Parametric Weighted Integral Inequalities for
 A-Harmonic Tensors

S. Ding

Abstract

We prove the $A_{r}(\Omega)$-weighted Hardy-Littlewood inequality, the $A_{r}(\Omega)$-weighted weak reverse Hölder inequality and the $A_{r}(\Omega)$-weighted Caccioppoli-type estimate for A-harmonic tensors all being generalizations of classical results.

Keywords: A_{r}-weights, inequalities, A-harmonic equation, differential forms
AMS subject classification: Primary 31C45, secondary 58A10, 35B45, 26D10

1. Introduction

The purpose of this paper is to develop parametric versions of the $\mathrm{A}_{r}(\Omega)$-weighted integral inequalities for A-harmonic tensors. These results are of interest in nonlinear potential theory, degenerate elliptic equations, continuum mechanics, and the L^{p} theory. They can be used to study the integrability of A-harmonic tensors and to estimate the integrals for A-harmonic tensors. A-harmonic tensors are differential forms which satisfy the A-harmonic equation. They are interesting and important extensions of p-harmonic tensors. In the meantime, p-harmonic tensors are extensions of harmonic functions and p-harmonic functions, $p>1$. Many interesting results of A-harmonic tensors and their applications in different fields, such as quasiregular mappings and the theory of elasticity, have been found recently (see [1-4, 8-12, 14]).

We always assume that Ω is a connected open subset of \mathbb{R}^{n}. We write $\mathbb{R}=\mathbb{R}^{1}$. Balls are denoted by B, and σB is the ball with the same center as B and with $\operatorname{diam}(\sigma B)=$ $\sigma \operatorname{diam}(B)$. We do not distinguish the balls from cubes throughout this paper. The n-dimensional Lebesgue measure of a set $E \subseteq \mathbb{R}^{n}$ is denoted by $|E|$. We call w a weight if $w \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and $w>0$ a.e. Also, in general $d \mu=w d x$ where w is a weight. For $0<p<\infty$ we denote the weighted L^{p}-norm of a measurable function f over E by

$$
\|f\|_{p, E, w}=\left(\int_{E}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard unit basis of \mathbb{R}^{n}. Assume that $\wedge^{l}=\wedge^{l}\left(\mathbb{R}^{n}\right)$ is the linear space of l-vectors spanned by the exterior products $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{l}}$,

[^0] Research supported by Seattle University Faculty Fellowships for Summer of 2000.
corresponding to all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right) \quad\left(1 \leq i_{1}<i_{2}<\ldots<i_{l} \leq n\right.$; $l=$ $0,1, \ldots, n)$. The Grassman algebra $\wedge=\oplus \wedge^{l}$ is a graded algebra with respect to the exterior products. For $\alpha=\sum \alpha^{I} e_{I} \in \wedge$ and $\beta=\sum \beta^{I} e_{I} \in \wedge$ the inner product in \wedge is given by
$$
\langle\alpha, \beta\rangle=\sum \alpha^{I} \beta^{I}
$$
with summation over all l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ and all integers $l=0,1, \ldots, n$. We define the Hodge star operator
$$
\star: \wedge \rightarrow \wedge
$$
by the rule
$$
\star 1=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n} \quad \text { and } \quad \alpha \wedge \star \beta=\beta \wedge \star \alpha=\langle\alpha, \beta\rangle(\star 1)
$$
for all $\alpha, \beta \in \wedge$. The norm of $\alpha \in \wedge$ is given by the formula
$$
|\alpha|^{2}=\langle\alpha, \alpha\rangle=\star(\alpha \wedge \star \alpha) \in \wedge^{0}=\mathbb{R}
$$

The Hodge star is an isometric isomorphism on \wedge with $\star: \wedge^{l} \rightarrow \wedge^{n-l}$ and $\star \star(-1)^{l(n-l)}$: $\wedge^{l} \rightarrow \wedge^{l}$.

A differential l-form ω on Ω is a de Rham current (see [13: Chapter III]) on Ω with values in $\wedge^{l}\left(\mathbb{R}^{n}\right)$. We use $D^{\prime}\left(\Omega, \wedge^{l}\right)$ to denote the space of all differential l-forms and $L^{p}\left(\Omega, \wedge^{l}\right)$ to denote the l-forms

$$
\omega(x)=\sum_{I} \omega_{I}(x) d x_{I}=\sum \omega_{i_{1} i_{2} \cdots i_{l}}(x) d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{l}}
$$

with $\omega_{I} \in L^{p}(\Omega, \mathbb{R})$ for all ordered l-tuples I. Thus $L^{p}\left(\Omega, \wedge^{l}\right)$ is a Banach space with norm

$$
\|\omega\|_{p, \Omega}=\left(\int_{\Omega}|\omega(x)|^{p} d x\right)^{\frac{1}{p}}=\left(\int_{\Omega}\left(\sum_{I}\left|\omega_{I}(x)\right|^{2}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}
$$

Similarly, $W_{p}^{1}\left(\Omega, \wedge^{l}\right)$ are the differential l-forms on Ω whose coefficients are in $W_{p}^{1}(\Omega, \mathbb{R})$. The notations $W_{p, l o c}^{1}(\Omega, \mathbb{R})$ and $W_{p, l o c}^{1}\left(\Omega, \wedge^{l}\right)$ are self-explanatory. We denote the exterior derivative by

$$
d: D^{\prime}\left(\Omega, \wedge^{l}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l+1}\right)
$$

for $l=0,1, \ldots, n$. Its formal adjoint operator

$$
d^{\star}: D^{\prime}\left(\Omega, \wedge^{l+1}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l}\right)
$$

is given by

$$
d^{\star}=(-1)^{n l+1} \star d \star \quad \text { on } D^{\prime}\left(\Omega, \wedge^{l+1}\right) \quad(l=0,1, \ldots, n) .
$$

Many interesting results have been established in the study of the A-harmonic equation

$$
\begin{equation*}
d^{\star} A(x, d \omega)=0 \tag{1.1}
\end{equation*}
$$

for differential forms, where $A: \Omega \times \wedge^{l}\left(\mathbb{R}^{n}\right) \rightarrow \wedge^{l}\left(\mathbb{R}^{n}\right)$ satisfies the conditions

$$
\begin{equation*}
|A(x, \xi)| \leq a|\xi|^{p-1} \quad \text { and } \quad\langle A(x, \xi), \xi\rangle \geq|\xi|^{p} \tag{1.2}
\end{equation*}
$$

for almost every $x \in \Omega$ and all $\xi \in \wedge^{l}\left(\mathbb{R}^{n}\right)$. Here $a>0$ is a constant and $1<p<\infty$ is a fixed exponent associated with equation (1.1). A solution to equation (1.1) is an element of the Sobolev space $W_{p, l o c}^{1}\left(\Omega, \wedge^{l-1}\right)$ such that

$$
\int_{\Omega}\langle A(x, d \omega), d \varphi\rangle=0
$$

for all $\varphi \in W_{p}^{1}\left(\Omega, \wedge^{l-1}\right)$ with compact support.
Definition 1.1. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic equation (1.1) in Ω.

