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Parametric Weighted Integral Inequalities
for

A-Harmonic Tensors

S. Ding

Abstract. We prove the Ar(Ω)-weighted Hardy-Littlewood inequality, the Ar(Ω)-weighted
weak reverse Hölder inequality and the Ar(Ω)-weighted Caccioppoli-type estimate for A-har-
monic tensors all being generalizations of classical results.
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1. Introduction

The purpose of this paper is to develop parametric versions of the Ar(Ω)-weighted
integral inequalities for A-harmonic tensors. These results are of interest in nonlinear
potential theory, degenerate elliptic equations, continuum mechanics, and the Lp theory.
They can be used to study the integrability of A-harmonic tensors and to estimate the
integrals for A-harmonic tensors. A-harmonic tensors are differential forms which satisfy
the A-harmonic equation. They are interesting and important extensions of p-harmonic
tensors. In the meantime, p-harmonic tensors are extensions of harmonic functions
and p-harmonic functions, p > 1. Many interesting results of A-harmonic tensors and
their applications in different fields, such as quasiregular mappings and the theory of
elasticity, have been found recently (see [1 - 4, 8 - 12, 14]).

We always assume that Ω is a connected open subset of Rn. We write R = R1. Balls
are denoted by B, and σB is the ball with the same center as B and with diam(σB) =
σdiam(B). We do not distinguish the balls from cubes throughout this paper. The
n-dimensional Lebesgue measure of a set E ⊆ Rn is denoted by |E|. We call w a weight
if w ∈ L1

loc(Rn) and w > 0 a.e. Also, in general dµ = w dx where w is a weight. For
0 < p < ∞ we denote the weighted Lp-norm of a measurable function f over E by

‖f‖p,E,w =
(∫

E

|f(x)|pw(x) dx

) 1
p

.

Let {e1, e2, . . . , en} be the standard unit basis of Rn. Assume that ∧l = ∧l(Rn) is
the linear space of l-vectors spanned by the exterior products eI = ei1 ∧ ei2 ∧ · · · ∧ eil

,
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corresponding to all ordered l-tuples I = (i1, i2, . . . , il) (1 ≤ i1 < i2 < . . . < il ≤ n; l =
0, 1, . . . , n). The Grassman algebra ∧ = ⊕∧l is a graded algebra with respect to the
exterior products. For α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧ the inner product in ∧ is

given by
〈α, β〉 =

∑
αIβI

with summation over all l-tuples I = (i1, i2, . . . , il) and all integers l = 0, 1, . . . , n. We
define the Hodge star operator

? : ∧ → ∧
by the rule

?1 = e1 ∧ e2 ∧ · · · ∧ en and α ∧ ?β = β ∧ ?α = 〈α, β〉(?1)

for all α, β ∈ ∧. The norm of α ∈ ∧ is given by the formula

|α|2 = 〈α, α〉 = ?(α ∧ ?α) ∈ ∧0 = R.

The Hodge star is an isometric isomorphism on ∧ with ? : ∧l → ∧n−l and ??(−1)l(n−l) :
∧l → ∧l.

A differential l-form ω on Ω is a de Rham current (see [13: Chapter III]) on Ω with
values in ∧l(Rn). We use D′(Ω,∧l) to denote the space of all differential l-forms and
Lp(Ω,∧l) to denote the l-forms

ω(x) =
∑

I

ωI(x)dxI =
∑

ωi1i2···il
(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil

with ωI ∈ Lp(Ω,R) for all ordered l-tuples I. Thus Lp(Ω,∧l) is a Banach space with
norm

‖ω‖p,Ω =
(∫

Ω

|ω(x)|pdx

) 1
p

=

(∫

Ω

( ∑

I

|ωI(x)|2
) p

2

dx

) 1
p

.

Similarly, W 1
p (Ω,∧l) are the differential l-forms on Ω whose coefficients are in W 1

p (Ω,R).
The notations W 1

p,loc(Ω,R) and W 1
p,loc(Ω,∧l) are self-explanatory. We denote the exte-

rior derivative by
d : D′(Ω,∧l) → D′(Ω,∧l+1)

for l = 0, 1, . . . , n. Its formal adjoint operator

d? : D′(Ω,∧l+1) → D′(Ω,∧l)

is given by

d? = (−1)nl+1 ? d ? on D′(Ω,∧l+1) (l = 0, 1, . . . , n).

Many interesting results have been established in the study of the A-harmonic equa-
tion

d?A(x, dω) = 0 (1.1)
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for differential forms, where A : Ω× ∧l(Rn) → ∧l(Rn) satisfies the conditions

|A(x, ξ)| ≤ a|ξ|p−1 and 〈A(x, ξ), ξ〉 ≥ |ξ|p (1.2)

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a > 0 is a constant and 1 < p < ∞
is a fixed exponent associated with equation (1.1). A solution to equation (1.1) is an
element of the Sobolev space W 1

p,loc(Ω,∧l−1) such that
∫

Ω

〈A(x, dω), dϕ〉 = 0

for all ϕ ∈ W 1
p (Ω,∧l−1) with compact support.

