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Eigenfunctions of Two-Scale Difference Equations
and Appell Polynomials
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Abstract. Both classical and distributional solutions of two-scale difference equations are
interpreted as eigenfunctions, which are closely connected with Appell polynomials. Different
generating functions are analyzed and the relations between them. Equivalent eigenfunctions
as well as equivalent and minimal characteristic polynomials are defined and investigated in
detail via the rational solution of a basic functional equation. Finally, reversed eigenfunctions
are introduced and characterized.
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1. Preliminaries

A functional equation of the form

λϕ

(
t

2

)
=

N∑
ν=0

cνϕ(t− ν) (t ∈ R) (1.1)

with N ∈ N0, and complex coefficients where λ 6= 0 and c0cN 6= 0, is called a two-scale
difference equation. Such equations are intensively investigated and applied in wavelet
theory, multiresolution analysis and subdivision schemes (cf. [9 - 11]). Throughout this
paper we use the notation

P (w) =
N∑

ν=0

cνwν (1.2)

for the characteristic polynomial, where P (0) 6= 0 according to c0 6= 0, and we always
use the normalization

N∑
ν=0

cν = 1, (1.3)
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so that P (1) = 1 according to (1.3). The characteristic polynomial P is closely connected
with the so-called mask or symbol of (1.1), which is equal to 1

2λP . For λ = 1
2 all three

terms coincide.
Our aim is to investigate non-trivial solutions of (1.1) in the class of generalized

functions consisting of complex valued continuous functions and their derivatives of finite
order in the distributional sense [1] and to interpret these solutions as eigenfunctions.
For this reason we first introduce the

Definition 1.1. A generalized function f is called a comparison function if it sat-
isfies the two ”boundary” conditions:

(i) f(t) = 0 for t < 0.
(ii) f(t) is equal to a polynomial for great t.

If f is a comparison function, then f (n) (n ∈ Z) is also a comparison function where
f (n) denotes for n ≥ 0 as usual the derivative of order n and for n < 0 the corresponding
iterated integral of order −n subject to (i). For later purposes it is crucial to sharpen
(ii) by the requirement that there exists a certain n ∈ Z such that

(iii) f (n)(t) = 1 for great t.

This is a normalization which means that the polynomials in (ii) have the main term
1
n! t

n in the case n ∈ N0. The set of all comparison functions satisfying (iii) for a fixed
n shall be denoted by Fn. Obviously, if fm ∈ Fm for a fixed m ∈ Z, then

fn = f (m−n)
m (1.4)

belongs to Fn for arbitrary n ∈ Z.
For comparison functions with property (1.4) we introduce the further

Definition 1.2. A sequence fn ∈ Fn (n ∈ Z) satisfying (1.4) for arbitrary m,n ∈ Z
is called a comparison sequence.

Condition (1.4) means that every function fm ∈ Fm generates a comparison se-
quence and that different terms of a comparison sequence arise from each other by
successive integration or differentiation.

Every element fn ∈ Fn (n ∈ Z) possesses a Laplace transform L{fn} (cf. [2]). In the
case n < 0, fn is compactly supported (since the polynomials in (ii) vanish), and L{fn}
is an entire function of z, where z is the complex variable of the Laplace transform.
The differentiation and the integration theorem show for a comparison sequence that
the products

zn+1L{fn} = L{f−1} (1.5)

are independent of n for all n ∈ Z, and therefore also entire functions. Let us mention
that, after multiplication with a suitable factor, every non-trivial compactly supported
generalized function f belongs to a certain Fn with n < 1. Otherwise, all integrals of
f would also be compactly supported, and L{f} would have the zero z = 0 with an
infinite order, which is impossible.

After these preparations, we come back to two-scale difference equations.
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Definition 1.3. The non-trivial solutions of (1.1) which are simultaneously com-
parison functions, are called eigenfunctions. The normalized eigenfunction belonging to
Fn is denoted by ϕn and the corresponding eigenvalue by λn.

It is well known that the eigenvalues are exactly the numbers λn = 2n (n ∈ Z) and
that they all are simple (cf. [7, 12, 13]). The eigenfunctions ϕn are continuous for all
t ∈ R, if n is sufficiently great, and proper distributions, if −n is sufficiently great. In
the case n < 0 the support of ϕn is contained in [0, N ] (cf. [11]). A Lebesgue-integrable
compactly supported solution of (1.1) with the usual normalization

∫ N

0

ϕ(t)dt = 1 (1.6)

is the eigenfunction ϕ = ϕ−1, i.e. it must be λ = 1
2 in (1.1). This is a consequence of

our normalization (iii) which together with λn = 2n also implies that the eigenfunctions
ϕn form a comparison sequence. From this and the support property mentioned before
it follows that it is the domain t > N in which the eigenfunctions ϕn are equal to
polynomials subject to (ii), and that these polynomials are Appell polynomials generated
by the Laplace transform of ϕ−1 (cf. [4]). From [7: Theorem 6.1] it is known that the
natural extension of these polynomials to all t ∈ R are likewise solutions of (1.1) with
λ = 2n (but of course no eigenfunctions).

In the sequel we investigate first some properties of comparison sequences in con-
nection with Appell polynomials, which are needed later on in their specialization to
eigenfunctions. The main goal of this paper is to compare the two-scale difference
equation (1.1) with a second one

λ̃ϕ̃

(
t

2

)
=

Ñ∑
ν=0

c̃νϕ̃(t− ν) (1.7)

and to clarify the conditions such that corresponding eigenfunctions ϕn, ϕ̃m (n,m ∈ Z)
satisfy relations of the form

ϕn(t) =
∞∑

k=0

rkϕ̃m(t− k) (t ∈ R), (1.8)

which up to now were only known in special cases (cf. [5, 6, 10, 14]), and in particular
for cardinal splines (cf. [17, 20]). We introduce the concept of equivalent eigenfunc-
tions ϕn ∼ ϕ̃m and equivalent characteristic polynomials P ∼ P̃ and give a complete
characterization of these equivalences by means of our basic functional equation and its
so-called canonical solution. Moreover, we determine the minimal characteristic poly-
nomial within the class of equivalent characteristic polynomials which permits to survey
the entire class. These results generalize investigations in [10: Section 5]. As application
we deal with the relation

N∑
ν=0

ϕ−1(t + ν) = 1 (−1 < t < 1), (1.9)
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which is known for Lebesgue-integrable ϕ−1 (cf. [5, 19]). We show that a condition of
[5], which is necessary for the Lebesgue-integrability of ϕ−1, is necessary and sufficient
for the validity of (1.9) in the general distributional case. A necessary and sufficient
condition of [16] for the linear independence of shifts of ϕ−1 is simplified by means of
the minimal characteristic polynomial. Another application deals with infinite products
and with power series containing the binary sum-of-digits function. Finally, reversed
eigenfunctions are introduced by means of a so-called Appell triple, and their properties
are studied.

2. Comparison sequences and Appell polynomials

In this section we are going to point out the connection between comparison sequences
and Appell polynomials (cf. [8]). Given a (formal) power series

F (z) =
∞∑

n=0

anzn (2.1)

with complex an, Appell polynomials pn (n ∈ N0) can be defined as coefficients of the
generating function

etzF (z) =
∞∑

n=0

pn(t)zn (t ∈ R), (2.2)

i.e. explicitly by means of the representation

pn(t) =
n∑

k=0

an−k

k!
tk. (2.3)

They also can be defined recursively by one of the recursions

pn(t + τ) =
n∑

k=0

1
k!

pn−k(τ)tk (t, τ ∈ R), (2.4)

and
p′n+1(t) = pn(t) (2.5)

for n ∈ N0, where in the last case one has to start with a constant polynomial p0 = a0.
For convenience we extend the definition of Appell polynomials by p−n(t) = 0 for n ∈ N.
Replacing t in (2.2) by t + s with a fixed parameter s ∈ R, we get

etzeszF (z) =
∞∑

n=0

pn(t + s)zn, (2.6)

and introducing the series

eszF (z) =
∞∑

n=0

bnzn (2.7)
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where bn depends on s, we obtain by means of (2.1) - (2.3)

pn(t + s) =
n∑

k=0

bn−k

k!
tk. (2.8)

For t = s, τ = −s and t = s, τ = 0, respectively, equation (2.4) implies the following
equations between the coefficients an = pn(0) and bn = pn(s):

an =
n∑

k=0

bn−k

k!
(−s)k

bn =
n∑

k=0

an−k

k!
sk





. (2.9)

In particular, we have p0(t) = a0 = b0.
Comparing (2.5) with the property (1.4) in the case m = n + 1 and taking into

account the boundary condition (ii), we see that comparison sequences are Appell poly-
nomials for great t. More precisely:

Proposition 2.1. Assume that fn (n ∈ Z) is a comparison sequence and assume
that pn are the Appell polynomials corresponding to the entire function

F (z) = L{f−1}. (2.10)

Then for all s with supp f−1 ⊆ [0, s] we have

fn(t) = pn(t) (t > s) (2.11)

and for n ∈ N0 the representation

pn(t) =
1
n!

∫ s

0

(t− τ)nf−1(τ) dτ (2.12)

holds.