A differential l-form $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ is called a closed form if $d u=0$ in Ω. Similarly, a differential $(l+1)$-form $v \in D^{\prime}\left(\Omega, \wedge^{l+1}\right)$ is called a co-closed form if $d^{\star} v=0$. The equation

$$
\begin{equation*}
A(x, d u)=d^{\star} v \tag{1.3}
\end{equation*}
$$

is called the conjugate A-harmonic equation. For example, $d u=d^{*} v$ is an analogue of a Cauchy-Riemann system in \mathbb{R}^{n}. Clearly, the A-harmonic equation is not affected by adding a closed form to u and co-closed form to v. Therefore, any type of estimates between u and v must be modulo such forms. Suppose that u is a solution to equation (1.1) in Ω. Then, at least locally in a ball B, there exists a form $v \in W_{q}^{1}\left(B, \wedge^{l+1}\right)\left(\frac{1}{p}+\right.$ $\frac{1}{q}=1$) such that (1.3) holds. Throughout this paper, we always assume that $\frac{1}{p}+\frac{1}{q}=1$.

Definition 1.2. When u and v satisfy (1.3) in Ω and A^{-1} exists in Ω, we call u and v conjugate A-harmonic tensors in Ω.

Iwaniec and Lutoborski prove the following result in [9]:
Let $Q \subset \mathbb{R}^{n}$ be a cube or a ball. To each $y \in Q$ there corresponds a linear operator

$$
K_{y}: C^{\infty}\left(Q, \wedge^{l}\right) \rightarrow C^{\infty}\left(Q, \wedge^{l-1}\right)
$$

defined by

$$
\left(K_{y} \omega\right)\left(x ; \xi_{1}, \ldots, \xi_{l}\right)=\int_{0}^{1} t^{l-1} \omega\left(t x+y-t y ; x-y, \xi_{1}, \ldots, \xi_{l-1}\right) d t
$$

and the decomposition $\omega=d\left(K_{y} \omega\right)+K_{y}(d \omega)$.
We define another linear operator

$$
T_{Q}: C^{\infty}\left(Q, \wedge^{l}\right) \rightarrow C^{\infty}\left(Q, \wedge^{l-1}\right)
$$

by averaging K_{y} over all points y in Q :

$$
T_{Q} \omega=\int_{Q} \varphi(y) K_{y} \omega d y
$$

where $\varphi \in C_{0}^{\infty}(Q)$ is normalized by $\int_{Q} \varphi(y) d y=1$. We define the l-form $\omega_{Q} \in D^{\prime}\left(Q, \wedge^{l}\right)$ by

$$
\omega_{Q}= \begin{cases}|Q|^{-1} \int_{Q} \omega(y) d y & \text { if } l=0 \\ d\left(T_{Q} \omega\right) & \text { if } l=1,2, \ldots, n\end{cases}
$$

for all $\omega \in L^{p}\left(Q, \wedge^{l}\right) \quad(1 \leq p<\infty)$.

2. The $A_{r}(\Omega)$-weighted Hardy-Littlewood inequality

In this section, we prove different versions of the $A_{r}(\Omega)$-weighted Hardy-Littlewood inequality.

Definition 2.1. A weight $w=w(x)$ is called an A_{r}-weight for some $r>1$ in a domain Ω, write $w \in A_{r}(\Omega)$, if $w>0$ a.e. and

$$
\begin{equation*}
\sup _{B}\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}<\infty \tag{2.1}
\end{equation*}
$$

for any ball $B \subset \Omega$.
See [5, 7] for properties of $A_{r}(\Omega)$-weights. We will need the following generalized Hölder inequality.

Lemma 2.2. Let $0<\alpha<\infty, 0<\beta<\infty$ and $\frac{1}{s}=\frac{1}{\alpha}+\frac{1}{\beta}$. If f and g are measurable functions on \mathbb{R}^{n}, then

$$
\|f g\|_{s, \Omega} \leq\|f\|_{\alpha, \Omega}\|g\|_{\beta, \Omega}
$$

for any $\Omega \subset \mathbb{R}^{n}$.
We also need the following lemma [5].
Lemma 2.3. If $w \in A_{r}(\Omega)$, then there exist constants $\beta>1$ and $C>0$, independent of w, such that

$$
\|w\|_{\beta, B} \leq C|B|^{\frac{1-\beta}{\beta}}\|w\|_{1, B}
$$

for all balls $B \subset \mathbb{R}^{n}$.
Hardy and Littlewood prove the following inequality for conjugate harmonic functions in the unit disk D in [6]:

Theorem A. For each $p>0$, there is a constant $C>0$ such that

$$
\int_{D}|u-u(0)|^{p} d x d y \leq C \int_{D}|v-v(0)|^{p} d x d y
$$

for all analytic functions $f=u+i v$ in the unit disk D.
The above Hardy-Littlewood inequality has been generalized into different versions. In [12] Nolder proves the following version of it.

Theorem B. Let u and v be conjugate A-harmonic tensors in $\Omega \subset \mathbb{R}^{n}, \sigma>1$, and $0<s, t<\infty$. Then there exists a constant $C>0$, independent of u and v, such that

$$
\left\|u-u_{B}\right\|_{s, B} \leq C|B|^{\beta}\|v-c\|_{t, \sigma B}^{\frac{q}{p}}
$$

for all balls B with $\sigma B \subset \Omega$. Here c is any form in $W_{p, l o c}^{1}(\Omega, \Lambda)$ with $d^{\star} c=0$ and $\beta=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.

Now we prove the following parametric weighted Hardy-Littlewood inequality.

Theorem 2.4. Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^{n}$ and $w \in A_{r}(\Omega)$ for some $r>1$. Let $0<s, t<\infty$. Then there exists a constant $C>0$, independent of u and v, such that

$$
\begin{equation*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.2}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega \subset \mathbb{R}^{n}, \sigma>1$ and $0<\alpha \leq 1$. Here c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c=0$ and $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.

