to the properties of the function ϕ:

(a) If ϕ ∈ L2(R), then
∑

k∈Z hk =
√

2.
(b) ϕ is compactly supported in [p, q] if and only if hk = 0 for k < p or k > q.
(c) When the constraints (a) and (b) are satisfied, the orthogonality of {ϕ(· − k)}k∈Z

is ensured if and only if

|m0(ξ)|2 + |m0(ξ + π)|2 = 1 (2.5)

and there exists a compact set K, congruent to [−π, π] modulo 2π, such that
m0(2−kξ) 6= 0 for all ξ ∈ K and k > 0.

We then define
m1(ξ) = −eiξm0(ξ + π) (2.6)

and
ψ̂(ξ) = m1

(ξ

2

)
ϕ̂
(ξ

2

)
where ψ(x) =

√
2

∑

k∈Z
gkϕ(2x− k)

with gk = (−1)kh̄1−k. It follows from (2.4) - (2.6) that

m1(0) = 0 and m1(ξ) =
1√
2

∑

k∈Z
gke−iξk. (2.7)

Now we consider a function ψ ∈ W0 such that {ψ(·−k)}k∈Z is an orthonormal basis
for W0. If this is the case, then {2 j

2 ψ(2j ·−k)}k∈Z is an orthonormal basis for Wj for all
j ∈ Z due to condition (iv) in Definition 2.1 and the definition of Wj . Hence {ψj,k}j,k∈Z
is an orthonormal basis for L2(R), which means that ψ is an orthonormal wavelet on R.

Now we state few lemmas which will be used in the proofs of theorems in Section 3.

Lemma 2.1. Let ψ ∈ L2(R) be an wavelet constructed from the scaling function ϕ

such that |ϕ̂| and |m0| are continuous. Then ψ̂(4kπ) = 0 for all k ∈ Z.

Lemma 2.2 (see Mallat [8]). Let ϕ ∈ L2(R) be a scaling function. Then {ϕ(· −
k)}k∈Z is an orthonormal basis of V0 if and only if

∑
k∈Z |ϕ̂(ξ + 2kπ)|2 = 1 for a.a.

ξ ∈ R.

Lemma 2.3 (see Hernandez and Weiss [6]). Let ψ ∈ L2(R) be a wavelet associated
with the scaling function ϕ. Then |ϕ̂(ξ)|2 =

∑∞
j=1 |ψ̂(2jξ)|2 for a.a. ξ ∈ R.

Now we construct wavelet packets from multi-resolution analysis. In general, con-
sider two sequences {an}, {bn} ∈ `2(Z) satisfying the requirements as stated in [11: p.
452]. If H is a Hilbert space with orthonormal basis {ek}k∈Z, then the sequences defined
by

f2n =
√

2
∑

k∈Z
a2n−kek

f2n+1 =
√

2
∑

k∈Z
b2n−kek
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are orthonormal bases of two orthonormal closed subspaces H1 and H0, respectively,
such that H = H1 ⊕ H0. Using this “splitting trick” we now define the basic wavelet
packets associated with a scaling function ϕ as defined in multi-resolution analysis.

Let ω = ϕ. The basic wavelet packets ωn (n ∈ N0) associated with the scaling
function ϕ are defined recursively by

ω2n(x) =
√

2
∑

k∈Z
hk ωn(2x− k)

ω2n+1(x) =
√

2
∑

k∈Z
gk ωn(2x− k)

(2.8)

When n = 0 in (2.8), we obtain

ω0(x) =
√

2
∑

k∈Z
hk ω0(2x− k)

ω1(x) =
√

2
∑

k∈Z
gk ω0(2x− k)

(2.9)

It follows from (2.9)2 that ω1 = ψ. The Fourier transform of the functions given in (2.9)
yields the relations

ω̂0(ξ) =
∞∏

j=1

m0(2−jξ)

ω̂1(ξ) = m1

(ξ

2

) ∞∏

j=1

m0(2−jξ).

More generally, equalities (2.9) are equivalent to the result

ω̂(ξ) =
∞∏

j=1

mεj (2
−jξ) (2.10)

where n =
∑∞

j=1 εj2j−1 with ε = 0 or ε = 0.

3. Main result

Several theorems describing the main results are proved in this section.

Theorem 3.1. If ωn ∈ L2(R) are wavelet packets related to the scaling function
ϕ = ω0, then ω̂n(0) = 0 for all n ∈ N.

Proof. We recall (2.10). I tis clear that for n > 0 the right-hand side of (2.10)
must contain at leat one term of type m1(2−jξ) where j may take any value from N.
Then the result follows by using (2.7)
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Theorem 3.2. If ωn ∈ L2(R) are wavelet packets associated with the scaling func-
tion ϕ, then ω̂n(4nkπ) = 0 for all k ∈ Z, where must be n = 2j for j ∈ N0, provided |ϕ̂|
and |m0| are continuous.