Proof. In the case that f−1 is Lebesgue-integrable the proposition was already
proved in [4: Proposition 4.1] with N = s and g0 = f−1. By partial integration
representation (2.12) can be transformed into

pn(t) =
1

(n−m− 1)!

∫ s

0

(t− s)n−m−1fm(τ) dτ +
m∑

ν=0

bν

(n− ν)!
(t− s)n−ν (2.13)

(m ∈ N0) with bν from (2.7) and vanishing integral for m ≥ n. In the case that only fm

is locally Lebesgue-integrable, but f−1 a proper distribution, representation (2.13) is the
classical interpretation of (2.12) and can be used in connection with F (z) = zm+1L{fm}
(see (1.5)), to prove the proposition analogously as it was pointed out in [4: Corollary
4.1], for the case m = 0
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Example 2.2 (Sums). Let fn (n ∈ Z) be a comparison sequence and let f−1 have
the property

∞∑

k=0

f−1(t− k) = 1 (t > s) (2.14)

with a certain s > 0. In particular, this relation is satisfied for s = N , if f−1 = ϕ−1 is a
Lebesgue-integrable eigenfunction (cf. [5, 19]). The left-hand side of (2.14) belongs to
F0. Hence we can denote it by f̃0 and construct the corresponding comparison sequence
f̃n. Since

L{f̃−1} =
1

1− e−z
zF (z) =

zez

ez − 1
F (z)

with (2.10), application of Proposition 2.1 to f̃n instead of fn yields
∞∑

k=0

fn−1(t− k) =
n∑

ν=0

an−ν

ν!
Bν(t + 1) (2.15)

for n ∈ N0 and t > s, where Bν(·) are the Bernoulli polynomials and an the coefficients
of F (z) = L{f−1} in (2.1).

Example 2.3 (Convolutions). Let fn, f̃n be two comparison sequences and con-
sider the convolution

fn ∗ f̃m =
∫ t

0

fn(t− τ)f̃m(τ) dτ (2.16)

(n,m ∈ Z). For locally Lebesgue-integrable functions fn, f̃m it can easily be seen that
fn ∗ f̃m ∈ Fn+m+1, and differentiation shows that this is also valid for distributions.
Using suggestive notations and considering supp (f−1 ∗ f̃−1) ⊆ [0, s + s̃],

L{f−1 ∗ f̃−1} = F (z)F̃ (z)

as well as (2.12), application of Proposition 2.1 to fn ∗ f̃−1 instead of fn yields

fn ∗ f̃−1 =
n∑

ν=0

pν(t)ãn−ν =
n∑

ν=0

ãn−ν

ν!

∫ s

0

(t− τ)νf−1(τ) dτ

for t > s + s̃ (n ∈ N0), and for the same t and n by means of (2.3) and (2.12)

fn ∗ f̃−1 =
1
n!

∫ s

0

∫ s̃

0

(t− τ − σ)nf−1(τ)f̃−1(σ) dτdσ. (2.17)

For n+m ≥ −1, the general case (2.16) can be reduced to (2.17) by means of fn ∗ f̃m =
fn+m+1 ∗ f̃−1.

Example 2.4 (Polynomials). Let F in (2.10) be a polynomial F (z) =
∑K

k=0 akzk

with F (0) = 1. Then f−1 =
∑K

k=0 akδ(k) and fn = pnh for n ≥ m, where h denotes
Heaviside’s jump function, δ = h′ Dirac’s distribution and where pn is defined by (2.3)
with ak = 0 for k > K.

In particular, Proposition 2.1 can be applied to the eigenfunctions ϕn of (1.1) instead
of fn, so that according to s ≥ N we obtain:
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Corollary 2.5. For t > N the eigenfunctions ϕn of (1.1) belonging to the eigen-
values λn = 2n are equal to the Appell polynomials corresponding to the entire function
F (z) = φ(z) with

φ(z) = L{ϕ−1}, (2.18)

i.e. ϕn(t) = pn(t) for t > N and all n ∈ Z.

For eigenfunctions ϕn and ϕ̃m it is well known that the convolution ϕn ∗ ϕ̃m is a
solution of (1.1) with the characteristic polynomial PP̃ to the eigenvalue λ = 2n+m+1

(cf. [9: p. 26]), but Example 2.3 shows that this convolution is also a normalized
eigenfunction.

Applying the Laplace transform to (1.1) it follows that (2.18) satisfies the functional
equation

φ(2z) = P
(
e−z

)
φ(z) (2.19)

where P is the characteristic polynomial (1.2) with P (1) = 1, and that (2.18) possesses
the representation

φ(z) =
∞∏

j=1

P
(
e−z/2j

)
(2.20)

for all z ∈ C (cf. [11: p. 175]). Note that φ(0) = 1, and that this value is equivalent to
ϕ0(t) = 1 for t > N .

Proposition 2.6. The coefficients in (2.1) of the function F (z) = φ(z) from (2.18)
can be calculated recursively by

a0 = 1

an =
1

2n − 1

n∑

k=1

(−1)k an−k

k!

N∑
ν=1

νkcν (n ∈ N)





. (2.21)

Proof. First, (2.20) implies a0 = φ(0) = 1 in view of P (1) = 1. According to (2.19)
we obtain

∞∑
n=0

an(2z)n = P
(
e−z

) ∞∑
n=0

anzn =
N∑

ν=0

cνe−νz
∞∑

µ=0

aµzµ.

Using the Taylor series for the exponential function and comparing the coefficients of
zn, we get

2nan =
n∑

k=0

an−k
1
k!

N∑
ν=0

(−ν)kcν .

In view of P (1) = 1 this equation is an identity for n = 0, and for n > 0 it yields the
recursion (2.21)

Remark 2.7.
1. According to (2.21) the coefficients an can also be expressed directly by P , e.g.

a1 = −P ′(1)

a2 =
1
3
P ′(1)2 +

1
6

(P ′(1) + P ′′(1))



 . (2.22)
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2. Using the fact that the polynomials pn are solutions of (1.1) with λ = 2n for
t ∈ R, their coefficients in (2.3) were already set up in [7], however with another notation
and another normalization.

3. Analogously as in (2.21), the coefficients bn = pn(N) can be calculated recur-
sively:

b0 = 1

bn =
1

2n − 1

n∑

k=1

bn−k

k!

N∑

`=1

`kcN−` (n ∈ N)





. (2.23)

Namely, by means of (2.7) with s = N and (2.19) we also can derive the equation

∞∑
n=0

bn(2z)n = eNzP
(
e−z

) ∞∑
n=0

bnzn =
N∑

ν=0

cνe(N−ν)z
∞∑

µ=0

bµzµ

which implies the recursion formula in (2.23), where b0 = a0 = 1 in view of (2.9). Note
that bn > 0 for n ∈ N0 in the case cν > 0 (ν = 0, 1, . . . , N).

Example 2.8 (De Rham’s function). Denoting by ϕ(t, a) de Rham’s function with
the parameter a ∈ (0, 1), the function

ϕ0(t) =

{ 0 for t ≤ 0
ϕ(t, a) for 0 ≤ t ≤ 1
1 for t ≥ 1

(2.24)

belongs to F0 and it is an eigenfunction of (1.1) to the eigenvalue λ0 = 1 and the
characteristic polynomial P (w) = a + (1 − a)w (cf. [7]). Here we have N = 1, c0 = a,
c1 = 1− a, where in the recursions (2.21) and (2.23) the last sum consists of one term
only, namely 1−a and a, respectively, and (2.23) yields [4: Equation (3.11)]. In [4] there
are also contained explicitly the first bn up to n = 5. If we denote the coefficients more
precisely by an(a) and bn(a), respectively, then the both recursions imply the equation
an(1 − a) = (−1)nbn(a) for n ∈ N0, which is nothing else but relation (4.16) for t = 0
from [4: Proposition 4.2].

Finally, in this section we come back to Proposition 2.1 in the general case. Con-
dition (1.4) for comparison sequences implies that there exists an integer n0 such that
fn is continuous so far as n ≥ n0. For a continuous function fn ∈ Fn we introduce the
generating function

Fn(w) =
∞∑

k=1

fn(k) wk−1 (2.25)

of its values at integer arguments. In the case n < 0 the series terminates and Fn is a
polynomial. In the case n ≥ 0 the series converges for |w| < 1 and we shall show that Fn

always is a rational function. For this reason we recall the Euler-Frobenius polynomials
Eν (cf. [10, 20]) which are defined by

Eν(w)
(1− w)ν+1

=
∞∑

k=1

kνwk−1 (ν ∈ N0) (2.26)

and we require in Proposition 2.1 that s ∈ N0.
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Lemma 2.9. For n ≥ max (0, n0), the generating function (2.25) is a rational
function which can either be written as

Fn(w) =
s∑

k=1

fn(k)wk−1 + ws
n∑

ν=0

bn−ν

ν!
Eν(w)

(1− w)ν+1
(2.27)

where the coefficients bν are given by (2.8) and Eν by (2.26), or in the form

Fn(w) =
s∑

k=1

fn(k) wk−1 + ws
n∑

ν=0

dν

(1− w)ν+1
(2.28)

where dν = ∇νpn(s) are the backward differences with ∇p(s) = p(s)−p(s−1). Moreover,
Fn has the property

lim
w→1

(1− w)n+1Fn(w) = 1. (2.29)

Proof. According to continuity, equation (2.11) is even valid for t ≥ s. Hence we
find by means of the Taylor formula the equation

Fn(w)−
s∑

k=1

fn(k)wk−1 =
∞∑

k=1

pn(s + k)ws+k−1 = ws
n−1∑
ν=0

p
(ν)
n (s)
ν!