As mentioned in Section 1, the A-harmonic equation is not affected by adding a closed form to u and co-closed form to v. Therefore, any type of estimates between u and v must be modulo such forms. Thus, (2.2) is equivalent to

$$
\begin{equation*}
\left(\int_{B}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.2}
\end{equation*}
$$

Note that (2.2) can also be written as the symmetric form

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} w^{\alpha} d x\right)^{\frac{1}{q s}} \leq C|B|^{\frac{1}{q}-\frac{1}{p}} \frac{1}{n}\left(\frac{1}{|B|} \int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{1}{p t}} \tag{2.2}
\end{equation*}
$$

Proof of Theorem 2.4. We first show that (2.2) holds for $0<\alpha<1$. Let $k=\frac{s}{1-\alpha}$. Using Lemma 2.2 we have

$$
\begin{align*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} & =\left(\int_{B}\left(\left|u-u_{B}\right| w^{\frac{\alpha}{s}}\right)^{s} d x\right)^{\frac{1}{s}} \\
& \leq\left\|u-u_{B}\right\|_{k, B}\left(\int_{B} w^{\frac{k \alpha}{k-s}} d x\right)^{\frac{k-s}{k s}} \tag{2.3}\\
& =\left\|u-u_{B}\right\|_{k, B}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}}
\end{align*}
$$

Choose $m=\frac{q s t}{q s+\alpha p t(r-1)}$. Then $m<t$. By Theorem B we have

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{k, B} \leq C_{1}|B|^{\beta}\|v-c\|_{m, \sigma B}^{\frac{q}{p}} \tag{2.4}
\end{equation*}
$$

where $\beta=\frac{1}{k}+\frac{1}{n}-\frac{\left(\frac{1}{m}+\frac{1}{n}\right) q}{p}$. Substituting (2.4) into (2.3) yields

$$
\begin{equation*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C_{1}|B|^{\beta}\|v-c\|_{m, \sigma B}^{\frac{q}{p}}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}} \tag{2.5}
\end{equation*}
$$

Since $\frac{1}{m}=\frac{1}{t}+\frac{t-m}{m t}$, by Lemma 2.2 again we find that

$$
\begin{aligned}
\|v-c\|_{m, \sigma B} & =\left(\int_{\sigma B}\left(|v-c| w^{\frac{p \alpha}{q s}} w^{-\frac{p \alpha}{q s}}\right)^{m} d x\right)^{\frac{1}{m}} \\
& \leq\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{1}{t}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{p m t \alpha}{q s(t-m)}} d x\right)^{\frac{t-m}{m t}} \\
& =\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{1}{t}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{p \alpha(r-1)}{q s}}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|v-c\|_{m, \sigma B}^{\frac{q}{p}} \leq\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.6}
\end{equation*}
$$

Combining (2.5) and (2.6) we obtain

$$
\begin{align*}
& \left(\int_{B}\left|u-u_{B}\right|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \quad \leq C_{1}|B|^{\beta}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.7}
\end{align*}
$$

Using the condition that $w \in A_{r}(\Omega)$ yields

$$
\begin{align*}
& \left(\int_{B} w d x\right)^{\frac{\alpha}{s}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}} \\
& \quad \leq|\sigma B|^{\frac{\alpha r}{s}}\left(\left(\frac{1}{|\sigma B|} \int_{B} w d x\right)\left(\frac{1}{|\sigma B|} \int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{\frac{\alpha}{s}} \tag{2.8}\\
& \quad \leq C_{2}|\sigma B|^{\frac{\alpha r}{s}} \\
& \quad=C_{3}|B|^{\frac{\alpha r}{s}}
\end{align*}
$$

Substituting (2.8) into (2.7) and noting that $\beta+\frac{\alpha r}{s}=\frac{1}{k}+\frac{1}{n}-\frac{\left(\frac{1}{m}+\frac{1}{n}\right) q}{p}+\frac{r}{\alpha s}=\frac{1}{s}+\frac{1}{n}-$ $\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$, we have

$$
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C_{4}|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}}
$$

where $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.
Next, we prove that Theorem 2.4 holds if $\alpha=1$. By Lemma 2.3 there exist constants $\beta_{1}>1$ and $C_{5}>0$, independent of w, such that

$$
\begin{equation*}
\|w\|_{\beta_{1}, \sigma B} \leq C_{5}|B|^{\frac{1-\beta_{1}}{\beta_{1}}}\|w\|_{1, \sigma B} \tag{2.9}
\end{equation*}
$$

Since $\frac{1}{\beta_{1} s}+\frac{\beta_{1}-1}{\beta_{1} s}=\frac{1}{s}$, then by Lemma 2.2 we have

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{s, B, w} \leq\|w\|_{\beta_{1}, B}^{\frac{1}{s}}\left\|u-u_{B}\right\|_{\frac{\beta_{1} s}{\beta_{1}-1}, B} \tag{2.10}
\end{equation*}
$$

By Theorem B , there is a constant $C_{6}>0$, independent of u and v, such that for any $t^{\prime}>0$ we have

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{\frac{\beta_{1} s}{\beta_{1}-1}, B} \leq C_{6}|B|^{\beta^{\prime}}\|v-c\|_{t^{\prime}, \sigma B}^{\frac{q}{p}} \tag{2.11}
\end{equation*}
$$

where $\beta^{\prime}=\frac{\beta_{1}-1}{\beta_{1} s}+\frac{1}{n}-\frac{\left(\frac{1}{t^{\prime}}+\frac{1}{n}\right) q}{p}$. Combining (2.10) and (2.11) we obtain

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{s, B, w} \leq C_{6}|B|^{\beta^{\prime}}\|w\|_{\beta_{1}, B}^{\frac{1}{s}}\|v-c\|_{t^{\prime}, \sigma B}^{\frac{q}{p}} \tag{2.12}
\end{equation*}
$$

Now, choose $t^{\prime}=\frac{t}{k_{1}}$ where k_{1} is to be determined later. Since $\left.|v-c|=w^{-\frac{p}{q s}} \right\rvert\, v-$ $c \left\lvert\, w^{\frac{p}{q^{s}}}\right.$, by Lemma 2.2 we obtain

$$
\begin{equation*}
\|v-c\|_{t^{\prime}, \sigma B} \leq\left\|\left(\frac{1}{w}\right)^{\frac{p t}{q s}}\right\|_{\frac{1}{k_{1}-1}, \sigma B}^{\frac{1}{t}}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t}{q s}} d x\right)^{\frac{1}{t}} \tag{2.13}
\end{equation*}
$$