Definition 1.1. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic
equation (1.1) in Ω.

A differential l-form u ∈ D′(Ω,∧l) is called a closed form if du = 0 in Ω. Similarly,
a differential (l + 1)-form v ∈ D′(Ω,∧l+1) is called a co-closed form if d?v = 0. The
equation

A(x, du) = d?v (1.3)

is called the conjugate A-harmonic equation. For example, du = d∗v is an analogue of
a Cauchy-Riemann system in Rn. Clearly, the A-harmonic equation is not affected by
adding a closed form to u and co-closed form to v. Therefore, any type of estimates
between u and v must be modulo such forms. Suppose that u is a solution to equation
(1.1) in Ω. Then, at least locally in a ball B, there exists a form v ∈ W 1

q (B,∧l+1) ( 1
p +

1
q = 1) such that (1.3) holds. Throughout this paper, we always assume that 1

p + 1
q = 1.

Definition 1.2. When u and v satisfy (1.3) in Ω and A−1 exists in Ω, we call u
and v conjugate A-harmonic tensors in Ω.

Iwaniec and Lutoborski prove the following result in [9]:

Let Q ⊂ Rn be a cube or a ball. To each y ∈ Q there corresponds a linear operator

Ky : C∞(Q,∧l) → C∞(Q,∧l−1)

defined by

(Kyω)(x; ξ1, . . . , ξl) =
∫ 1

0

tl−1ω
(
tx + y − ty;x− y, ξ1, . . . , ξl−1

)
dt

and the decomposition ω = d(Kyω) + Ky(dω).

We define another linear operator

TQ : C∞(Q,∧l) → C∞(Q,∧l−1)

by averaging Ky over all points y in Q:

TQω =
∫

Q

ϕ(y)Kyω dy

where ϕ ∈ C∞0 (Q) is normalized by
∫

Q
ϕ(y) dy = 1. We define the l-form ωQ ∈ D′(Q,∧l)

by

ωQ =
{ |Q|−1

∫
Q

ω(y) dy if l = 0
d(TQω) if l = 1, 2, . . . , n

for all ω ∈ Lp(Q,∧l) (1 ≤ p < ∞).
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2. The Ar(Ω)-weighted Hardy-Littlewood inequality

In this section, we prove different versions of the Ar(Ω)-weighted Hardy-Littlewood
inequality.

Definition 2.1. A weight w = w(x) is called an Ar-weight for some r > 1 in a
domain Ω, write w ∈ Ar(Ω), if w > 0 a.e. and

sup
B

(
1
|B|

∫

B

w dx

) (
1
|B|

∫

B

(
1
w

) 1
r−1

dx

)r−1

< ∞ (2.1)

for any ball B ⊂ Ω.

See [5, 7] for properties of Ar(Ω)-weights. We will need the following generalized
Hölder inequality.

Lemma 2.2. Let 0 < α < ∞, 0 < β < ∞ and 1
s = 1

α + 1
β . If f and g are

measurable functions on Rn, then

‖fg‖s,Ω ≤ ‖f‖α,Ω‖g‖β,Ω

for any Ω ⊂ Rn.

We also need the following lemma [5].

Lemma 2.3. If w ∈ Ar(Ω), then there exist constants β > 1 and C > 0, indepen-
dent of w, such that

‖w‖β,B ≤ C|B| 1−β
β ‖w‖1,B

for all balls B ⊂ Rn.

Hardy and Littlewood prove the following inequality for conjugate harmonic func-
tions in the unit disk D in [6]:

Theorem A. For each p > 0, there is a constant C > 0 such that
∫

D

|u− u(0)|pdxdy ≤ C

∫

D

|v − v(0)|pdxdy

for all analytic functions f = u + iv in the unit disk D.

The above Hardy-Littlewood inequality has been generalized into different versions.
In [12] Nolder proves the following version of it.

Theorem B. Let u and v be conjugate A-harmonic tensors in Ω ⊂ Rn, σ > 1, and
0 < s, t < ∞. Then there exists a constant C > 0, independent of u and v, such that

‖u− uB‖s,B ≤ C|B|β‖v − c‖
q
p

t,σB

for all balls B with σB ⊂ Ω. Here c is any form in W 1
p,loc(Ω, Λ) with d?c = 0 and

β = 1
s + 1

n −
( 1

t + 1
n )q

p .

Now we prove the following parametric weighted Hardy-Littlewood inequality.
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Theorem 2.4. Let u and v be conjugate A-harmonic tensors in a domain Ω ⊂ Rn

and w ∈ Ar(Ω) for some r > 1. Let 0 < s, t < ∞. Then there exists a constant C > 0,
independent of u and v, such that

(∫

B

|u− uB |swαdx

) 1
s

≤ C|B|γ
(∫

σB

|v − c|tw ptα
qs dx

) q
pt

(2.2)

for all balls B with σB ⊂ Ω ⊂ Rn, σ > 1 and 0 < α ≤ 1. Here c is any form in
W 1

q,loc(Ω,Λ) with d∗c = 0 and γ = 1
s + 1

n −
( 1

t + 1
n )q

p .