∞∑

k=1

kνwk−1

which implies representation (2.27) in view of p
(ν)
n (s) = bn−ν (cf. (2.8)).

In order to obtain the representation (2.28), we interpret pn(s + t) as interpolation
polynomial of Newton

pn(s + t) =
n∑

ν=0

dν

( t + ν − 1
ν

)

(cf. [18: p. 94]) and we get

Fn(w)−
s∑

k=1

fn(k)wk−1 =
∞∑

k=1

pn(s + k)ws+k−1 = ws
n∑

ν=0

dν

∞∑

k=1

(k + ν − 1
ν

)
wk−1.

Hence, (2.28) follows from the well known binomial series. The limit relation (2.29)
follows both from (2.27) and (2.28) in view of dn = b0 = 1 and En(1) = n!

Obviously, in Lemma 2.9 the rational function Fn(w) has exactly one single pole,
which lies at w = 1 and which has the order n + 1. Conversely, every rational func-
tion with these properties possesses a Taylor expansion, the coefficients of which are
eventually polynomials of degree n.
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3. Equivalent eigenfunctions

In the following we deal with connection (1.8) between eigenfunctions ϕn of (1.1) with
λ = 2n and ϕ̃m of (1.1) with λ̃ = 2m. For equation (1.7) we use analogous assumptions
and notations as for (1.1), in particular c̃0c̃Ñ 6= 0, P̃ (1) = 1 and also

φ̃(z) = L{φ̃−1} =
∞∏

j=1

P̃
(
e−z/2j

)
(3.1)

(cf. (2.18) and (2.20)).

Definition 3.1. For fixed n,m ∈ Z the eigenfunctions ϕn and ϕ̃m are called equiv-
alent if they satisfy an equation of the form

ϕn(t) =
∞∑

k=0

rkϕ̃m(t− k) (t ∈ R), (3.2)

with certain constants rk, and we write ϕn ∼ ϕ̃m. The characteristic polynomials P
and P̃ are called equivalent and we write P ∼ P̃ , if there exists a constant α ∈ Z such
that ϕn ∼ ϕ̃m for

m− n = α. (3.3)

The relation ϕn ∼ ϕ̃m is indeed an equivalence relation, i.e. it is reflexive and
transitive and it is also symmetric as we shall see at once. The series in (3.2) always
terminates according to ϕ̃m(t) = 0 for t < 0. In particular, (3.2) implies the relation

ϕn(t) = r0ϕ̃m(t) (t < 1) (3.4)

between equivalent eigenfunctions.
Since eigenfunctions never vanish identically in a right neighbourhood of t = 0, we

have

Lemma 3.2. A necessary condition for eigenfunctions ϕn and ϕ̃m to be equivalent
is that r0 6= 0 in (3.2).

According to r0 6= 0 equation (3.2) can recursively be inverted for t < ` (` ∈ N),
which shows the symmetry of the equivalence.

By differentiation or integration of (3.2), we see that ϕn ∼ ϕ̃m implies ϕn+k ∼ ϕ̃m+k

for arbitrary k ∈ Z (cf. (1.4)). Hence, ϕn ∼ ϕ̃m is tantamount to P ∼ P̃ . In particular,
for P ∼ P̃ we can assume m and n in (3.3) so great that the eigenfunctions ϕn and ϕ̃m

are continuous so that we can introduce as in (2.25) the generating functions

Φn(w) =
∞∑

k=1

ϕn(k)wk−1, Φ̃m(w) =
∞∑

k=1

ϕ̃m(k)wk−1 (3.5)

for |w| < 1. Moreover, we introduce the generating function

R(w) =
∞∑

k=0

rk wk (3.6)

of the coefficients in (3.2), at first as a formal power series.



Eigenfunctions of Two-Scale Difference Equations 467

Proposition 3.3. If the continuous eigenfunctions ϕn and ϕ̃m are equivalent, then
the generating function (3.6) is rational and it is representable as

R(w) =
Φn(w)
Φ̃m(w)

. (3.7)

Moreover, we have the limit relation

lim
w→1

R(w)
(1− w)α

= 1 (3.8)

with α from (3.3).

Proof. For t = ` ∈ N0 equation (3.2) reduces to

ϕn(`) =
`−1∑

k=0

rkϕ̃m(`− k).

Multiplication by w`−1 and summation over ` yields (3.7) in view of (3.6) and (3.5).
Applying Lemma 2.9 both to Φn and Φ̃m, we first see that R is rational and second
that (3.8) is valid in view of (2.29) and (3.3)

Corollary 3.4.
1. The rationality of R implies that the series (3.6) always converges for sufficiently

small |w|.
2. The function R in (3.7) is independent of the indices m and n so long as they

are great enough and (3.3) is valid.

There exists a second representation of R.

Proposition 3.5.
1. If the eigenfunctions ϕn and ϕ̃m are equivalent, then for w = e−z 6= 0 the

generating function (3.6) of the coefficients in (3.2) is representable in the form

R
(
e−z

)
=

zαφ(z)
φ̃(z)

(3.9)

with (2.18), (3.1) and (3.3).
2. Conversely, if the function R(w), given for w = e−z 6= 0 by (3.9), possesses in a

neighbourhood of w = 0 an expansion of the form (3.6), then ϕn ∼ ϕ̃m so far as (3.3)
is satisfied.

Proof. With notation (3.6), equation (3.2) yields by Laplace transform

L{ϕn} = R(e−z)L{ϕ̃m}. (3.10)

According to (1.5), the entire functions (2.18) and (3.1) can be written as

φ(z) = zn+1L{ϕn}, φ̃(z) = zm+1L{ϕ̃m}, (3.11)

so that equation (3.10) turns over into (3.9) with (3.3). Conversely, if the function R,
given by (3.9) for w = e−z 6= 0, has a power series expansion of the form (3.6), then the
foregoing steps can be inverted and (3.10) implies (3.2)
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Since expansion (3.6) in the neighbourhood of w = 0 is only possible if function
(3.9) for w = e−z 6= 0 has a continuous continuation at w = 0 with R(0) = r0 and since
φ(0) = φ̃(0) = 1, we obtain from (3.9) and Lemma 3.2 the

Corollary 3.6. If the eigenfunctions ϕn and ϕ̃m are equivalent, then with r0 from
(3.4) and α from (3.3) we have the limit relations

lim
Re z→+∞

zαφ(z)
φ̃(z)

= r0 (3.12)

uniformly in Im z and

lim
z→0

R (e−z)
zα

= 1, (3.13)

where the last limit is equivalent to (3.8). For the corresponding characteristic polyno-
mials P ∼ P̃ the constant α from (3.3) is uniquely determined by (3.12) and r0 6= 0.

Example 3.7 (Splines). In the case P̃ (w) = 1
2 (1 + w) and P (w) = ( 1+w

2 )` with
` ∈ N0, where the eigenfunctions are splines [17, 20] we find for the corresponding
functions (2.20)

φ̃(z) =
∞∏

j=1

1 + e−z/2j

2
=

1− e−z

z
, φ(z) =

(
1− e−z

z

)`

,

and (3.9) implies R(e−z) = zα+1−`(1− e−z)`−1. For w = e−z the function R possesses
expansion (3.6) if and only if α = ` − 1 so that R(w) = (1 − w)α with R(0) = r0 = 1.
Hence according to Proposition 3.5/2 we have equivalence relation (3.2). Choosing
m = −1 and therefore n = m − α = −`, equation (3.2) turns over into the elementary
representation

ϕ−`(t) =
`−1∑

k=0

(`− 1
k

)
(−1)kχ[0,1)(t− k) (t ∈ R),

where ϕ̃−1 = χ[0,1) is the characteristic function of [0, 1).

The different possibilities (3.7) and (3.9) to represent R cause a new relation, which
can be considered as a certain generalization of (3.2):

Proposition 3.8. Continuous equivalent eigenfunctions ϕn and ϕ̃m always satisfy

∞∑

k=0

ϕn(k)ϕ̃m(t− k) =
∞∑

k=0

ϕ̃m(k)ϕn(t− k) (t ∈ R). (3.14)

Proof. From (3.7) and (3.9) with α = m− n it follows

znΦn(e−z)φ̃(z) = zmΦ̃m(e−z)φ(z).

Dividing this equation by zm+n+1, considering (3.5) as well as (3.11) and applying the
inverse Laplace transform, we get relation (3.14)

For t ∈ N equation (3.14) reduces to the commutative law of the Cauchy product.
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4. The basic functional equation

The sufficient condition of Proposition 3.5 has the disadvantage that it is impossible to
check it if the functions φ and φ̃ are not known explicitly. For this reason, we look for
a representation of R by means of the given characteristic polynomials.