From (2.9), (2.12) and (2.13) we have

$$
\begin{align*}
& \left\|u-u_{B}\right\|_{s, B, w} \\
& \leq C_{7}|B|^{\beta^{\prime}+\frac{1-\beta_{1}}{\beta_{1} s}}\|w\|_{1, \sigma B}^{\frac{1}{s}}\left\|\left(\frac{1}{w}\right)^{\frac{p t}{q s}}\right\|_{\frac{1}{k_{1}-1}, \sigma B}^{\frac{q}{p t}}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.14}
\end{align*}
$$

Set $k_{1}=1+\frac{p t(r-1)}{q s}$, then $\frac{\left(k_{1}-1\right) q s}{p t}=r-1$. By $w \in A_{r}(\Omega)$ we know that

$$
\begin{align*}
& \|w\|_{1, \sigma B}^{\frac{1}{s}}\left\|\left(\frac{1}{w}\right)^{\frac{p t}{q s}}\right\|_{\frac{1}{k_{1}-1}, \sigma B}^{\frac{q}{p t}} \\
& \quad=|\sigma B|^{\frac{1}{s}+\frac{\left(k_{1}-1\right) q}{p t}}\left(\frac{1}{|\sigma B|} \int_{\sigma B} w d x\left(\frac{1}{|\sigma B|} \int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{\frac{1}{s}} \tag{2.15}\\
& \quad \leq C_{8}|B|^{\frac{1}{s}+\frac{\left(k_{1}-1\right) q}{p t}}
\end{align*}
$$

Combining (2.14) and (2.15) we have

$$
\left\|u-u_{B}\right\|_{s, B, w} \leq C_{9}|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t}{q s}} d x\right)^{\frac{q}{p t}}
$$

where

$$
\gamma=\beta^{\prime}+\frac{1-\alpha}{\alpha s}+\frac{1}{s}+\frac{q(k-1)}{p t}=-\frac{n q+t(q-p)}{n p t}+\frac{1}{s}=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p} .
$$

Therefore, (2.2) holds if $\alpha=1$. We have completed the proof of Theorem 2.4
We need the following properties of the Whitney covers appearing [12].
Lemma 2.5. Each Ω has a modified Whitney cover of cubes $\mathcal{V}=\left\{Q_{i}\right\}$ such that

$$
\cup_{i} Q_{i}=\Omega, \quad \sum_{Q \in \mathcal{V}} \chi_{\sqrt{\frac{5}{4}} Q} \leq N \chi_{\Omega}
$$

for all $x \in \mathbb{R}^{n}$ and some $N>1$, and if $Q_{i} \cap Q_{j} \neq \phi$, then there exists a cube R (this cube does not need be a member of $\mathcal{V})$ in $Q_{i} \cap Q_{j}$ such that $Q_{i} \cup Q_{j} \subset N R$. Moreover, if Ω is δ-John, then there is a distinguished cube $Q_{0} \in \mathcal{V}$ which can be connected with every cube $Q \in \mathcal{V}$ by a chain of cubes $Q_{0}, Q_{1}, \ldots, Q_{k}=Q$ from \mathcal{V} and such that $Q \subset \rho Q_{i} \quad(i=0,1,2, \ldots, k)$ for some $\rho=\rho(n, \delta)$.

As applications of Theorem 2.4 we prove the following global $A_{r}(\Omega)$-weighted HardyLittlewood inequality.

Theorem 2.6. Let $u \in D^{\prime}\left(\Omega, \Lambda^{l-1}\right)$ and $v \in D^{\prime}\left(\Omega, \Lambda^{l+1}\right)$ be conjugate A-harmonic tensors. Let $q \leq p, v-c \in L^{t}\left(\Omega, \Lambda^{l+1}\right)(l=1,2, \ldots, n-1)$ and $w \in A_{r}(\Omega)$. If s is defined by

$$
\begin{equation*}
s=\frac{n p t}{n q+t(q-p)} \quad(0<t<\infty) \tag{2.16}
\end{equation*}
$$

then there exists a constant $C>0$, independent of u and v, such that

$$
\left(\int_{\Omega}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C\left(\int_{\Omega}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}}
$$

for any domain $\Omega \subset \mathbb{R}^{n}$ with $|\Omega|<\infty$. Here c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c=0$.
Proof. From (2.2)' we have

$$
\begin{equation*}
\left(\int_{Q}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C|Q|^{\gamma}\left(\int_{\sigma Q}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.17}
\end{equation*}
$$

where $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$. Substituting (2.16) into the expression of γ we get

$$
\begin{equation*}
\gamma=\frac{1}{s}+\frac{1}{n}-\left(\frac{q}{p t}+\frac{q}{n p}\right)=\frac{n q+t(q-p)}{n p t}+\frac{1}{n}-\left(\frac{q}{p t}+\frac{q}{n p}\right)=0 . \tag{2.18}
\end{equation*}
$$

Thus we find that (2.17) reduces to

$$
\begin{equation*}
\left(\int_{Q}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C\left(\int_{\sigma Q}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \tag{2.19}
\end{equation*}
$$

Combining (2.19) and Lemma 2.5, we get

$$
\begin{aligned}
\left(\int_{\Omega}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} & \leq \sum_{Q \in \mathcal{V}}\left(\int_{Q}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \leq \sum_{Q \in \mathcal{V}}\left(\int_{Q}|u|^{s} w^{\alpha} \chi_{\sqrt{\frac{5}{4}} Q} d x\right)^{\frac{1}{s}} \\
& \leq \sum_{Q \in \mathcal{V}}\left(\int_{Q}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \chi_{\sqrt{\frac{5}{4}} Q} \\
& \leq \sum_{Q \in \mathcal{V}} C_{1}\left(\int_{\sigma Q}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \chi_{\sqrt{\frac{5}{4}} Q} \\
& \leq \sum_{Q \in \mathcal{V}} C_{1}\left(\int_{\Omega}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \chi_{\sqrt{\frac{5}{4}} Q} \\
& \leq C_{1}\left(\int_{\Omega}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} \sum_{Q \in \mathcal{V}} \chi_{\sqrt{\frac{5}{4}} Q} \\
& \leq C_{2}\left(\int_{\Omega}|v-c|^{t} w^{\frac{p t \alpha}{q s}} d x\right)^{\frac{q}{p t}} .
\end{aligned}
$$

The proof of Theorem 2.6 has been completed

Note that $\alpha \in(0,1]$ is arbitrary in Theorem 2.4. Hence, if we choose α to be some special values, we will have some different versions of the Hardy-Littlewood inequality. For example, if we let $\alpha=q s, q s \leq 1$. By Theorem 2.4 , we have the following symmetric version of the Hardy-Littlewood inequality.

