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Singularly perturbed elliptic problems of second order 
with a singular line 

H.-G. Roos and L. ToBIs1 

Für einige' Kiassen singular gestorter elliptiseher Probleme, wo die Charakteristiken des redu-
zierten Problems parallel oder senkrecht zur singularen Linie verlaufen, werden gleichmal3igo 
asymptotische Approximationen konstruiert. Die Approxiinationsordnungist abhängig vom 
Verhalten der Koeffizienten des reduzierten Problems in Umgebung der singularen Linie und 
von den Eigenschaften des betrachteten Gebietes. 

LJIR HeHoTopblx Hnaccos CMHryJIHpHO-BoaMyIqeIIHbJx JIJ1MnT1a'lecxMx aaaq, B IOTOpwX 
xapaxTepucTMKM BbIpo)sIeHI!oft 3aa4M napaJUIeJIbHbI HJflI nepneHJulHyJulpHbI it oc060lt 
xpiinolk,. CTp0HTCH paBlfoMepIlo-aduMnToTM qecHIle annpoHcaMauall. I1opnjoi annpoxcB-
Ma[Mu BaBudilT OT CBOflCTB HO(11IHe1iToB BI1poHeI1Hoü 3a rkwjH B oRdTflOC'FM oc060t 
RpHBOR i OT xapaic'repa paccMaTpunaeMoft o6.1acT14. 

For some classes of singularly perturbed elliptic problems, in which the characteristics of the 
reduced problem are parallel or perpendicular to the singular line, uniform asymptotic 
approximations are constructed. The order of approximation depends on the behaviour 'of 
the coefficients of the reduced problem iii the neighbourhood of the singular line and on the 

	

properties of the considered domain.	 - 

1. Introduction 

We consider boundary value problems of the form' 

Lu, = --Liu, + L0u = 0 in Q
(1.1)

	

ut ='g	 in Q, 
where L 1 denotes a linear uniformly elliptic second order differential operator': 

	

2	92	2 
L,	aij	 +Ea—+'ao	(a0 O),  a 1	 ax, 

L0 is a linear first order differential operator:  

	

2	9-
LO	 bi 

1=1	i 

and e is  small positive parameter. 
b, is called uniform asymptotic approximation of Ue on the subdomajn Q	if 

the inequality 

	

-	= sup JUe(X) - (x)I	k	(a> 0) ,	zE	 s 

is satisfied for a positive constant ' K independent of e. In case of Q = Q we shall 
omit the subskript Q and only write HI . The asymptotic behaviour of the solution u 
.36*
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of (1.1) depends on the characteristics of L0, in particular on the existence of singu- 
lar (or turning) points. A point x" E Q is called a singular point if and oril5i if 
b 1(x*) = 0 for i = 1, 2. For isolated singular points the asymptotic behaviour of the 
solution u of (1.1) have been investigated by many authors in detail (see, for instance 
[2, 4, 8, 10-13]). In the case of a singular line, up to now, only very special problems 
of the type described above have been considered [1, 3, 5-7, 161. 

Our'main objective is to construct uniform approximations of the solutionof 
typical classes of (1.1) in which the characteristics of L0 are parallel or perpendicular 
to the singular line. For this purpose let us assume that x2 = 0 is the singular, line 
and that £2 can he., described by 

Q= {(x, x2) I —1 <x1 <+ 1 , — 1 1(x1 ) < x2 <f2(x1)1 

or	 - 
Q = {(x 1 , x2 )	< 	+ 1,0 <x2 </2(x1)1 

by means of smooth functions /i /2 with /12(± 1 ) = 0 and /12 (x 1 )> 0 on the open 
interval (-1, +1). As a result £2 is an admissible domain in the sense of [15] and the 
existence of a uniquely determined classical solution u, of (1.1) can be guaranteed 
for sufficiently smooth coefficients of L 1 'and L0. 