As mentioned in Section 1, the A-harmonic equation is not affected by adding a
closed form to u and co-closed form to v. Therefore, any type of estimates between u
and v must be modulo such forms. Thus, (2.2) is equivalent to

(∫

B

|u|swαdx

) 1
s

≤ C|B|γ
(∫

σB

|v − c|tw ptα
qs dx

) q
pt

(2.2)′

Note that (2.2) can also be written as the symmetric form
(

1
|B|

∫

B

|u− uB |swαdx

) 1
qs

≤ C|B|
1
q
− 1

p
n

(
1
|B|

∫

σB

|v − c|tw ptα
qs dx

) 1
pt

. (2.2)′′

Proof of Theorem 2.4. We first show that (2.2) holds for 0 < α < 1. Let
k = s

1−α . Using Lemma 2.2 we have
(∫

B

|u− uB |swαdx

) 1
s

=
(∫

B

(|u− uB |w α
s

)s
dx

) 1
s

≤ ‖u− uB‖k,B

(∫

B

w
kα

k−s dx

) k−s
ks

= ‖u− uB‖k,B

(∫

B

wdx

)α
s

.

(2.3)

Choose m = qst
qs+αpt(r−1) . Then m < t. By Theorem B we have

‖u− uB‖k,B ≤ C1|B|β‖v − c‖
q
p

m,σB (2.4)

where β = 1
k + 1

n −
( 1

m + 1
n )q

p . Substituting (2.4) into (2.3) yields
(∫

B

|u− uB |swαdx

) 1
s

≤ C1|B|β‖v − c‖
q
p

m,σB

(∫

B

wdx

)α
s

. (2.5)

Since 1
m = 1

t + t−m
mt , by Lemma 2.2 again we find that

‖v − c‖m,σB =
(∫

σB

(|v − c|w pα
qs w−

pα
qs

)m
dx

) 1
m

≤
(∫

σB

|v − c|tw ptα
qs dx

) 1
t
(∫

σB

( 1
w

) pmtα
qs(t−m)

dx

) t−m
mt

=
(∫

σB

|v − c|tw ptα
qs dx

) 1
t
(∫

σB

( 1
w

) 1
r−1

dx

) pα(r−1)
qs

.
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Hence

‖v − c‖
q
p

m,σB ≤
(∫

σB

( 1
w

) 1
r−1

dx

)α(r−1)
s

(∫

σB

|v − c|tw ptα
qs dx

) q
pt

. (2.6)

Combining (2.5) and (2.6) we obtain

(∫

B

|u− uB |swαdx

) 1
s

≤ C1|B|β
(∫

B

wdx

)α
s

(∫

σB

( 1
w

) 1
r−1

dx

)α(r−1)
s

(∫

σB

|v − c|tw ptα
qs dx

) q
pt

.

(2.7)

Using the condition that w ∈ Ar(Ω) yields

(∫

B

wdx

)α
s

(∫

σB

( 1
w

) 1
r−1

dx

)α(r−1)
s

≤ |σB|αr
s

((
1

|σB|
∫

B

wdx

) (
1

|σB|
∫

σB

( 1
w

) 1
r−1

dx

)r−1
)α

s

≤ C2|σB|αr
s

= C3|B|αr
s .

(2.8)

Substituting (2.8) into (2.7) and noting that β + αr
s = 1

k + 1
n −

( 1
m + 1

n )q

p + r
αs = 1

s + 1
n −

( 1
t + 1

n )q

p , we have

(∫

B

|u− uB |swαdx

) 1
s

≤ C4|B|γ
(∫

σB

|v − c|tw ptα
qs dx

) q
pt

where γ = 1
s + 1

n −
( 1

t + 1
n )q

p .

Next, we prove that Theorem 2.4 holds if α = 1. By Lemma 2.3 there exist constants
β1 > 1 and C5 > 0, independent of w, such that

‖w‖β1,σB ≤ C5|B|
1−β1

β1 ‖w‖1,σB . (2.9)

Since 1
β1s + β1−1

β1s = 1
s , then by Lemma 2.2 we have

‖u− uB‖s,B,w ≤ ‖w‖
1
s

β1,B‖u− uB‖ β1s

β1−1 ,B
. (2.10)

By Theorem B, there is a constant C6 > 0, independent of u and v, such that for any
t′ > 0 we have

‖u− uB‖ β1s

β1−1 ,B
≤ C6|B|β

′‖v − c‖
q
p

t′,σB (2.11)
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where β′ = β1−1
β1s + 1

n −
( 1

t′+
1
n )q

p . Combining (2.10) and (2.11) we obtain

‖u− uB‖s,B,w ≤ C6|B|β
′‖w‖

1
s

β1,B‖v − c‖
q
p

t′,σB . (2.12)