Corollary 2.7. Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^{n}$ and $w \in A_{r}(\Omega)$ for some $r>1$. Let $0<t<\infty$ and $q s \leq 1$. Then there exists a constant $C>0$, independent of u and v, such that

$$
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{q s} d x\right)^{\frac{1}{q s}} \leq C|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{p t} d x\right)^{\frac{1}{p t}}
$$

for all balls B with $\sigma B \subset \Omega \subset \mathbb{R}^{n}$ and $\sigma>1$. Here c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c=0$ and $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.

If we choose $\alpha=\frac{1}{p t}$ and $p t \geq 1$ in Theorem 2.4, we obtain the following symmetric version.

Corollary 2.8. Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^{n}$ and $w \in A_{r}(\Omega)$ for some $r>1$. Let $0<t<\infty$ and $p t \geq 1$. Then there exists a constant $C>0$, independent of u and v, such that

$$
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{\frac{1}{p t}} d x\right)^{\frac{1}{q s}} \leq C|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{1}{q s}} d x\right)^{\frac{1}{p t}}
$$

for all balls B with $\sigma B \subset \Omega \subset \mathbb{R}^{n}$ and $\sigma>1$. Here c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c=0$ and $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.

If we choose $\alpha=\frac{1}{p}$ in Theorem 2.4, we obtain the following result.
Corollary 2.9. Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^{n}$ and $w \in A_{r}(\Omega)$ for some $r>1$. Let $0<s, t<\infty$. Then there exists a constant $C>0$, independent of u and v, such that

$$
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{\frac{1}{p}} d x\right)^{\frac{1}{q s}} \leq C|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{t}{q s}} d x\right)^{\frac{1}{p t}}
$$

for all balls B with $\sigma B \subset \Omega \subset \mathbb{R}^{n}$ and $\sigma>1$. Here c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c=0$ and $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.

If we choose $\alpha=1$ in Theorem 2.4, we have the following corollary.
Corollary 2.10. Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^{n}$ and $w \in A_{r}(\Omega)$ for some $r>1$. Let $0<s, t<\infty$. Then there exists a constant $C>0$, independent of u and v, such that

$$
\left(\int_{B}\left|u-u_{B}\right|^{s} w d x\right)^{\frac{1}{q s}} \leq C|B|^{\gamma}\left(\int_{\sigma B}|v-c|^{t} w^{\frac{p t}{q s}} d x\right)^{\frac{1}{p t}}
$$

for all balls B with $\sigma B \subset \Omega \subset \mathbb{R}^{n}$ and $\sigma>1$. Here c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c=0$ and $\gamma=\frac{1}{s}+\frac{1}{n}-\frac{\left(\frac{1}{t}+\frac{1}{n}\right) q}{p}$.

Remark. By making different choices for α in Theorem 2.6, we shall have different versions of the global Hardy-Littlewood inequality. Considering the length of the paper, we do not list them here.

3. The $A_{r}(\Omega)$-weighted weak reverse Hölder inequality

In [12], Nolder obtains the following Caccioppoli-type inequality.
Theorem C. Let u be an A-harmonic tensor in Ω and let $\sigma>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\|d u\|_{s, B} \leq C \operatorname{diam}(\mathrm{~B})^{-1}\|u-c\|_{s, \sigma B}
$$

for all balls or cubes B with $\sigma B \subset \Omega$ and all closed forms c. Here $1<s<\infty$.
The following weak reverse Hölder inequality appears in [12].
Theorem D. Let u be an A-harmonic tensor in $\Omega, \sigma>1$ and $0<s, t<\infty$. Then there exists a constant $C>0$, independent of u, such that

$$
\|u\|_{s, B} \leq C|B|^{\frac{t-s}{s t}}\|u\|_{t, \sigma B}
$$

for all balls or cubes B with $\sigma B \subset \Omega$.
Using the same method as those used in Section 2, we prove the following $A_{r}(\Omega)$ weighted weak reverse Hölder inequality with parameter α for A-harmonic tensors.

Theorem 3.1. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right) \quad(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}, \sigma>1$. Assume that $0<s, t<\infty$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C\left(\frac{1}{|B|} \int_{\sigma B}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}} \tag{3.1}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$ and any real number α with $0<\alpha \leq 1$.
Proof. First, we suppose that $0<\alpha<1$. Let $k=\frac{s}{1-\alpha}$. From Lemma 2.2 we find that

$$
\begin{align*}
\left(\int_{B}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} & =\left(\int_{B}\left(|u| w^{\frac{\alpha}{s}}\right)^{s} d x\right)^{\frac{1}{s}} \\
& \leq\left(\int_{B}|u|^{k} d x\right)^{\frac{1}{k}}\left(\int_{B}\left(w^{\frac{\alpha}{s}}\right)^{\frac{k s}{k-s}} d x\right)^{\frac{k-s}{k s}} \tag{3.2}\\
& =\|u\|_{k, B}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}}
\end{align*}
$$

for all balls B with $\sigma B \subset \Omega$. Let $m=\frac{s t}{s+\alpha t(r-1)}$. By Theorem D we obtain

$$
\begin{equation*}
\|u\|_{k, B} \leq C_{1}|B|^{\frac{m-k}{k m}}\|u\|_{m, \sigma B} \tag{3.3}
\end{equation*}
$$

Using the Hölder inequality with $\frac{1}{m}=\frac{1}{t}+\frac{t-m}{m t}$ yields

$$
\begin{align*}
\|u\|_{m, \sigma B} & =\left(\int_{\sigma B}\left(|u| w^{\frac{\alpha}{s}} w^{-\frac{\alpha}{s}}\right)^{m} d x\right)^{\frac{1}{m}} \\
& \leq\left(\int_{\sigma B}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{\alpha m t}{s(t-m)}} d x\right)^{\frac{t-m}{m t}} \tag{3.4}\\
& =\left(\int_{\sigma B}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}} .
\end{align*}
$$

Combining (3.2) - (3.4) we find that

$$
\begin{align*}
& \left(\int_{B}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \quad \leq C_{1}|B|^{\frac{m-k}{k m}}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}}\left(\int_{\sigma B}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}} \tag{3.5}
\end{align*}
$$