Proposition 4.1.

1. The function R, defined for w = e−z 6= 0 by (3.9), satisfies the homogeneous
equation

2αP (w)R(w) = P̃ (w)R(w2). (4.1)

2. Conversely, every solution of (4.1) with the property

lim
z→0

R(e−z)
zα

= R1 (4.2)

has the representation

R(e−z) = R1
zαφ(z)
φ̃(z)

. (4.3)

Proof. 1. We multiply (3.9) by the same representation, only with 2z instead of
z, so that we obtain

(2z)αφ(2z)φ̃(z)R(e−z) = zαφ(z)φ̃(2z)R(e−2z).

By means of (2.19), the last equation turns over into

2αP (e−z)R(e−z) = P̃ (e−z)R(e−2z) (4.4)

and for w = e−z into (4.1).
2. Conversely, if we replace z by z

2 and write (4.4) in the form

R(e−z) = 2αR(e−z/2)
P (e−z/2)
P̃ (e−z/2)

,

we obtain by iteration

R(e−z) = 2α`R
(
e−z/2`

) ∏̀

j=1

P (e−z/2j

)
P̃ (e−z/2j )

for arbitrary ` ∈ N. In view of (4.2), i.e.

lim
`→∞

(
2`

z

)α

R
(
e−z/2`

)
= R1,

(2.20) and (3.1), this implies assertion (4.3)
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We call (4.1) the basic functional equation, which contains besides R and the complex
variable w only given data. Temporarily we permit that the parameter α in (4.1)
is an arbitrary complex number. We look for solutions R with expansion (3.6) and
R(0) = r0 6= 0 (cf. Lemma 3.2) and remember that our characteristic polynomials
never vanish for w = 0.

Proposition 4.2.

1. The basic functional equation (4.1) has a solution R which is continuous at w = 0
with R(0) 6= 0 if and only if the condition

P̃ (0) = 2αP (0) (4.5)

is satisfied. In the case (4.5) this solution reads

R(w) = R(0)
∞∏

j=0

P̃ (w2j

)
2αP (w2j )

, (4.6)

and it is even holomorphic at least for |w| < max (1, %), where % is the smallest number
with P (w) 6= 0 for |w| < %. Given R(0), there is no further solution of (4.1) which is
continuous at w = 0.

2. The coefficients of the power series (3.6) for solution (4.6) are uniquely deter-
mined by r0 = R(0) and the system

2α
∑

ν+k=`

rkcν =
∑

ν+2k=`

rk c̃ν (` ∈ N), (4.7)

where cν = 0 for ν > N and c̃ν = 0 for ν > Ñ .

Proof. 1. If equation (4.1) has a solution R which is continuous at w = 0 with
R(0) 6= 0, then equation (4.1) implies (4.5) for w → 0. Moreover, if we write (4.1) in
the form

R(w) =
P̃ (w)

2αP (w)
R(w2) (4.8)

we obtain by iteration

R(w) = R
(
w2`

) `−1∏

j=0

P̃ (w2j

)
2αP (w2j )

for arbitrary ` ∈ N. For ` →∞ this shows that a solution R of (4.1), which is continuous
at w = 0, must have representation (4.6).

Conversely, if (4.5) is satisfied, then the product in (4.6) is uniformly convergent in
every compact subset of |w| < max (1, %). Hence it represents a holomorphic function
there, and it can immediately be checked that it satisfies equation (4.1).

2. Substituting series (3.6) into (4.1) it can easily be seen by comparison of coeffi-
cients that system (4.7) is equivalent to equation (4.1). The coefficients rk are uniquely
determined by (4.7) up to a constant factor, which is fixed by r0 = R(0)
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If we choose R(0) = r0 = 1, then from (4.7) we obtain for the next two coefficients

r1 =
2−αc̃1 − c1

c0

r2 =
2−αc̃2 − c2

c0
+

(2−αc̃1 − c1)(2−αc̃0 − c1)
c2
0

.

A consequence of Propositions 4.1 and 4.2 is the following

Corollary 4.3. The solutions (4.3) and (4.6) of (4.1) coincide for suitable constants
R1 and R(0), if either (4.3) with w = e−z possesses a continuous continuation at w = 0
with R(0) 6= 0 or if (4.6) has property (4.2) with R1 6= 0. In these cases, the limit (3.12)
exists with r0 6= 0, the constants are connected by R(0) = r0R1, and R has expansion
(3.6).

In the following we fix the branch of the complex power function wα by 1α = 1.

Proposition 4.4. Let R be a non-trivial solution of the basic equation (4.1).

1. The general solution of (4.1) reads

U

(
ln (− ln w)

ln 2

)
R(w), (4.9)

where U(·) is an arbitrary 1-periodic function.

2. Let R moreover have at least one of the representations

R(w) = wα0R0(w) or R(w) = (1− w)α1R1(w), (4.10)

where Rj are continuous functions at w = j, Rj(j) 6= 0 and αj ∈ C for j ∈ {0, 1}. Then
in the first case of (4.10) α0 = 0, and in the second case α1 ≡ α mod 2πi

ln 2 .

Proof. 1. The quotient Q(w) of two solutions of (4.1) satisfies Q(w) = Q(w2),
and this equation has the general solution

Q(w) = U

(
ln(− ln w)

ln 2

)

with U(·) as above, so that the first assertion is proved.

2. The replacement of (4.10) into (4.1) yields

2αP (w)Rj(w) = (j + w)αj P̃ (w)Rj(w2),

j ∈ {0, 1}, and for w → j we obtain α0 = 0 (and the already known condition (4.5)) in
the first case of (4.10), and α1 ≡ α mod 2πi

ln 2 in the second case, since P (1) = P̃ (1) = 1
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Remark 4.5.
1. The solutions of (4.1) with the first property in (4.10) are the solutions (4.6),

and the solutions with the second property are the solutions (4.3) with R1 = R1(0).
There are no further solutions with (4.10), since U in (4.9) must be constant in these
cases.

2. For a non-trivial rational solution R of (4.1) conditions (4.10) are always satisfied.
Hence, the existence of such a solution implies both R(0) 6= 0 and α1 = α in (4.10) since,
without loss of generality, we can assume here that α ∈ R.

For the next considerations we also temporarily abandon that λ in (1.1) and λ̃ in
(1.7) are eigenvalues, and we only require that the corresponding solutions ϕ and ϕ̃ are
generalized functions satisfying the boundary condition (i). The following proposition
is a generalization of [4: Proposition 5.1].

Proposition 4.6. If ϕ̃ is an arbitrary solution of (1.7) satisfying (i), and if (4.5)
is satisfied with

2α =
λ̃

λ
, (4.11)

then the generalized function

ϕ(t) =
∞∑

k=0

rkϕ̃(t− k) (t ∈ R) (4.12)

is such a solution of (1.1), where rk are the coefficients in (3.6) of the solution (4.6) of
(4.1) with an arbitrary r0 = R(0).

Proof. Using (4.7) and (4.11), a straightforward calculation shows indeed:

λϕ

(
t

2

)
=

λ̃

2α

∞∑

k=0

rkϕ̃

(
t− 2k

2

)

=
1
2α

∞∑

k=0

rk

Ñ∑
ν=0

c̃νϕ̃(t− 2k − ν)

=
1
2α

∞∑

`=0

∑

ν+2k=`

rk c̃νϕ̃(t− `)

=
∞∑

`=0

∑

ν+k=`

cνrkϕ̃(t− `)

=
N∑

ν=0

cν

∞∑

k=0

rkϕ̃(t− ν − k)

=
N∑

ν=0

cνϕ(t− ν),

so that the assertion is proved
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We give three applications of this proposition.

Lemma 4.7. Let be r0 6= 0. Then relation (4.12) can always be inverted by

ϕ̃(t) =
∞∑

k=0

skϕ(t− k), (4.13)

where the coefficients sk are those in

S(w) =
∞∑

k=0

skwk (4.14)

of the function S = 1
R with R from (4.6).

Proof. Introducing the function S = 1
R with (4.6) and R(0) = r0 6= 0, equation

(4.1) can also be written as 2−αP̃ (w)S(w) = P (w)S(w2). The function S is holomorphic
for |w| < max {1, %̃}, where %̃ is the smallest number with P̃ (w) 6= 0 for |w| < %̃ and
S(0) = 1

R(0) 6= 0. Hence, applying Proposition 4.6 with power series (4.14) instead of
(3.6), we obtain relation (4.13)

Next, we consider the constant characteristic polynomial P̃ (w) = 1, where (1.7)
reduces to

λ̃ϕ̃

(
t

2

)
= ϕ̃(t). (4.15)

For t > 0 the solutions of this equation have the form

ϕ̃(t) = tγV

(
ln t

ln 2

)
,

where γ = ln λ̃
ln 2 and where V (·) is a 1-periodic generalized function. By application of

Proposition 4.6 it follows

Corollary 4.8. Choosing λ̃ = λ
c0

, 2α = 1
c0

and r0 = 1, every solution of (4.15) with
(i) generates a generalized function (4.12) which is a solution of (1.1).