Now, choose t′ = t
k1

where k1 is to be determined later. Since |v − c| = w−
p
qs |v −

c|w p
qs , by Lemma 2.2 we obtain

‖v − c‖t′,σB ≤
∥∥∥
( 1

w

) pt
qs

∥∥∥
1
t

1
k1−1 ,σB

(∫

σB

|v − c|tw pt
qs dx

) 1
t

. (2.13)

From (2.9), (2.12) and (2.13) we have

‖u− uB‖s,B,w

≤ C7|B|β
′+ 1−β1

β1s ‖w‖
1
s

1,σB

∥∥∥
( 1

w

) pt
qs

∥∥∥
q
pt

1
k1−1 ,σB

(∫

σB

|v − c|tw pt
qs dx

) q
pt

.
(2.14)

Set k1 = 1 + pt(r−1)
qs , then (k1−1)qs

pt = r − 1. By w ∈ Ar(Ω) we know that

‖w‖
1
s

1,σB

∥∥∥
( 1

w

) pt
qs

∥∥∥
q
pt

1
k1−1 ,σB

= |σB| 1s +
(k1−1)q

pt

(
1

|σB|
∫

σB

wdx

(
1

|σB|
∫

σB

( 1
w

) 1
r−1

dx

)r−1
) 1

s

≤ C8|B|
1
s +

(k1−1)q

pt .

(2.15)

Combining (2.14) and (2.15) we have

‖u− uB‖s,B,w ≤ C9|B|γ
(∫

σB

|v − c|tw pt
qs dx

) q
pt

where

γ = β′ +
1− α

αs
+

1
s

+
q(k − 1)

pt
= −nq + t(q − p)

npt
+

1
s

=
1
s

+
1
n
− (1

t + 1
n )q

p
.

Therefore, (2.2) holds if α = 1. We have completed the proof of Theorem 2.4

We need the following properties of the Whitney covers appearing [12].

Lemma 2.5. Each Ω has a modified Whitney cover of cubes V = {Qi} such that

∪iQi = Ω,
∑

Q∈V
χ√ 5

4 Q
≤ NχΩ

for all x ∈ Rn and some N > 1, and if Qi ∩ Qj 6= φ, then there exists a cube R (this
cube does not need be a member of V) in Qi ∩Qj such that Qi ∪Qj ⊂ NR. Moreover,
if Ω is δ-John, then there is a distinguished cube Q0 ∈ V which can be connected with
every cube Q ∈ V by a chain of cubes Q0, Q1, . . . , Qk = Q from V and such that
Q ⊂ ρQi (i = 0, 1, 2, . . . , k) for some ρ = ρ(n, δ).

As applications of Theorem 2.4 we prove the following global Ar(Ω)-weighted Hardy-
Littlewood inequality.
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Theorem 2.6. Let u ∈ D′(Ω,Λl−1) and v ∈ D′(Ω,Λl+1) be conjugate A-harmonic
tensors. Let q ≤ p, v − c ∈ Lt(Ω,Λl+1) (l = 1, 2, . . . , n − 1) and w ∈ Ar(Ω). If s is
defined by

s =
npt

nq + t(q − p)
(0 < t < ∞), (2.16)

then there exists a constant C > 0, independent of u and v, such that
(∫

Ω

|u|swαdx

) 1
s

≤ C

(∫

Ω

|v − c|tw ptα
qs dx

) q
pt

for any domain Ω ⊂ Rn with |Ω| < ∞. Here c is any form in W 1
q,loc(Ω, Λ) with d∗c = 0.

Proof. From (2.2)′ we have
(∫

Q

|u|swαdx

) 1
s

≤ C|Q|γ
(∫

σQ

|v − c|tw ptα
qs dx

) q
pt

(2.17)

where γ = 1
s + 1

n −
( 1

t + 1
n )q

p . Substituting (2.16) into the expression of γ we get

γ =
1
s

+
1
n
−

( q

pt
+

q

np

)
=

nq + t(q − p)
npt

+
1
n
−

( q

pt
+

q

np

)
= 0. (2.18)

Thus we find that (2.17) reduces to
(∫

Q

|u|swαdx

) 1
s

≤ C

(∫

σQ

|v − c|tw ptα
qs dx

) q
pt

. (2.19)

Combining (2.19) and Lemma 2.5, we get
(∫

Ω

|u|swαdx

) 1
s

≤
∑

Q∈V

(∫

Q

|u|swαdx

) 1
s

≤
∑

Q∈V

(∫

Q

|u|swαχ√ 5
4 Q

dx

) 1
s

≤
∑

Q∈V

(∫

Q

|u|swαdx

) 1
s

χ√ 5
4 Q

≤
∑

Q∈V
C1

(∫

σQ

|v − c|tw ptα
qs dx

) q
pt

χ√ 5
4 Q

≤
∑

Q∈V
C1

(∫

Ω

|v − c|tw ptα
qs dx

) q
pt

χ√ 5
4 Q

≤ C1

(∫

Ω

|v − c|tw ptα
qs dx

) q
pt ∑

Q∈V
χ√ 5

4 Q

≤ C2

(∫

Ω

|v − c|tw ptα
qs dx

) q
pt

.