Since $w \in A_{r}(\Omega)$, then we have

$$
\begin{align*}
& \left(\int_{B} w d x\right)^{\frac{\alpha}{s}}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}} \\
& \quad=\left(\left(\int_{B} w d x\right)\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{\frac{\alpha}{s}} \\
& \quad \leq|\sigma B|^{\frac{\alpha r}{s}}\left(\left(\frac{1}{|\sigma B|} \int_{B} w d x\right)\left(\frac{1}{|\sigma B|} \int_{\sigma B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{\frac{\alpha}{s}} \tag{3.6}\\
& \quad \leq C_{2}|\sigma B|^{\frac{\alpha r}{s}} \\
& \quad=C_{3}|B|^{\frac{\alpha r}{s}}
\end{align*}
$$

Substituting (3.6) into (3.5) we obtain

$$
\left(\int_{B}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C_{4}|B|^{\frac{t-s}{s t}}\left(\int_{\sigma B}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}}
$$

Then (3.1) holds if $0<\alpha<1$.
For the case $\alpha=1$, by Lemma 2.3, there exist constants $\beta>1$ and $C_{5}>0$ such that

$$
\begin{equation*}
\|w\|_{\beta, B} \leq C_{5}|B|^{\frac{1-\beta}{\beta}}\|w\|_{1, B} \tag{3.7}
\end{equation*}
$$

for any cube or any ball $B \subset \mathbb{R}^{n}$. Choose $k=\frac{s \beta}{\beta-1}$. Then $s<k$ and $\beta=\frac{k}{k-s}$. By (3.7) and Lemma 2.2 we have

$$
\begin{align*}
\left(\int_{B}|u|^{s} w d x\right)^{\frac{1}{s}} & \leq\left(\int_{B}|u|^{k} d x\right)^{\frac{1}{k}}\left(\int_{B}\left(w^{\frac{1}{s}}\right)^{\frac{s k}{k-s}} d x\right)^{\frac{k-s}{s k}} \\
& =\|u\|_{k, B}\|w\|_{\beta, B}^{\frac{1}{s}} \tag{3.8}\\
& \leq C_{6}|B|^{\frac{1-\beta}{\beta s}}\|w\|_{1, B}^{\frac{1}{s}}\|u\|_{k, B} \\
& =C_{6}|B|^{-\frac{1}{k}}\|w\|_{1, B}^{\frac{1}{s}}\|u\|_{k, B}
\end{align*}
$$

Selecting $m=\frac{s t}{s+t(r-1)}$ and repeating the same procedure as the case $0<\alpha<1$, we see that (3.1) is also true for $\alpha=1$. This ends the proof of Theorem 3.1

As application of Theorem 3.1, we choose the parameter $\alpha=1$ in Theorem 3.1. Then, we have the following version of the reverse Hölder inequality.

Corollary 3.2. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}, \sigma>1$. Assume that $0<s, t<\infty$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\left(\frac{1}{|B|} \int_{B}|u|^{s} w d x\right)^{\frac{1}{s}} \leq C\left(\frac{1}{|B|} \int_{\sigma B}|u|^{t} w^{\frac{t}{s}} d x\right)^{\frac{1}{t}}
$$

for all balls B with $\sigma B \subset \Omega$.
Let $\alpha=s$ with $0<s \leq 1$ in Theorem 3.1. We obtain the following symmetric version.

Corollary 3.3. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right) \quad(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}, \sigma>1$. Assume that $0<t<\infty, 0<s \leq 1$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\left(\frac{1}{|B|} \int_{B}|u|^{s} w^{s} d x\right)^{\frac{1}{s}} \leq C\left(\frac{1}{|B|} \int_{\sigma B}|u|^{t} w^{t} d x\right)^{\frac{1}{t}}
$$

for all balls B with $\sigma B \subset \Omega$.
Let $\alpha=\frac{1}{t}$ with $t \geq 1$ in Theorem 3.1. Then we have the following
Corollary 3.4. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}, \sigma>1$. Assume that $t \geq 1,0<s<\infty$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\left(\frac{1}{|B|} \int_{B}|u|^{s} w^{\frac{1}{t}} d x\right)^{\frac{1}{s}} \leq C\left(\frac{1}{|B|} \int_{\sigma B}|u|^{t} w^{\frac{1}{s}} d x\right)^{\frac{1}{t}}
$$

for all balls B with $\sigma B \subset \Omega$.
We prove the following global result.

Theorem 3.5. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right) \quad(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$ with $|\Omega|<\infty$. Assume that $0<s \leq t<\infty$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then

$$
\begin{equation*}
\left(\frac{1}{|\Omega|} \int_{\Omega}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq\left(\frac{1}{|\Omega|} \int_{\Omega}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}} \tag{3.9}
\end{equation*}
$$

for any real number α with $0<\alpha \leq 1$.
Proof. It is clear that (3.9) is true if $s=t$. Now we assume that $s<t$. Using Lemma 2.2 with $\frac{1}{s}=\frac{1}{t}+\frac{t-s}{s t}$, we have

$$
\begin{aligned}
\left(\int_{\Omega}|u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} & =\left(\int_{\Omega}\left(|u| w^{\alpha / s}\right)^{s} d x\right)^{\frac{1}{s}} \\
& \leq\left(\int_{\Omega} 1 d x\right)^{\frac{t-s}{s t}}\left(\int_{\Omega}\left(|u| w^{\frac{\alpha}{s}}\right)^{t} d x\right)^{\frac{1}{t}} \\
& =|\Omega|^{\frac{t-s}{s t}}\left(\int_{\Omega}|u|^{t} w^{\frac{\alpha t}{s}} d x\right)^{\frac{1}{t}}
\end{aligned}
$$

which is equivalent to (3.9). The proof of Theorem 3.5 is completed
Remark. Theorem 3.5 can be proved by using Theorem 3.1 directly (see [11: Proof of Theorem 2.3]). Here we have the stronger condition $0<s \leq t<\infty$. But the result is also stronger: the constant C in Theorem 3.1 now reduces to $C=1$. By choosing α to be some special values in (3.9), we have some global results as we did for the local case.

4. The $A_{r}(\Omega)$-weighted Caccioppoli-type estimate

We prove the following $A_{r}(\Omega)$-weighted Caccioppoli-type estimate with parameter α for A-harmonic tensors.

Theorem 4.1. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$ and $\rho>1$. Assume that $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq \frac{C}{\operatorname{diam}(B)}\left(\int_{\rho B}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \tag{4.1}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c. Here α is any constant with $0<\alpha \leq 1$.