Since ϕ(t) = ϕ̃(t) for t < 1, we can interpret formula (4.12) with r0 = 1 as the
explicit representation of ϕ by means of its restriction to t < 1. With other words, this
representation yields uniquely the extension of the restriction to the case of a solution
for arbitrary real t. A third consequence of Proposition 4.6 reads:

Corollary 4.9. Let (4.11) and

λ

c0
=

λ̃

c̃0
(4.16)

be satisfied, and let ϕ and ϕ̃ be solutions of (1.1) and (1.7), respectively, satisfying (i)
and

ϕ(t) = r0ϕ̃(t) (t < 1). (4.17)
Then this equation can be extended by means of (4.12) with rk from (4.7).

In the following we come back to α ∈ Z and also to eigenfunctions ϕn of (1.1) and
ϕ̃m of (1.7) with λ = 2n and λ̃ = 2m. Then (3.3) and (4.11) are equivalent as well as
(4.5) and (4.16), and (4.13) is the explicit inversion of (3.2). Moreover, application of
Corollary 4.9 shows that equation (3.4) can always be extended to (3.2), which means
that Definition 3.1 can be replaced by the simpler
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Definition 4.10. The eigenfunctions ϕn and ϕ̃m are called equivalent, i.e. ϕn ∼
ϕ̃m, if they satisfy equation (3.4) with a certain constant r0.

Using this definition, the symmetry of the equivalence is trivial in view of Lemma
3.2.

5. The main equivalence theorem

After these preparations we state the main result concerning equivalent eigenfunctions
and equivalent characteristic polynomials, respectively, and the basic functional equa-
tion.

Theorem 5.1. With notation (3.3) the following assertions are equivalent:

(a) ϕn ∼ ϕ̃m, i.e. P ∼ P̃ .
(b) The basic functional equation (4.1) has a non-trivial rational solution R.
(c) There exists limit (3.12) with r0 6= 0 uniformly in Im z.

Proof. (a) ⇒ (b): According to Proposition 3.3 the generating function R of the
coefficients in (3.2) is rational with R(0) 6= 0. Moreover, owing to Proposition 3.5, for
w = e−z 6= 0, R is representable in form (3.9), and in view of Proposition 4.1 we see
that R is a solution of (4.1).

(b) ⇒ (c): If R is a non-trivial rational solution of (4.1), then according to Remark
4.5/2 this solution has the structure

R(w) = (1− w)αR1(w) (5.1)

with R1(1) 6= 0. From (5.1) we obtain

lim
w→1

R(w)
(1− w)α

= R1(1),

i.e. (4.2) with R1 = R1(1). Hence, Proposition 4.1/2 yields representation (4.3), and
the continuity of R at w = 0 implies the uniform existence of limit (3.12) with

r0 =
R(0)
R1(1)

6= 0. (5.2)

(c) ⇒ (a): Assume that there exists limit (3.12) with r0 6= 0 uniformly in Im z.
From Proposition 4.1/1 we know that the function R from (3.9) with e−z = w is a
solution of (4.1). According to (3.12) it is continuous at w = 0 with R(0) = r0 6= 0, and
Proposition 4.2/1 implies that it even possesses power series (3.6). Hence, Proposition
3.5/2 yields ϕn ∼ ϕ̃m with m− n = α

According to this theorem we only have to look for non-trivial rational solutions R
of the basic functional equation (4.1). For such solutions both conditions of (4.10) are
satisfied so that both statements of Proposition 4.4/2 come true, but we also have the
inversion:
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Proposition 5.2. If a solution R of (4.1) with α ∈ Z satisfies both conditions
(4.10), then it is a rational function.

Proof. Let R be a (non-trivial) solution of (4.1) with α ∈ Z satisfying both condi-
tions (4.10). In the proof (b)⇒ (c) of Theorem 5.1 we only have used these properties of
R and not its rationality. Hence, it follows in the same way (3.12) with r0 6= 0 uniformly
in Im z, and from Theorem 5.1 that R is a rational function

In addition to Corollary 4.3 we now can say in the case α ∈ Z that solutions (4.3)
and (4.6) of (4.1) coincide if and only if these solutions are rational functions with
R(0) = r0R1, where r0 is the limit (3.12). The rational solutions are determined up to
a constant factor (cf. Remark 4.5), but we need such a solution with a fixed factor.

Definition 5.3. A rational solution of the basic functional equation (4.1) is called
the canonical solution, if it has property (3.8).

With other words, the canonical solution is a rational solution with the normal-
ization R1(1) = 1 of the function R1(w) in (5.1). In view of (5.2) this condition is
equivalent to R(0) = r0, where r0 is given by (3.12), however, condition (3.8) is easiler
to handle than condition (3.12) in order to determine the correct factor of a canonical
solution.

For applications Theorem 5.1 must be completed by

Corollary 5.4. In (3.2) the coefficients rk of equivalent eigenfunctions ϕn and ϕ̃m

are the coefficients in (3.6) of the canonical solution R of the basic functional equation
(4.1). These coefficients are determined by means of (4.7) and R1(1) = 1 in (5.1).

6. Minimal characteristic polynomials

In this section we are going to minimize the degree N of (1.2) in the class of equivalent
characteristic polynomials in order to get a survey on the entire equivalence class.

Definition 6.1. A characteristic polynomial P̃ is called minimal if P ∼ P̃ implies
that N ≥ Ñ .

Obviously, in view of the degree condition, every equivalence class of characteristic
polynomials possesses at least one minimal polynomial. In the following we want to
characterize both equivalent and minimal characteristic polynomials, and we shall show
the uniqueness of minimal characteristic polynomials. For this reason, we first write the
basic functional equation (4.1) in the form

P (w)R1(w) =
(

1 + w

2

)α

P̃ (w)R1(w2), (6.1)

where R1(w) is the rational function of (5.1) with R1(1) = 1 and α ∈ Z.
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Proposition 6.2. Let P̃ be a minimal characteristic polynomial. Then P ∼ P̃ if
and only if P has the form

P (w) =
(

1 + w

2

)α
p(w2)
p(w)

P̃ (w) (6.2)

where p is a polynomial with p(0)p(1) 6= 0, and α ∈ N0.

Proof. If P ∼ P̃ , then equation (6.1) has a non-trivial rational solution R1 = p
q

in reduced representation, i.e. the polynomials p and q have no common zeros, and
the values p(0), p(1), q(0) and q(1) are different from zero according to R1(0) 6= 0 and
R1(1) 6= 0. Moreover, the function P0 defined by

P0(w) =
(

2
1 + w

)α
p(w)
p(w2)

P (w) =
q(w)
q(w2)

P̃ (w)

is equal to a polynomial with P0(1) = 1, and we get

P (w) =
(

1 + w

2

)α
p(w2)
p(w)

P0(w), P̃ (w) =
q(w2)
q(w)

P0(w). (6.3)

Therefore according to (6.1) we have P0 ∼ P and P0 ∼ P̃ . Since the polynomial P̃ is
minimal, the second equation of (6.3) implies that the polynomial q must be a constant
6= 0, i.e. P̃ (w) = P0(w), and the first equation of (6.3) implies (6.2). If α would be
negative, then (1 + w)−α must be a factor of P̃ , because it cannot be a factor of p(w2)
in view of p(1) 6= 0. Hence,

P̃ (w) =
2α

(1 + w)α
P1(w) = 2α (1− w)α

(1− w2)α
P1(w)

with a certain polynomial P1, so that P1 ∼ P̃ according to (4.1) with R(w) = (1−w)α,
and P̃ would not be minimal. This is a contradiction to our assumption, and we have
proved α ≥ 0. Conversely, if (6.2) is satisfied, then also (6.1) with R1 = p, and we have
P ∼ P̃

From the proof we immediately see the validity of the following statements.

Corollary 6.3.

1. If P ∼ P̃ , then there are polynomials p and q with p(1)q(1) 6= 0, and a charac-
teristic polynomial P0 such that the two equations (6.3) hold with α from (4.1).

2. If P ∼ P̃ and P̃ is minimal, then the canonical solution of (4.1) reads R(w) =
(1− w)αp(w) with p from (6.2) normalized by p(1) = 1.

3. A necessary condition for P̃ to be a minimal characteristic polynomial is that
P̃ (−1) 6= 0.

Remark 6.4. Representation (6.2) means that the characteristic polynomial P

is equivalent to the minimal polynomial P̃ if and only if there exists a polynomial
Q(w) = (1− w)αp(w) with Q(0) 6= 0 so that

P (w) =
1
2α

Q(w2)
Q(w)

P̃ (w), (6.4)
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where α ∈ N0 is the order of the zero 1 of Q. According to Corollary 6.3/2 we can
choose Q = R. Note that p in (6.2) can also have −1 as a zero, e.g. in the example
P = 1

2 (1 + w2) and P̃ = 1, where α = 1, p(w) = 1 + w and Q(w) = 1 − w2. However,
the order β of the zero −1 of p cannot exceed α so that α = 0 implies p(−1) 6= 0.

Proposition 6.5. Every class of equivalent characteristic polynomials contains ex-
actly one minimal polynomial.