The proof of Theorem 2.6 has been completed
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Note that α ∈ (0, 1] is arbitrary in Theorem 2.4. Hence, if we choose α to be some
special values, we will have some different versions of the Hardy-Littlewood inequality.
For example, if we let α = qs, qs ≤ 1. By Theorem 2.4, we have the following symmetric
version of the Hardy-Littlewood inequality.

Corollary 2.7. Let u and v be conjugate A-harmonic tensors in a domain Ω ⊂ Rn

and w ∈ Ar(Ω) for some r > 1. Let 0 < t < ∞ and qs ≤ 1. Then there exists a constant
C > 0, independent of u and v, such that

(∫

B

|u− uB |swqsdx

) 1
qs

≤ C|B|γ
(∫

σB

|v − c|twptdx

) 1
pt

for all balls B with σB ⊂ Ω ⊂ Rn and σ > 1. Here c is any form in W 1
q,loc(Ω, Λ) with

d∗c = 0 and γ = 1
s + 1

n −
( 1

t + 1
n )q

p .

If we choose α = 1
pt and pt ≥ 1 in Theorem 2.4, we obtain the following symmetric

version.

Corollary 2.8. Let u and v be conjugate A-harmonic tensors in a domain Ω ⊂ Rn

and w ∈ Ar(Ω) for some r > 1. Let 0 < t < ∞ and pt ≥ 1. Then there exists a constant
C > 0, independent of u and v, such that

(∫

B

|u− uB |sw
1
pt dx

) 1
qs

≤ C|B|γ
(∫

σB

|v − c|tw 1
qs dx

) 1
pt

for all balls B with σB ⊂ Ω ⊂ Rn and σ > 1. Here c is any form in W 1
q,loc(Ω, Λ) with

d∗c = 0 and γ = 1
s + 1

n −
( 1

t + 1
n )q

p .

If we choose α = 1
p in Theorem 2.4, we obtain the following result.

Corollary 2.9. Let u and v be conjugate A-harmonic tensors in a domain Ω ⊂ Rn

and w ∈ Ar(Ω) for some r > 1. Let 0 < s, t < ∞. Then there exists a constant C > 0,
independent of u and v, such that

(∫

B

|u− uB |sw
1
p dx

) 1
qs

≤ C|B|γ
(∫

σB

|v − c|tw t
qs dx

) 1
pt

for all balls B with σB ⊂ Ω ⊂ Rn and σ > 1. Here c is any form in W 1
q,loc(Ω, Λ) with

d∗c = 0 and γ = 1
s + 1

n −
( 1

t + 1
n )q

p .

If we choose α = 1 in Theorem 2.4, we have the following corollary.

Corollary 2.10. Let u and v be conjugate A-harmonic tensors in a domain Ω ⊂ Rn

and w ∈ Ar(Ω) for some r > 1. Let 0 < s, t < ∞. Then there exists a constant C > 0,
independent of u and v, such that

(∫

B

|u− uB |swdx

) 1
qs

≤ C|B|γ
(∫

σB

|v − c|tw pt
qs dx

) 1
pt
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for all balls B with σB ⊂ Ω ⊂ Rn and σ > 1. Here c is any form in W 1
q,loc(Ω, Λ) with

d∗c = 0 and γ = 1
s + 1

n −
( 1

t + 1
n )q

p .

Remark. By making different choices for α in Theorem 2.6, we shall have different
versions of the global Hardy-Littlewood inequality. Considering the length of the paper,
we do not list them here.

3. The Ar(Ω)-weighted weak reverse Hölder inequality

In [12], Nolder obtains the following Caccioppoli-type inequality.

Theorem C. Let u be an A-harmonic tensor in Ω and let σ > 1. Then there exists
a constant C > 0, independent of u, such that

‖du‖s,B ≤ Cdiam(B)−1‖u− c‖s,σB

for all balls or cubes B with σB ⊂ Ω and all closed forms c. Here 1 < s < ∞.

The following weak reverse Hölder inequality appears in [12].

Theorem D. Let u be an A-harmonic tensor in Ω, σ > 1 and 0 < s, t < ∞. Then
there exists a constant C > 0, independent of u, such that

‖u‖s,B ≤ C|B| t−s
st ‖u‖t,σB

for all balls or cubes B with σB ⊂ Ω.

Using the same method as those used in Section 2, we prove the following Ar(Ω)-
weighted weak reverse Hölder inequality with parameter α for A-harmonic tensors.

Theorem 3.1. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn, σ > 1. Assume that 0 < s, t < ∞ and w ∈ Ar(Ω) for some r > 1.
Then there exists a constant C > 0, independent of u, such that

(
1
|B|

∫

B

|u|swαdx

) 1
s

≤ C

(
1
|B|

∫

σB

|u|tw αt
s dx

) 1
t

(3.1)

for all balls B with σB ⊂ Ω and any real number α with 0 < α ≤ 1.