Proof. First, we assume that $0<\alpha<1$. Choose $t=\frac{s}{1-\alpha}$. Since $\frac{1}{s}=\frac{1}{t}+\frac{t-s}{s t}$,
using Lemma 2.2 and Theorem C, we obtain

$$
\begin{align*}
\left(\int_{B}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} & =\left(\int_{B}\left(|d u| w^{\frac{\alpha}{s}}\right)^{s} d x\right)^{\frac{1}{s}} \\
& \leq\left(\int_{B}|d u|^{t} d x\right)^{\frac{1}{t}}\left(\int_{B}\left(w^{\frac{\alpha}{s}}\right)^{\frac{s t}{t-s}} d x\right)^{\frac{t-s}{s t}} \tag{4.2}\\
& \leq\|d u\|_{t, B}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}} \\
& =C_{1} \operatorname{diam}(B)^{-1}\|u-c\|_{t, \sigma B}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}}
\end{align*}
$$

for all balls B with $\sigma B \subset \Omega$ and all closed forms c. Since c is a closed form and u is an A-harmonic tensor, then $u-c$ is still an A-harmonic tensor. Taking $m=\frac{s}{1+\alpha(r-1)}$, then $m<s<t$. By Theorem D we have

$$
\begin{equation*}
\|u-c\|_{t, \sigma B} \leq C_{2}|B|^{\frac{m-t}{m t}}\|u-c\|_{m, \sigma^{2} B}=C_{2}|B|^{\frac{m-t}{m t}}\|u-c\|_{m, \rho B} \tag{4.3}
\end{equation*}
$$

where $\rho=\sigma^{2}$. Substituting (4.3) into (4.2) we get

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq C_{3} \operatorname{diam}(B)^{-1}|B|^{\frac{m-t}{m t}}\|u-c\|_{m, \rho B}\left(\int_{B} w d x\right)^{\frac{\alpha}{s}} \tag{4.4}
\end{equation*}
$$

Using Lemma 2.2 with $\frac{1}{m}=\frac{1}{s}+\frac{s-m}{s m}$ we obtain

$$
\begin{align*}
\|u-c\|_{m, \rho B} & =\left(\int_{\rho B}|u-c|^{m} d x\right)^{\frac{1}{m}} \\
& =\left(\int_{\rho B}\left(|u-c| w^{\frac{\alpha}{s}} w^{-\frac{\alpha}{s}}\right)^{m} d x\right)^{\frac{1}{m}} \tag{4.5}\\
& \leq\left(\int_{\rho B}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}}\left(\int_{\rho B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{\frac{\alpha(r-1)}{s}}
\end{align*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c. Substituting (4.5) into (4.4) we obtain

$$
\begin{align*}
& \left(\int_{B}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \quad \leq C_{3} \operatorname{diam}(B)^{-1}|B|^{\frac{m-t}{m t}}\|w\|_{1, B}^{\frac{\alpha}{s}}\left\|\frac{1}{w}\right\|_{\frac{1}{r-1}, \rho B}^{\frac{\alpha}{s}}\left(\int_{\rho B}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} . \tag{4.6}
\end{align*}
$$

Now $w \in A_{r}(\Omega)$ yields

$$
\begin{align*}
\|w\|_{1, B}^{\frac{\alpha}{s}}\left\|\frac{1}{w}\right\|_{\frac{1}{r-1}, \rho B}^{\frac{\alpha}{s}} & \leq\left(\left(\int_{\rho B} w d x\right)\left(\int_{\rho B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{\frac{\alpha}{s}} \\
& =\left(|\rho B|^{r}\left(\frac{1}{|\rho B|} \int_{\rho B} w d x\right)\left(\frac{1}{|\rho B|} \int_{\rho B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{\frac{\alpha}{s}} \tag{4.7}\\
& \leq C_{4}|B|^{\frac{\alpha r}{s}}
\end{align*}
$$

Combining (4.7) and (4.6) we find that

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq \frac{C_{5}}{\operatorname{diam}(B)}\left(\int_{\rho B}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \tag{4.8}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c. We have proved that (4.1) is true if $0<\alpha<1$.

For the case $\alpha=1$, by Lemma 2.3 there exist constants $\beta>1$ and $C_{6}>0$ such that

$$
\begin{equation*}
\|w\|_{\beta, B} \leq C_{6}|B|^{\frac{1-\beta}{\beta}}\|w\|_{1, B} \tag{4.9}
\end{equation*}
$$

for any cube or any ball $B \subset \mathbb{R}^{n}$. Choose $t=\frac{s \beta}{\beta-1}$. Then $1<s<t$ and $\beta=\frac{t}{t-s}$. Since $\frac{1}{s}=\frac{1}{t}+\frac{t-s}{s t}$, by Lemma 2.2, Theorem C and (4.9) we have

$$
\begin{aligned}
\left(\int_{B}|d u|^{s} w d x\right)^{\frac{1}{s}} & =\left(\int_{B}\left(|d u| w^{\frac{1}{s}}\right)^{s} d x\right)^{\frac{1}{s}} \\
& \leq\left(\int_{B}|d u|^{t} d x\right)^{\frac{1}{t}}\left(\int_{B}\left(w^{\frac{1}{s}}\right)^{\frac{s t}{t-s}} d x\right)^{\frac{t-s}{s t}} \\
& \leq C_{7}\|d u\|_{t, B}\|w\|_{\beta, B}^{\frac{1}{s}} \\
& \leq C_{8} \operatorname{diam}(B)^{-1}\|u-c\|_{t, \sigma B}\|w\|_{\beta, B}^{\frac{1}{s}} \\
& \leq C_{9} \operatorname{diam}(B)^{-1}|B|^{\frac{1-\beta}{\beta s}}\|w\|_{1, B}^{\frac{1}{s}}\|u-c\|_{t, \sigma B} \\
& =C_{9} \operatorname{diam}(B)^{-1}|B|^{-\frac{1}{t}}\|w\|_{1, B}^{\frac{1}{s}}\|u-c\|_{t, \sigma B}
\end{aligned}
$$

which is similar to (4.2). Now, choosing $m=\frac{s}{r}$ and repeating the same procedure as the case $0<\alpha<1$, we can also obtain (4.1) if $\alpha=1$. This ends the proof of Theorem 4.1

Note that the parameter α in Theorem 4.1 is any real number with $0<\alpha \leq 1$. Therefore, we can have different versions of the Caccioppoli-type inequality by choosing α to be different values. For example, setting $t=1-\alpha$ in Theorem 4.1 we obtain the following result.