Proof. If P ∼ P̃ and if both characteristic polynomials are minimal, then in view
of Proposition 6.2 and Remark 6.4 there are polynomials Qj (j = 1, 2) with Qj(0) 6= 0,
and exponents αj ∈ N0, so that we have the equations

P (w) =
1

2α1

Q1(w2)
Q1(w)

P̃ (w), P̃ (w) =
1

2α2

Q2(w2)
Q2(w)

P (w)

which immediately imply that Q1 and Q2 are constant. According to αj ≥ 0 it follows
αj = 0 and therefore P = P̃

Remark 6.6. In particular, Proposition 6.5 and Remark 6.4 answer the question
concerning the equivalence class with the minimal polynomial P̃ = 1. Namely, (6.4)
shows that the characteristic polynomial P is equivalent to the constant polynomial
P̃ (w) = 1 if and only if P is of the form

P (w) =
1
2α

Q(w2)
Q(w)

(6.5)

with a polynomial Q having the zero 1 of order α (cf. [5]). Note that Q(w) divides
Q(w2) if and only if the zero set {w ∈ C : Q(w) = 0} is closed under the mapping
f0 : w 7→ w2 (cf. [17: Lemma 2.3]). In particular, (6.5) implies that all zeros of P and
Q lie on the unit circle.

In the following we need the concept of cyclic numbers under a mapping f , where
f can be one of the two mappings fi : w 7→ (−1)iw2 (i ∈ {0, 1}).

Definition 6.7. The set of non-vanishing pairwise distinct complex numbers ζ1, ζ2,
..., ζk is called a cycle of f with the length k if f(ζj) = ζj+1 for j = 1, 2, ..., k − 1 and
f(ζk) = ζ1. The numbers ζ1, . . . , ζ` are called cyclic under f if each ζj belongs to a
cycle of f (cf. [21]).

Clearly, if the numbers ζj (j = 1, . . . , `) are cyclic under f , then the set of these
numbers is one single cycle or the union of pairwise distinct cycles of f . Moreover, if the
numbers ζj (j = 1, . . . , `) are cyclic under f0, then the numbers −ζj are cyclic under f1

and conversely. In the case that the set of numbers ζj is a cycle of fi with the length
k, we have ζ2k

= (−1)iζ and consequently in view of ζj 6= 0 that ζ2k−1 = (−1)i for
each ζ = ζj (j = 1, 2, . . . , k), i.e. all cyclic numbers are roots of unity. The simplest
cycle of fi is ζ1 = (−1)i (i = 0, 1) with the length k = 1. A set of numbers which are
cyclic under f0 is also closed under w → w2, but not conversely, since there can appear
preperiods (cf. [6]).
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Lemma 6.8. If p and q are polynomials with q(0) 6= 0 and

p(w) =
q(w2)
q(w)

, (6.6)

and if p has no symmetric zeros, then the zeros of q are cyclic under f0 and the zeros
of p are cyclic under f1.

Proof. Let ζ1, . . . , ζ` be the zeros of q, so that

p(w) =

(
w2 − ζ1

) · · · (w2 − ζ`

)

(w − ζ1) · · · (w − ζ`)
.

Since p has no symmetric zeros, each of the factors (w2−ζi) must be divisible by a certain
term (w− ζj). Consequently, for each i ∈ {1, 2, . . . , `} there is a certain j ∈ {1, 2, . . . , `}
so that ζi = ζ2

j , and p has the zeros ξj = −ζj . Since numerator and denominator of
(6.6) have the same number of factors it follows (if necessary after renumbering) that
the zeros of q are cyclic under f0 and the zeros ξj = −ζj of p are cyclic under f1

The following result is a generalization of [10: Theorem 5.11].

Proposition 6.9. The characteristic polynomial P̃ is minimal if and only if the
following conditions are satisfied:

(a) P̃ has no symmetric zeros.

(b) P̃ has no cyclic zeros under f1.

Proof. 1. We assume that P̃ is minimal and at least one of the conditions (a) or
(b) is not satisfied. According to Corollary 6.3/2 we know that a zero of P̃ cannot be
equal to −1.

Case (a): If P̃ has the zeros ζ and −ζ with ζ2 6= 1, then we can define the polynomial

P (w) =
w − ζ2

w2 − ζ2
P̃ (w)

with P (1) = P̃ (1) = 1, which has a smaller degree than P̃ and which is equivalent to P̃

according to (6.1) with R0(w) = w − ζ2 and α = 0. Hence P̃ cannot be minimal.

Case (b): If P̃ has the cyclic zeros ζ1, ζ2, . . . , ζ` under f1 with ζj 6= −1, then we can
define the polynomial

P (w) =
1

(w − ζ1)(w − ζ2) · · · (w − ζ`)
P̃ (w),

with P (1) = 1, which has a smaller degree than P̃ and which, in view of

∏̀

j=1

(w − ζj) =
∏̀

j=1

w2 − ζ2
j

w + ζj
=

∏̀

j=1

w2 − ζ2
j

w − ζ2
j

=
R1(w)
R1(w2)

, (6.7)
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is equivalent to P̃ according to (6.1) with α = 0 and

R1(w) =
(1− ζ2

1 ) · · · (1− ζ2
` )

(w − ζ2
1 ) · · · (w − ζ2

` )
.

Hence P̃ cannot be minimal.
2. Now we consider the case that both conditions (a) and (b) are satisfied. Let

P be an arbitrary characteristic polynomial which is equivalent to P̃ , we have to show
that N ≥ Ñ . According to Corollary 6.3 we first show that the polynomial q in (6.3)
is constant. For this reason, we assume on the contrary that q has at least one zero.
The polynomials q and P0 cannot have a common zero, since otherwise q(w2) and
therefore also P̃ would have symmetric zeros, which contradicts (a), hence q(w2)

q(w) must
be a polynomial without symmetric zeros. Now, Lemma 6.8 implies that all zeros of q
are cyclic under f0 so that P̃ has cyclic zeros under f1, which contradicts (b), and we
have proved that q is a non-vanishing constant in view of q(1) 6= 0. Hence, the second
equation in (6.3) implies P0 = P̃ , and the first equation turns over into (6.2), where
α ≥ 0 in view of P̃ (−1) 6= 0 and p(1) 6= 0. Hence, we obtain that N ≥ Ñ and the
proposition is proved

Remark 6.10. In [10] there was studied in detail the class of all such ”scaling
functions” (i.e. special eigenfunctions ϕ−1 ∈ L2(R)) which generate the same multires-
olution analysis. According to [10: Theorem 5.12] such scaling functions and also their
corresponding characteristic polynomials, which are denoted there ”two-scale symbols”,
are equivalent in the sense of our Definition 3.1.

In order to construct equivalent characteristic polynomials explicitly, we introduce
the concept of a w2-transformation.

Definition 6.11. The characteristic polynomial P is called a w2-transformation of
P0 and we write P = T{P0}, if P0 is a characteristic polynomial with deg P0 ≥ 1 and if
there is a number K ∈ N such that P (w) = PK(w) is obtained iteratively from P0(w)
in the following way: Choose an arbitrary linear factor w − ζk of Pk−1(w) and put

Pk(w) =
w2 − ζk

w − ζk
Pk−1(w) (6.8)

for k = 1, 2, . . . , K.

Obviously, ζk 6= 1 for all k. Hence, every w2-transformation PK of P0 possesses the
representation

PK(w) =
R(w2)
R(w)

P0(w) (6.9)

with R(w) =
∏K

k=1
w−ζk

1−ζk
so that (6.9) can be intrepreted as (4.1) with α = 0 and we

have PK ∼ P0.
The single steps of a w2-transformation can be gathered up, by applying the re-

placement w 7→ w2 not only in a linear factor, but in a polynomial factor or in the
whole polynomial. In this form a w2-transformation was already used in [5: Theorem
3.3] for the special case P0(w) = 1

2 (1 + w).

Given a polynomial P̃ satisfying the conditions of Proposition 6.9, an arbitrary
polynomial P with P ∼ P̃ can be constructed in the following way:
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Algorithm I. Let P̃ be an arbitrary minimal characteristic polynomial.

1. Multiply P̃ by an arbitrary polynomial p with p(1) = 1 having only cyclic zeros
under f1.

2. Apply a w2-transformation to pP̃ .

The result
P (w) = T{p(w)P̃ (w)} (6.10)

is a polynomial with P ∼ P̃ .

In order to see that the algorithm yields the wanted result, first we shall show that
pP̃ ∼ P̃ . Assume that p has the zero −1 with the multiplicity α and the zeros ζ1, . . . , ζ`

which are cyclic under f1, where ζj 6= −1 for j = 1, . . . , `. Then in view of p(1) = 1 and
(6.7) the polynomial p has the representation

p(w) =
(

1 + w

2

)α
q(w2)
q(w)

with q(w) = (w − ζ2
1 ) · · · (w − ζ2

` ), and we see that P0 = pP̃ ∼ P̃ by Proposition 6.2.
Next we consider a single step (6.8) of a w2-transformation. Comparing (6.8) with (6.1)
for α = 0 and q(w) = w − ζ, ζ 6= 1, we see that Pk ∼ Pk−1 for k = 1, 2, . . . , K, so that
the transitivity of ” ∼ ” implies PK = T{pP̃} ∼ P̃ .