Proof. First, we suppose that 0 < α < 1. Let k = s
1−α . From Lemma 2.2 we find

that (∫

B

|u|swαdx

) 1
s

=
(∫

B

(|u|w α
s )sdx

) 1
s

≤
(∫

B

|u|kdx

) 1
k

(∫

B

(w
α
s )

ks
k−s dx

) k−s
ks

= ‖u‖k,B

(∫

B

w dx

)α
s

(3.2)
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for all balls B with σB ⊂ Ω. Let m = st
s+αt(r−1) . By Theorem D we obtain

‖u‖k,B ≤ C1|B|
m−k
km ‖u‖m,σB . (3.3)

Using the Hölder inequality with 1
m = 1

t + t−m
mt yields

‖u‖m,σB =
(∫

σB

(|u|w α
s w−

α
s )mdx

) 1
m

≤
(∫

σB

|u|tw αt
s dx

) 1
t
(∫

σB

( 1
w

) αmt
s(t−m)

dx

) t−m
mt

=
(∫

σB

|u|tw αt
s dx

) 1
t
(∫

σB

( 1
w

) 1
r−1

dx

)α(r−1)
s

.

(3.4)

Combining (3.2) - (3.4) we find that

(∫

B

|u|swαdx

) 1
s

≤ C1|B|
m−k
km

(∫

B

w dx

)α
s

(∫

σB

( 1
w

) 1
r−1

dx

)α(r−1)
s

(∫

σB

|u|tw αt
s dx

) 1
t

.

(3.5)

Since w ∈ Ar(Ω), then we have

(∫

B

w dx

)α
s

(∫

σB

( 1
w

) 1
r−1

dx

)α(r−1)
s

=

((∫

B

w dx

)(∫

σB

( 1
w

) 1
r−1

dx

)r−1
)α

s

≤ |σB|αr
s

((
1

|σB|
∫

B

w dx

) (
1

|σB|
∫

σB

( 1
w

) 1
r−1

dx

)r−1
)α

s

≤ C2|σB|αr
s

= C3|B|αr
s .

(3.6)

Substituting (3.6) into (3.5) we obtain

(∫

B

|u|swαdx

) 1
s

≤ C4|B|
t−s
st

(∫

σB

|u|tw αt
s dx

) 1
t

.

Then (3.1) holds if 0 < α < 1.
For the case α = 1, by Lemma 2.3, there exist constants β > 1 and C5 > 0 such

that
‖w‖β,B ≤ C5|B|

1−β
β ‖w‖1,B (3.7)
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for any cube or any ball B ⊂ Rn. Choose k = sβ
β−1 . Then s < k and β = k

k−s . By (3.7)
and Lemma 2.2 we have

(∫

B

|u|sw dx

) 1
s

≤
(∫

B

|u|kdx

) 1
k

(∫

B

(w
1
s )

sk
k−s dx

) k−s
sk

= ‖u‖k,B‖w‖
1
s

β,B

≤ C6|B|
1−β
βs ‖w‖

1
s

1,B‖u‖k,B

= C6|B|− 1
k ‖w‖

1
s

1,B‖u‖k,B .

(3.8)

Selecting m = st
s+t(r−1) and repeating the same procedure as the case 0 < α < 1, we see

that (3.1) is also true for α = 1. This ends the proof of Theorem 3.1

As application of Theorem 3.1, we choose the parameter α = 1 in Theorem 3.1.
Then, we have the following version of the reverse Hölder inequality.

Corollary 3.2. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn, σ > 1. Assume that 0 < s, t < ∞ and w ∈ Ar(Ω) for some r > 1.
Then there exists a constant C > 0, independent of u, such that

(
1
|B|

∫

B

|u|sw dx

) 1
s

≤ C

(
1
|B|

∫

σB

|u|tw t
s dx

) 1
t

for all balls B with σB ⊂ Ω.

Let α = s with 0 < s ≤ 1 in Theorem 3.1. We obtain the following symmetric
version.

Corollary 3.3. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn, σ > 1. Assume that 0 < t < ∞, 0 < s ≤ 1 and w ∈ Ar(Ω) for some
r > 1. Then there exists a constant C > 0, independent of u, such that

(
1
|B|

∫

B

|u|swsdx

) 1
s

≤ C

(
1
|B|

∫

σB

|u|twtdx

) 1
t

for all balls B with σB ⊂ Ω.

Let α = 1
t with t ≥ 1 in Theorem 3.1. Then we have the following

Corollary 3.4. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn, σ > 1. Assume that t ≥ 1, 0 < s < ∞ and w ∈ Ar(Ω) for some r > 1.
Then there exists a constant C > 0, independent of u, such that

(
1
|B|

∫

B

|u|sw 1
t dx

) 1
s

≤ C

(
1
|B|

∫

σB

|u|tw 1
s dx

) 1
t

for all balls B with σB ⊂ Ω.