Proof. From the definition of wavelet packets, we have (2.8). The use of the Fourier
transform of (2.8)1 yields

ω̂2n(ξ) = m0

(ξ

2

)
ω̂n

(ξ

2

)
. (3.1)

Taking n = 2j and ξ = 4nkπ = 2j+2kπ we get ω̂(4nkπ) = ω̂2j (2j+2kπ). Applying
equality (3.1) recursively and using Lemma 2.1 we get

ω̂n(4nkπ) = m0(2j+1kπ)ω̂2j−1(2j+1kπ)

= m0(2j+1kπ)m0(2jkπ) · · ·m0(22kπ) ω̂1(22kπ)

=
[ j+1∑

r=2

m0(2rkπ)
]
ψ̂(4kπ) (since ω1 = ψ)

= 0

and the statement is proved

Theorem 3.3. Suppose hn is an exact quadrature mirror filter satisfying the con-
ditions ∑

n∈Z
hn−2kh̄n−2l = δkl and

∑

n∈Z
hn =

√
2.

Further, let m0 and m1 be defined by (2.3) and (2.6), respectively. Then

∑

j∈Z
e−iξj

{
h̄j−2km0

(ξ

2

)
+ ḡj−2km1

(ξ

2

)}
=
√

2e−
iξk
2

where gk = (−1)kh̄1−k.

Proof. We define the operators F0, F1 : `2(Z) → `2(2Z) by

F0{sk}(j) =
∑

k∈Z
skh̄k−2j and F1{sk}(j) =

∑

k∈Z
skḡk−2j .

Their adjoints F ∗0 and F ∗1 defined by

F ∗0 {sk}(j) =
∑

j∈Z
sj h̄k−2j and F ∗1 {sk}(j) =

∑

j∈Z
sj ḡk−2j

are orthogonal projections on `2(Z). The operator F defined by

F (sk) = F0(sk)⊕ F1(sk) ∈ `2(Z)⊕ `2(2Z)

is orthogonal and
F ∗0 F0 + F ∗1 F1 = I (3.2)
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where I is the identity operator. We can write (2.8) as

ω2n(t− j) =
√

2
∑

k∈Z
hk−2j ωn(2t− k) = F0{

√
2 ωn(2t− k)}(j)

ω2n+1(t− j) =
√

2
∑

k∈Z
gk−2j ωn(2t− k) = F1{

√
2 ωn(2t− k)}(j)

where
√

2 ωn(2t− k) is viewed as a sequence in j for (t, n) fixed. Using (3.2) we get

ωn(2t− k) =
1√
2

∑

k∈Z
h̄j−2kω2n(t− j) +

1√
2

∑

k∈Z
ḡj−2kω2n+1(t− j). (3.3)

The Fourier transforms of (2.8) yield

ω̂2n(ξ) = m0

(ξ

2

)
ω̂n

(ξ

2

)

ω̂2n+1(ξ) = m1

(ξ

2

)
ω̂n

(ξ

2

)
.

(3.4)

Now the Fourier transform of (3.3) gives

ω̂n(2ξ − k) =
1√
2

∑

k∈Z
h̄j−2kω̂2n(ξ − j) +

1√
2

∑

k∈Z
ḡj−2kω̂2n+1(ξ − j)

⇒ 1
2
ω̂n

(ξ

2

)
e−

iξk
2 =

1√
2

∑

j∈Z
h̄j−2kω̂2n(ξ)e−iξj +

1√
2

∑

j∈Z
ḡj−2kω̂2n+1(ξ)e−iξj

⇒ 1
2
ω̂n

(ξ

2

)
e−

iξk
2 =

1√
2

∑

j∈Z
e−iξj

{
h̄j−2kω̂n

(ξ

2

)
m0

(ξ

2

)
+ ḡj−2kω̂n

(ξ

2

)
m1

(ξ

2

)}

⇒ ω̂n

(ξ

2

)
e−

iξk
2 =

√
2

∑

j∈Z
e−iξj

{
h̄j−2km0

(ξ

2

)
+ ḡj−2km1

(ξ

2

)}
ω̂n

(ξ

2

)

⇒ e−
iξk
2 =

√
2

∑

j∈Z
e−iξj

{
h̄j−2km0

(ξ

2

)
+ ḡj−2km1

(ξ

2

)}

for a.a. ξ ∈ R and the statement is proved

Remark 1. If k = 0, the equality of Theorem 3.3 reduces to
∑

j∈Z e−iξj
{
h̄jm0

(
ξ
2

)
+

ḡjm1

(
ξ
2

)}
=
√

2.

Remark 2. If ξ = 0, the equality of Theorem 3.3 together with m0(0) = 1 and
m1(0) = 0 reduces to

∑
j∈Z h̄j−2k =

√
2 which can be written as

∑
j∈Z h̄j =

√
2.

Theorem 3.4. If ωn ∈ L2(R) are wavelet packets associated with the scaling func-
tion ϕ = ω0, then

|ω̂n(ξ)|2 =
2r−1∑
s=0

|ω̂2rn+s(2rξ)|2
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for r = 0, 1, 2, 3.