Conversely, we can show by inverting the steps of Algorithm I that every character-
istic polynomial P which is equivalent to the minimal polynomial P̃ , has form (6.10).
This inversion leads to the minimal polynomial P̃ of a given characteristic polynomial
P :

Algorithm II. Let P be an arbitrary characteristic polynomial.

1. Replace successively all quadratic factors by symmetric zeros, i.e. all factors
w2 − ζ by w − ζ.

2. Cancel all polynomial factors with only cyclic zeros under f1.

The result is the minimal polynomial P̃ , which is connected with P by (6.10).

Let P be an arbitrary characteristic polynomial P . We show representation (6.10)
by means of the corresponding minimal polynomial P̃ .

1. If P has a symmetric zero, i.e. P (w) = (w2 − ζ)q1(w) (ζ 6= 0, 1) with a certain
polynomial q1, then P can be represented as

P (w) =
w2 − ζ

w − ζ
Q1(w), Q1(w) = (w − ζ) q1(w)

so that P ∼ Q1 according to (6.1), and we have Q1(0) 6= 0 and Q1(1) = 1 in view of
ζ 6= 0, 1. Owing to (6.8), P results as a single step of a w2-transformation of Q1. After
finitely many analogous steps we obtain that P = T{Q} and therefore P ∼ Q, where
the polynomial Q has no symmetric zeros, and Q(0) 6= 0, Q(1) = 1.
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2. Now, P ∼ P̃ and P ∼ Q imply also Q ∼ P̃ and, since P̃ is minimal, Proposition
6.2 yields the representation

Q(w) = p(w)P̃ (w), p(w) =
(

1 + w

2

)α
q(w2)
q(w)

(6.11)

with α ∈ N0 where q is a polynomial with q(0) 6= 0 and q(1) 6= 0 so that p(1) = 1.
Since Q has no symmetric zeros, this is valid also for p, and by Lemma 6.8 the zeros
of q are cyclic under f0, and the zeros of p are cyclic under f1, so that P = T{Q} and
(6.11) imply representation (6.10). Finally, Proposition 6.9 yields that P̃ in (6.10) is
the minimal polynomial.

Note that the second step of Algorithm II is a generalization of the first one, if we
permit such rational factorizations which again lead to polynomials as in (6.7), e.g.

w2 − w + 1 =
w4 + w2 + 1
w2 + w + 1

7→ w2 + w + 1
w2 + w + 1

= 1. (6.12)

7. Applications

In this section we give three applications of the foregoing results.

7.1 The sum of shifted eigenfunctions. Sum relation (1.9) is well known for
Lebesgue-integrable eigenfunctions ϕ−1 of (1.1) (cf. [5, 19]), but it can also be valid for
distributional eigenfunctions.

Proposition 7.1. Let be P (−1) = 0. Then we have

∞∑

k=0

ϕ−1(t− k) = 1 (N − 1 < t). (7.1)

Proof. The characteristic polynomial P can be written as P (w) = 1+w
2 P̃ (w), and

this equation can be interpreted as basic functional equation (4.1) with α = 1 and the
canonical solution R(w) = 1 − w. Hence, Corollary 5.4 with m = 0, n = −1, Lemma
4.7 with S = 1

1−w , and ϕ̃0(t) = 1 for t > Ñ = N − 1 yield (7.1)

Theorem 7.2. Relation (7.1) is valid if and only if the basic functional equation
(4.1) with α = 0 and a certain characteristic polynomial P̃ with P̃ (−1) = 0 has a
polynomial solution R.

Proof. First, let be

P (w) =
R(w2)
R(w)

P̃ (w) (7.2)

and

R(w) =
L∑

`=0

r`w
`. (7.3)
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We can choose R as canonical solution of (7.2) so that R(1) = 1, and Corollary 5.4 with
m = n = −1 yields ϕ−1(t) =

∑L
`=0 r`ϕ̃−1(t− `), and therefore

∞∑

k=0

ϕ−1(t− k) =
L∑

`=0

r`

∞∑

k=0

ϕ̃−1(t− `− k). (7.4)

In view of P̃ (−1) = 0 Proposition 7.1 implies
∞∑

k=0

ϕ̃−1(t− `− k) = 1 (t > Ñ + `− 1).

Since ` ≤ K and Ñ + K = N , relation (7.1) follows from (7.4) and R(1) = 1 together
with (7.3).

Conversely, let (7.1) be satisfied, i.e.
N∑

k=0

ϕ−1(t− k) = 1 (N − 1 < t < N + 1)

in view of (i). Substituting t by t + N and putting N − k = ν, this relation is equal to
(1.9), and in view of ϕ−1(t) = 0 for t > N also to

∞∑
ν=0

ϕ−1(t + ν) = 1 (t < 1). (7.5)

From this relation we can conclude as in the proof of [5: Theorem 3.3] that P has form
(7.2)

Remark 7.3.
1. It suffices in Theorem 7.2 that R(w2)

R(w) is a w2-transformation of 1+w
2 , because

all other factors of this quotient can be gathered up with P . Hence, the condition in
Theorem 7.2 coincides with the necessary condition of [5: Theorem 3.3] for the existence
of a Lebesgue-integrable solution of (1.1) with λ = 1

2 .
2. Let us mention that Assumptions 1.1 and 1.2 of Theorem 3.3 in [5] (and also

of Theorem 2.1 there) are superfluous. Moreover, in [5: p. 63] there was used twice a
wrong notation for the shift of the vector (ζj)T

j≥0A.
3. Since ϕ−1(t + ν) = 0 for t + ν > N , we see first for −1 < t and N + 1 ≤ ν

that (1.9) and (7.5) are equivalent, and second for 0 < t and ν = N that relation (1.9)
implies

N−1∑
ν=0

ϕ−1(t + ν) = 1 (0 < t < 1). (7.6)

Conversely, the last relation is equivalent to (1.9) for Lebesgue-integrable ϕ−1 (and in
particular for continuous ones). However, in the distributional case we cannot conclude
from (7.6) to (1.9) without additional assumptions.

7.2 Linear independence. For stability questions of wavelet decompositions and
subdivision schemes it is important that the shifts ϕ−1(t− ν) (ν ∈ Z) of eigenfunctions
ϕ−1 are linearly independent, i.e. that

∑
ν σνϕ−1(t − ν) = 0 implies σν = 0 for all ν

(cf. [15, 16]). By means of cyclic numbers under the mapping f1 (cf. Definition 6.7),
Theorem 2 in [16] can be simplified as follows:
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Proposition 7.4. The shifts of ϕ−1 are linearly independent if and only if the
characteristic polynomial P satisfies the two conditions:

(a) P has no symmetric zeros in C.
(b) P has no cyclic zeros under f1 except possibly −1.

In [16: Theorem 2] one finds instead of (b) the condition

(b′) For any odd integer k > 1 and a primitive kth root ω of unity, there exists an
integer d ≥ 0 such that P (−ω2d

) 6= 0.

However, it can be checked that conditions (b) and (b′) are equivalent in view of (a). Ac-
cording to Proposition 6.2, Lemma 6.8 and Proposition 6.9 we obtain from Proposition
7.4 the

Corollary 7.5. The shifts of ϕ−1 are linearly independent if and only if the char-
acteristic polynomial P has the form

P (w) =
(

1 + w

2

)α

P̃ (w) (7.7)

where P̃ is a minimal characteristic polynomial, and α ∈ N0.

A further immediate consequence of these assertions is [14: Theorem 5.3].

7.3 Infinite products. For a characteristic polynomial P let us consider the infinite
product

S(w) =
∞∏

j=0

1
c0

P (w2j

) (7.8)

which converges for |w| < 1 and satisfies S(0) = 1, and which is closely connected with
(4.6).

Proposition 7.6. The function (7.8) is rational if and only if P is equivalent to
the constant polynomial P̃ (w) = 1, i.e. if P is of the form

P (w) =
(

1 + w

2

)α
p(w2)
p(w)

(7.9)

where p is a polynomial with p(0)p(1) 6= 0, and α ∈ N0. If P has form (7.9) and if
p(0) = 1, then

S(w) =
1

(1− w)αp(w)
. (7.10)

Proof. With the notations R = 1
S and 2α = 1

c0
we obtain from (7.8) the equation

2αP (w)R(w) = R(w2), (7.11)

which can be interpreted as the basic functional equation (4.1) with P̃ = 1. Vice versa,
R is uniquely determined by (7.11) and R(0) = 1 according to Proposition 4.2/1.
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Now, if the solution R of (4.1) is rational, then Remark 4.5/2 yields α ∈ Z, Theorem
5.1 yields P ∼ 1, and Proposition 6.2 representation (7.9) with α ∈ N0, since P̃ = 1 is
minimal. Finally, Corollary 6.3/2 yields representation (7.10) with p(0) = 1 in view of
S(0) = 1.