We prove the following global result.
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Theorem 3.5. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn with |Ω| < ∞. Assume that 0 < s ≤ t < ∞ and w ∈ Ar(Ω) for some
r > 1. Then (

1
|Ω|

∫

Ω

|u|swαdx

) 1
s

≤
(

1
|Ω|

∫

Ω

|u|tw αt
s dx

) 1
t

(3.9)

for any real number α with 0 < α ≤ 1.

Proof. It is clear that (3.9) is true if s = t. Now we assume that s < t. Using
Lemma 2.2 with 1

s = 1
t + t−s

st , we have

(∫

Ω

|u|swαdx

) 1
s

=
(∫

Ω

(
|u|wα/s

)s

dx

) 1
s

≤
(∫

Ω

1 dx

) t−s
st

(∫

Ω

(|u|w α
s )tdx

) 1
t

= |Ω| t−s
st

(∫

Ω

|u|tw αt
s dx

) 1
t

which is equivalent to (3.9). The proof of Theorem 3.5 is completed

Remark. Theorem 3.5 can be proved by using Theorem 3.1 directly (see [11: Proof
of Theorem 2.3]). Here we have the stronger condition 0 < s ≤ t < ∞. But the result
is also stronger: the constant C in Theorem 3.1 now reduces to C = 1. By choosing α
to be some special values in (3.9), we have some global results as we did for the local
case.

4. The Ar(Ω)-weighted Caccioppoli-type estimate

We prove the following Ar(Ω)-weighted Caccioppoli-type estimate with parameter α for
A-harmonic tensors.

Theorem 4.1. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with
the A-harmonic equation and w ∈ Ar(Ω) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

(∫

B

|du|swαdx

) 1
s

≤ C

diam(B)

(∫

ρB

|u− c|swαdx

) 1
s

(4.1)

for all balls B with ρB ⊂ Ω and all closed forms c. Here α is any constant with
0 < α ≤ 1.

Proof. First, we assume that 0 < α < 1. Choose t = s
1−α . Since 1

s = 1
t + t−s

st ,
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using Lemma 2.2 and Theorem C, we obtain
(∫

B

|du|swαdx

) 1
s

=
(∫

B

(|du|w α
s )sdx

) 1
s

≤
(∫

B

|du|tdx

) 1
t
(∫

B

(w
α
s )

st
t−s dx

) t−s
st

≤ ‖du‖t,B

(∫

B

w dx

)α
s

= C1diam(B)−1‖u− c‖t,σB

(∫

B

w dx

)α
s

(4.2)

for all balls B with σB ⊂ Ω and all closed forms c. Since c is a closed form and u is
an A-harmonic tensor, then u− c is still an A-harmonic tensor. Taking m = s

1+α(r−1) ,
then m < s < t. By Theorem D we have

‖u− c‖t,σB ≤ C2|B|
m−t
mt ‖u− c‖m,σ2B = C2|B|

m−t
mt ‖u− c‖m,ρB (4.3)

where ρ = σ2. Substituting (4.3) into (4.2) we get
(∫

B

|du|swαdx

) 1
s

≤ C3diam(B)−1|B|m−t
mt ‖u− c‖m,ρB

(∫

B

w dx

)α
s

. (4.4)

Using Lemma 2.2 with 1
m = 1

s + s−m
sm we obtain

‖u− c‖m,ρB =
(∫

ρB

|u− c|mdx

) 1
m

=
(∫

ρB

(|u− c|w α
s w−

α
s )mdx

) 1
m

≤
(∫

ρB

|u− c|swαdx

) 1
s

(∫

ρB

( 1
w

) 1
r−1

dx

)α(r−1)
s

(4.5)

for all balls B with ρB ⊂ Ω and all closed forms c. Substituting (4.5) into (4.4) we
obtain

(∫

B

|du|swαdx

) 1
s

≤ C3diam(B)−1|B|m−t
mt ‖w‖

α
s

1,B

∥∥∥ 1
w

∥∥∥
α
s

1
r−1 ,ρB

(∫

ρB

|u− c|swαdx

) 1
s

.

(4.6)

Now w ∈ Ar(Ω) yields

‖w‖
α
s

1,B

∥∥∥ 1
w

∥∥∥
α
s

1
r−1 ,ρB

≤
((∫

ρB

w dx

)(∫

ρB

( 1
w

) 1
r−1

dx

)r−1
)α

s

=

(
|ρB|r

(
1
|ρB|

∫

ρB

w dx

) (
1
|ρB|

∫

ρB

( 1
w

) 1
r−1

dx

)r−1
)α

s

≤ C4|B|αr
s .

(4.7)
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Combining (4.7) and (4.6) we find that

(∫

B

|du|swαdx

) 1
s

≤ C5

diam(B)

(∫

ρB

|u− c|swαdx

) 1
s

(4.8)

for all balls B with ρB ⊂ Ω and all closed forms c. We have proved that (4.1) is true if
0 < α < 1.