Proof. From the definition of wavelet packets we have (2.8). Also, the Fourier
transforms of wavelet packets are given by (3.3). Using (2.5) - (2.6) in (3.4) gives

|ω̂2n(2ξ)|2 + |ω̂2n+1(2ξ)|2 = |m0(ξ)ω̂n(ξ)|2 + |m1(ξ)ω̂n(ξ)|2
=

{|m0(ξ)|2 + |eiξm0(ξ + π)|2} |ω̂n(ξ)|2.

That is, |ω̂2n(2ξ)|2 + |ω̂2n+1(2ξ)|2 = |ω̂n(ξ)|2. A simple iteration of this result yields
|ω̂n(ξ)|2 =

∑2r−1
s=0 |ω̂2rn+s(2rξ)|2 and the statement is proved

Remark 3. If n = 0, the equality of Theorem 3.4 reduces to

|ϕ̂n(ξ)|2 = |ω̂0(ξ)|2 =
2r−1∑
s=0

|ω̂s(2rξ)|2. (3.5)

Theorem 3.5. If ωn ∈ L2(R) are wavelet packets associated with the scaling func-
tion ϕ = ω0, then

∑

k∈Z

2r−1∑
s=0

∣∣ω̂s(2r(ξ + 2kπ))
∣∣2 = 1

for a.a. ξ ∈ R where r ∈ N0.

Proof. In view of (3.5) we can write |ϕ̂(ξ + 2kπ)|2 = |ω̂0(ξ + 2kπ)|2. By using
Theorem 3.4, the right-hand side of this equality can be written as

|ϕ̂(ξ + 2kπ)|2 =
2r−1∑
s=0

∣∣ω̂s(2r(ξ + 2kπ))
∣∣2

which implies

∑

k∈Z

2r−1∑
s=0

∣∣ω̂s(2r(ξ + 2kπ))
∣∣2 =

∑

k∈Z
|ϕ̂(ξ + 2kπ)|2 = 1

by Lemma 2.2 and completes the proof

Theorem 3.6. If ωn ∈ L2(R) are wavelet packets associated with the scaling func-
tion ϕ = ω0, then

∑

j∈Z

2r−1∑
s=0

∑

k∈Z

∣∣ω̂n(2j+r(ξ + 2kπ))
∣∣2 = 1

for a.a. ξ ∈ R where r = 1, 2, . . . , j.

Proof. From Theorem 3.4 we have

|ω̂1(ξ)|2 =
2r−1∑
s=0

|ω̂2r+s(2rξ)|2 =
2r+1−1∑
n=2r

|ω̂n(2rξ)|2 (3.6)
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since ω1 = ψ. Lemma 2.2 together with Lemma 2.3 gives

∑

k∈Z
|ϕ̂(ξ + 2kπ)|2 =

∞∑

j=1

∑

k∈Z

∣∣ω̂1(2j(ξ + 2kπ))|2.

Therefore,
∞∑

j=1

∑

k∈Z

∣∣ω̂1(2j(ξ + 2kπ))
∣∣2 = 1 (3.7)

for a.a. ξ ∈ R. From equalities (3.6) and (3.7) we obtain the equality in question where,
clearly, r ranges form 1 to j since it is not possible to decompose a wavelet space Wj

greater than j times

Theorem 3.7. For orthonormal wavelet packets ωn ∈ L2(R) the expression

D(ξ) =
∞∑

j=1

2r+1−1∑
s=2r

∑

k∈Z

∣∣ω̂n(2j+r(ξ + 2kπ))
∣∣2

is well defined and finite for a.a. ξ ∈ R. Moreover,
∫

I
D(ξ) dξ = 2π for any interval I

of length 2π in R.

Proof. D(ξ) is well defined and can not be infinite on a set of positive measure if
the last part of the theorem is true. The second part will follow if we prove the result
for I = [0, 2π] since D(ξ) is 2π-periodic. Now,

∫

I

D(ξ) dξ = D(ξ) =
∞∑

j=1

2r+1−1∑
s=2r

∑

k∈Z

∫ 2π

0

∣∣ω̂n(2j+r(ξ + 2kπ))
∣∣2dξ

=
∞∑

j=1

2r+1−1∑
s=2r

∑

k∈Z

∫ 2(k+1)π

2kπ

|ω̂n(2j+rξ)|2dξ

= 2π

∞∑

j=1

2r+1−1∑
s=2r

∫ ∞

−∞
|ω̂n(2j+rξ)|2dξ

= 2π

∞∑

j=1

2r+1−1∑
s=2r

2−j−r

∫ ∞

−∞
|ω̂n(ξ)|2dξ

= 2π

∞∑

j=1

2−j−r
2r+1−1∑
n=2r

‖ω̂n‖22

= 2π

∞∑

j=1

2−j−r2r‖ω̂n‖22

= 2π‖ω̂n‖22
= 2π

and the statement is proved
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