Corollary 4.2. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$ and $\rho>1$. Assume that $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w^{-t} d \mu\right)^{\frac{1}{s}} \leq \frac{C}{\operatorname{diam}(B)}\left(\int_{\rho B}|u-c|^{s} w^{-t} d \mu\right)^{\frac{1}{s}} \tag{4.10}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c. Here t is any real number with $0 \leq t<1$ and $d \mu=w(x) d x$.

Choosing $\alpha=\frac{1}{r}$ in Theorem 4.1 we have the following result.

Corollary 4.3. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$ and $\rho>1$. Assume that $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w^{\frac{1}{r}} d x\right)^{\frac{1}{s}} \leq \frac{C}{\operatorname{diam}(B)}\left(\int_{\rho B}|u-c|^{s} w^{\frac{1}{r}} d x\right)^{\frac{1}{s}} \tag{4.11}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c.
If we choose $\alpha=\frac{1}{s}$ in Theorem 4.1, then $0<\alpha<1$ since $1<s<\infty$. Thus, Theorem 4.1 reduces to the following symmetric version.

Corollary 4.4. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$ and $\rho>1$. Assume that $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} w^{\frac{1}{s}} d x\right)^{\frac{1}{s}} \leq \frac{C}{\operatorname{diam}(B)}\left(\int_{\rho B}|u-c|^{s} w^{\frac{1}{s}} d x\right)^{\frac{1}{s}} \tag{4.12}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c.
If we choose $\alpha=1$ in Theorem 4.1, we have the following result.
Corollary 4.5. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)(l=0,1, \ldots, n)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$ and $\rho>1$. Assume that $1<s<\infty$ is a fixed exponent associated with the A-harmonic equation and $w \in A_{r}(\Omega)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\|d u\|_{s, B, w} \leq C \operatorname{diam}(B)^{-1}\|u-c\|_{s, \rho B, w} \tag{4.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\int_{B}|d u|^{s} d \mu\right)^{\frac{1}{s}} \leq \frac{C}{\operatorname{diam}(B)}\left(\int_{\rho B} \mid u-c^{s} d \mu\right)^{\frac{1}{s}} \tag{4.14}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$ and all closed forms c.
Finally, we prove the following global $A_{r}(\Omega)$-weighted Caccioppoli-type estimate for A-harmonic tensors.

Theorem 4.6. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right) \quad(l=0,1, \ldots, n)$ be an A-harmonic tensor in a bounded domain $\Omega \subset \mathbb{R}^{n}$ which has a finite open cover $\mathcal{V}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ consistimg of open balls. Assume that $1<s<\infty$ is a fixed exponent associated with the A harmonic equation and $w \in A_{r}\left(\cup_{i}^{m} B_{i}\right)$ for some $r>1$. Then there exists a constant $C>0$, independent of u, such that

$$
\begin{equation*}
\left(\int_{\Omega}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \leq \frac{C}{\operatorname{diam}(\Omega)}\left(\int_{\Omega}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \tag{4.15}
\end{equation*}
$$

for all closed forms c and any constant α with $0<\alpha \leq 1$.
Proof. Let $\mathcal{V}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ be an open cover of the bounded domain $\Omega \subset \mathbb{R}^{n}$ and $d_{i}=\operatorname{diam}\left(B_{i}\right)>0 \quad(i=1,2, \ldots, m)$. Assume that $d=\min \left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$. Since Ω is bounded, then there exists a constant $C_{1}>0$ such that

$$
\begin{equation*}
\frac{1}{d} \leq \frac{C_{1}}{\operatorname{diam}(\Omega)} \tag{4.16}
\end{equation*}
$$

Using (4.16) and Theorem 4.1, we have

$$
\begin{aligned}
\left(\int_{\Omega}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} & \leq \sum_{B \in \mathcal{V}}\left(\int_{B}|d u|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \leq \sum_{B \in \mathcal{V}} \frac{C_{2}}{\operatorname{diam}(B)}\left(\int_{\rho B}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \leq \sum_{B \in \mathcal{V}} \frac{C_{2}}{d}\left(\int_{\rho B}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \leq \sum_{B \in \mathcal{V}} \frac{C_{3}}{\operatorname{diam}(\Omega)}\left(\int_{\Omega}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}} \\
& \leq \frac{C_{4}}{\operatorname{diam}(\Omega)}\left(\int_{\Omega}|u-c|^{s} w^{\alpha} d x\right)^{\frac{1}{s}}
\end{aligned}
$$

Hence (4.15) follows. The proof of Theorem 4.6 has been completed
Remark. Choosing α to be some special values in (4.15), we shall have some corresponding global results.

Acknowledgements. I would like to thank the referee and Prof. R. Finn for their precious and thoughtful suggestions on this paper.

References

[1] Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity] Arch. Rat. Mech. Anal. 63 (1977), $337-403$.
[2] Ball, J. M. and F. Murat: $W^{1, p}$-quasi-convexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), $225-253$.
[3] Ding, S.: Some examples of conjugate p-harmonic differential forms. J. Math. Anal. Appl. 227 (1998), 251 - 270.
[4] Ding, S. and C. A. Nolder: $L^{s}(\mu)$-averaging domains. J. Math. Anal. Appl. (to appear).
[5] Garnett, J. B.: Bounded Analytic Functions. New York: Acad. Press 1970.
[6] Hardy, G. H. and J. E. Littlewood: Some properties of conjugate functions. J. Reine Angew. Math. 167 (1932), $405-423$.
[7] Heinonen, J., Kilpelainen, K. and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford: Clarendon Press 1993.
[8] Iwaniec, T.: p-harmonic tensors and quasiregular mappings. Ann. Math. 136 (1992), 589 -624.
[9] Iwaniec, T. and A. Lutoborski: Integral estimates for null Lagrangians. Arch. Rat. Mech. Anal. 125 (1993), $25-79$.
[10] Iwaniec, T. and G. Martin: Quasiregular mappings in even dimensions. Acta Math. 170 (1993), $29-81$.
[11] Liu, B. and S. Ding: The monotonic property of the $L^{s}(\mu)$-averaging domains. J. Math. Anal. Appl. 237 (1999), $730-739$.
[12] Nolder, C. A.: Hardy-Littlewood theorems for A-harmonic tensors. Illinois J. Math. 43 (1999), 613 - 631.
[13] De Rham, G.: Differential Manifolds. Berlin: Springer-Verlag 1980.
[14] Stroffolini, B.: On weakly A-harmonic tensors. Studia Math. 114 (1995), 289 - 301.

Received 05.10.2000

[^0]: Shusen Ding: Seattle Univ., Dept. Math., Seattle, WA 98122, USA; sding@seattleu.edu