For the case α = 1, by Lemma 2.3 there exist constants β > 1 and C6 > 0 such that

‖w‖β,B ≤ C6|B|
1−β

β ‖w‖1,B (4.9)

for any cube or any ball B ⊂ Rn. Choose t = sβ
β−1 . Then 1 < s < t and β = t

t−s . Since
1
s = 1

t + t−s
st , by Lemma 2.2, Theorem C and (4.9) we have

(∫

B

|du|sw dx

) 1
s

=
(∫

B

(|du|w 1
s )sdx

) 1
s

≤
(∫

B

|du|tdx

) 1
t
(∫

B

(w
1
s )

st
t−s dx

) t−s
st

≤ C7‖du‖t,B‖w‖
1
s

β,B

≤ C8diam(B)−1‖u− c‖t,σB‖w‖
1
s

β,B

≤ C9diam(B)−1|B| 1−β
βs ‖w‖

1
s

1,B‖u− c‖t,σB

= C9diam(B)−1|B|− 1
t ‖w‖

1
s

1,B‖u− c‖t,σB

which is similar to (4.2). Now, choosing m = s
r and repeating the same procedure as

the case 0 < α < 1, we can also obtain (4.1) if α = 1. This ends the proof of Theorem
4.1

Note that the parameter α in Theorem 4.1 is any real number with 0 < α ≤ 1.
Therefore, we can have different versions of the Caccioppoli-type inequality by choosing
α to be different values. For example, setting t = 1 − α in Theorem 4.1 we obtain the
following result.

Corollary 4.2. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with
the A-harmonic equation and w ∈ Ar(Ω) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

(∫

B

|du|sw−tdµ

) 1
s

≤ C

diam(B)

(∫

ρB

|u− c|sw−tdµ

) 1
s

(4.10)

for all balls B with ρB ⊂ Ω and all closed forms c. Here t is any real number with
0 ≤ t < 1 and dµ = w(x) dx.

Choosing α = 1
r in Theorem 4.1 we have the following result.
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Corollary 4.3. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with
the A-harmonic equation and w ∈ Ar(Ω) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

(∫

B

|du|sw 1
r dx

) 1
s

≤ C

diam(B)

(∫

ρB

|u− c|sw 1
r dx

) 1
s

(4.11)

for all balls B with ρB ⊂ Ω and all closed forms c.

If we choose α = 1
s in Theorem 4.1, then 0 < α < 1 since 1 < s < ∞. Thus,

Theorem 4.1 reduces to the following symmetric version.

Corollary 4.4. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with
the A-harmonic equation and w ∈ Ar(Ω) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

(∫

B

|du|sw 1
s dx

) 1
s

≤ C

diam(B)

(∫

ρB

|u− c|sw 1
s dx

) 1
s

(4.12)

for all balls B with ρB ⊂ Ω and all closed forms c.

If we choose α = 1 in Theorem 4.1, we have the following result.

Corollary 4.5. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
domain Ω ⊂ Rn and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with
the A-harmonic equation and w ∈ Ar(Ω) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

‖du‖s,B,w ≤ Cdiam(B)−1‖u− c‖s,ρB,w (4.13)

or (∫

B

|du|sdµ

) 1
s

≤ C

diam(B)

(∫

ρB

|u− c|sdµ

) 1
s

(4.14)

for all balls B with ρB ⊂ Ω and all closed forms c.

Finally, we prove the following global Ar(Ω)-weighted Caccioppoli-type estimate for
A-harmonic tensors.

Theorem 4.6. Let u ∈ D′(Ω,∧l) (l = 0, 1, . . . , n) be an A-harmonic tensor in a
bounded domain Ω ⊂ Rn which has a finite open cover V = {B1, B2, . . . , Bm} consistimg
of open balls. Assume that 1 < s < ∞ is a fixed exponent associated with the A-
harmonic equation and w ∈ Ar(∪m

i Bi) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

(∫

Ω

|du|swαdx

) 1
s

≤ C

diam(Ω)

(∫

Ω

|u− c|swαdx

) 1
s

(4.15)
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for all closed forms c and any constant α with 0 < α ≤ 1.

Proof. Let V = {B1, B2, . . . , Bm} be an open cover of the bounded domain Ω ⊂ Rn

and di = diam(Bi) > 0 (i = 1, 2, . . . , m). Assume that d = min{d1, d2, . . . , dm}. Since
Ω is bounded, then there exists a constant C1 > 0 such that

1
d
≤ C1

diam(Ω)
. (4.16)

Using (4.16) and Theorem 4.1, we have

(∫

Ω

|du|swαdx

) 1
s

≤
∑

B∈V

(∫

B

|du|swαdx

) 1
s

≤
∑

B∈V

C2

diam(B)

(∫

ρB

|u− c|swαdx

) 1
s

≤
∑

B∈V

C2

d

(∫

ρB

|u− c|swαdx

) 1
s

≤
∑

B∈V

C3

diam(Ω)

(∫

Ω

|u− c|swαdx

) 1
s

≤ C4

diam(Ω)

(∫

Ω

|u− c|swαdx

) 1
s

.

Hence (4.15) follows. The proof of Theorem 4.6 has been completed

Remark. Choosing α to be some special values in (4.15), we shall have some cor-
responding global results.
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