Conversely, let P ∼ 1. Then the polynomial P has form (7.9) with α ∈ N0 according
to Proposition 6.2. Hence, with R(w) = (1 − w)αp(w) and p(0) = 1 it follows (7.11)
and Proposition 4.2/1 together with R(0) = 1, P̃ = 1 and R = 1

S yield (7.8)

In the case P (w) = 1+qw
1+q with q ∈ C \ {−1} product (7.8) reduces to

S(w) =
∞∏

j=0

(
1 + qw2j

)
=

∞∑

k=0

qν(k)wk (|w| < 1) (7.12)

where ν(k) denotes the binary sum-of-digits function (cf. [4]). According to Proposition
7.6 function (7.12) is rational if and only if P (w) = 1+qw

1+q ∼ 1, and in view of Remark
6.6 we obtain for q 6= −1

Corollary 7.7. Only in the both cases q = 0 and q = 1 function (7.12) is rational.

However, Corollary 7.7 remains valid also in the excluded case q = −1, where (7.12)
is the generating function of the sign sequence εk = (−1)ν(k).

8. Reversed eigenfunctions

For convenience we introduce

Definition 8.1. Two sequences fn and pn (n ∈ Z) and a function F are termed an
Appell triple, if they are connected with each other as in Proposition 2.1.

Note that an arbitrary generalized function fm ∈ Fm with a fixed m ∈ Z generates
an Appell triple, since the corresponding comparison sequence fn can be constructed by
means of (1.4), the generating function F by (2.10) and the Appell polynomials pn by
(2.2). Examples 2.2, 2.3 and 2.4 can already be considered as examples for Appell triples.
For two Appell triples {fn, pn, F} and {f∗n, p∗n, F ∗} we can generalize [4: Proposition
4.2]:

Proposition 8.2. The following assertions are equivalent:

(a) F ∗(z) = e−szF (−z).
(b) fn(t) + (−1)nf∗n(s− t) = pn(t).
(c) p∗n(t) = (−1)npn(s− t).

Here z ∈ C, n ∈ Z, t ∈ R are arbitrary, whereas s is a fixed non-negative number such
that fn(t) = pn(t) and f∗n(t) = p∗n(t) for t > s.

Proof. We show that (a) ⇒ (b), but first only for n = −1 and for Lebesgue-
integrable functions. Since the supports of both functions f−1 and f∗−1 are contained in
[0, s], we have ∫ s

0

e−tzf∗−1(t) dt =
∫ ∞

0

e−tzf∗−1(t) dt = F ∗(z)
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and∫ s

0

e−tzf−1(s− t) dt =
∫ s

0

e(τ−s)zf−1(τ) dτ = e−sz

∫ ∞

0

eτzf−1(τ) dτ = e−szF (−z),

so that (a) implies f∗−1(t) = f−1(s− t), i.e. (b) is true for n = −1. By differentiation of
the last equation it follows immediately that (b) is true for all n < 0.

Next, we show by induction that (b) is also valid for n ∈ N0. Assume that (b) is
valid for n− 1 instead of n. Then, in view of f ′n = fn−1, f∗n

′ = f∗n−1 and p′n = pn−1, we
get by integration that

fn(t) + (−1)nf∗n(s− t) = pn(t) + Cn

where Cn is a certain constant. For t > s we obtain Cn = 0 in view of fn(s) = pn(s)
and f∗n(s − t) = 0, so that (b) is also proved for n ∈ N0 and Lebesgue-integrable f−1,
f∗−1.

If only fm is locally Lebesgue-integrable for a certain m ∈ N0, then by means of the
representation

F (z) = zm+1L{fm} = zm+1

∫ s

0

e−ztfm(t) dt + e−sz
m∑

ν=0

bνzν

with bν from (2.7) and (2.8) it is possible to prove (a) ⇒ (b) first in the case n = m.
Afterwards the remaining steps can be repeated analogously.

Now we show (b) ⇒ (c). Substituting t in (b) by s − t, and multiplying (b) with
(−1)n we get

(−1)nfn(s− t) + f∗n(t) = (−1)npn(s− t),

so that comparison with (b) implies the polynomial relation (c).
Finally, it follows easily from

etzF ∗(z) =
∞∑

n=0

p∗n(t)zn =
∞∑

n=0

(−1)npn(s− t)zn = e(t−s)zF (−z)

that (c) ⇒ (a). Hence, the proposition is proved completely

Remark 8.3. Obviously, the ∗-operation is an involution, i.e. F ∗∗ = (F ∗)∗ = F ,
f∗∗ = f and p∗∗n = pn with the same s as in Proposition 8.2.

Definition 8.4. Two Appell triples {fn, pn, F} and {f∗n, p∗n, F ∗}, and also their
elements are called reversed, if they are connected with each other as in Proposition 8.2.

In particular, an Appell triple can be reversed to itself. A special example of a
self-reversed Appell triple can be found in [3], where fn are the eigenfunctions ϕn of a
certain integral-functional equation. The former Example 2.4 with K = 0 yields such
a triple with s = 0. In the case that the elements fn = ϕn of an Appell triple are
eigenfunctions of (1.1), and that the elements f∗n = ϕ∗n of a corresponding reversed
Appell triple are eigenfunctions of the two-scale difference equation

λϕ∗
(

t

2

)
=

N∗∑
ν=0

c∗νϕ∗(t− ν) (8.1)

with c∗0cN∗ 6= 0, we also speak about reversed eigenfunctions ϕn, ϕ∗n, and about reversed
two-scale difference equations (1.1), (8.1).
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Proposition 8.5. The two-scale difference equations (1.1) and (8.1) are reversed
if and only if the equation

P ∗(w) = wNP

(
1
w

)
(8.2)

is satisfied, i.e. N∗ = N and c∗ν = cN−ν for ν = 0, 1, . . . , N .

Proof. If both equations are reversed, then according to Proposition 8.2 the equa-
tion

φ∗(z) = e−szφ(−z) (8.3)

must be satisfied with a certain constant s ≥ 0. Replacing z by −2z in (8.3), we have
φ∗(−2z) = e2szφ(2z). Hence, by means of (2.19) and the analogous equation for φ∗, we
obtain

e2szφ(2z) = φ∗(−2z) = P ∗(ez)φ∗(−z) = P ∗(ez)eszφ(z) = P ∗(ez)esz 1
P (e−z)

φ(2z),

i.e.
P ∗(ez) = eszP (e−z).

Finally, with w = ez we get the equation

P ∗(w) = wsP
( 1

w

)

which implies s = N according to c∗0 6= 0 and cN 6= 0.
Conversely, if P ∗(w) = wNP ( 1

w ), then according to (2.20), used both for φ and φ∗,
we have

φ∗(z) =
∞∏

j=1

P ∗
(
e−z/2j

)
=

∞∏

j=1

e−Nz/2j

P
(
ez/2j

)
= e−Nzφ(−z),

so that indeed equations (1.1) and (8.1) are reversed

The polynomial P ∗, defined by (8.2), is called the reversed polynomial of P (cf. [8]).
As an application of Proposition 8.5 we see from (2.1) and (2.7) that (2.21) and (2.23)
are reversed counterparts from each other. Further, for the eigenfunctions ϕ∗n of the
two-scale difference equation

λϕ

(
t

2

)
=

N∑
ν=0

cN−νϕ(t− ν), (8.4)

which is reversed to (1.1), and the corresponding Appell polynomials p∗n Proposition 8.2
yields:

Corollary 8.6. The eigenfunctions ϕn and ϕ∗n (n ∈ Z) of the reversed equations
(1.1) and (8.4) satisfy the relations

ϕn(t) + (−1)nϕ∗n(N − t) = pn(t) (8.5)

and the corresponding Appell polynomials are connected by

p∗n(t) = (−1)npn(N − t) (8.6)

for t ∈ R.

Finally, we establish a connection between equivalent and reversed characteristic
polynomials. For (P̃ )∗ we write for short P̃ ∗.
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Proposition 8.7. We have P ∼ P̃ if and only if P ∗ ∼ P̃ ∗. Moreover, if R is the
canonical solution of (4.1), then

R∗(w) = (−1)αwN−ÑR

(
1
w

)
(8.7)

is the canonical solution of

2αP ∗(w)R∗(w) = P̃ ∗(w)R∗(w2) (8.8)

and vice versa.

Proof. From (4.1) with 1
w instead of w we obtain after multiplication by w2N−Ñ

that

2αwNP

(
1
w

)
wN−ÑR

(
1
w

)
= wÑ P̃

(
1
w

)
w2(N−Ñ)R

(
1

w2

)
.

Using (8.2) and the notation

R∗(w) = CwN−ÑR
( 1

w

)

with a certain constant C 6= 0, the foregoing equation can be written as (8.8) and we
see that R∗ is a rational solution of (8.8). In order to determine C by means of (3.8),
we consider

R∗(w)
(1− w)α

= (−1)αCwN−Ñ−α R
(

1
w

)
(
1− 1

w

)α

and for w → 1 we find that C = (−1)α. The inversion follows in view of R∗∗ = R

Example 8.8 (Self-reversed canonical solutions). Let

P (w) =
1 + wk

2
P̃ (w)

with k ∈ N. After multiplication by R(w) = 1
k (1− wk) this relation can be interpreted

as basic functional equation (4.1) with α = 1 and R as canonical solution. In view of
k = N − Ñ we find from (8.7) the relation

R∗(w) = −wk 1
k

(
1− 1

wk

)
= R(w)

which matches with P ∗ = 1+wk

2 P̃ ∗.
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