2. Asingular line perpendicularto the characteristics 

We consider the singularly perturbed problem 

Lu, = Li u, ± x 2 1	= 0 in £2 
OX2 S	 (2.1) 

= g on Q.	 - 

A uniform asymptotic approximation will be constructed by applying the method 
of matched asymptotic expansion. in dependence on the behaviour of the charac-
teristics near the boundary we use following notations for the smooth parts of the 
boundary:

= {x.E OQ lb(x)..v(x)01,	f0 = {xE aS2 Ib(x).v(x) = 01, -' 

where b = (b 1 , b2) and v denotes the outward directed unit normal. 
First we assume that 

£2 = {(x 1 , x2) — 1< x 1 < + 1, — J j (x 1)< x2 </2(x1)1 

Nov, let /1.2 vanish at x 1 = ± 1 of the order m2, 

92(x 1 ),	g L,,= -f,(z,) = g1(x1) 

and 1 be even. Then, without restriction of generality, we can assume that 

	

= _x2 2 —p— and it holds	 S 

ex2 

I'_ = {(x 1 , x8) I x2= 12(x 1 )) 	F, = {(x 1 , x2 ) I X 2 = — 11(x01. 

Consequently, the solutidn of the global problem becomes 92 (x 1 ), such that the bound-
ary condition on P., does not satisfied and local correctors are needed.
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In the neighbourhood of I'+ let = 2 + 11(x1) ad

 L9 )= e' (_azi 02 - /'(x)	+ 

onstrpctinga local corrector v = v0+' sv 1 with lL1vi	K e such that the bound-



ary áohditions on .P+ are satisfied by v + g2 we obtain 

vo(x, ) = [9 1 (x 1 ) - gi(x i )] exp (_	
/(x)± x2)	 •' 

On P_ v0 - satisfies voir = ( 91 - 92) exp	 /1 ± /2) and is exponetially 
small for lxii	x0 < 1. In the neighbourhood of z 1 = 1 volr behaves as 

UTJU exp (_8	). For arbitrary positive r it holds	exp 

^ Key, such that Voirl K	with s = max (2kni j+ + mm (ni l , M21, 2km1 
± mm (m(, m2 )). Summing up we obtain	 S 

Ve(% - (92 + v))I	Ks in Q, IU, — ( g2 +v)i	Ks8i 

on Q. The barrier function K ie8	K52k+1v(x) with 

q
p2k+1 - q2kfl 

- VI(X2) = f. fexp (
	K3	)dPdq 

yields the estimate Iu - (g2 + v)i	Ke81 + K5 2k+1 [17]; Because of s l	2k 
+lweobtain	 - 

Theorem 2.1: Let L0 = —X2 2k	and let the singular line lie in the interior o/ Q. 
Then, it holds that	 X2 

Iiu - (92 +V)ij	KE8, - 
with s, 	max (mm (mj+, m2+) + 2km1 ,-min (m 1 , m2 ) -4-- 2kni1). 

Considering the subdomains x 2 > 0 and x2 <0, respectively; we obtain analogous 
problems. Let.	-	

S 

Q ='((X 1 , x2) —1 <x1 < +1, 0 <x2 <12 (x 1).	S 

Again 02 (z1) is 'the solution of the global problem. Setting =	it holds 
- -	 52k+1	 S 

	

•	2k—i	• 

•	 2	 2k	• 

	

=	 au -	2k	+ sT xi	 te*.	•	 S - •	 • 

Requiring  
'av	 •.	 S 

•	a+ 2Ic	= 0 1	• vic=o = g 1 (X 1 ) - 92(x1)	
•
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we obtain 

v= 
(1(x1)-92(x1)) 

[exp(_(	l))dt 

00 12k+1 
with

- 
A	exp ( a(2k + ) dl. 

Now u - (92 + v) satisfies 

•	 4(u. - (92 + v)I Ke 

•	 -

(92 +V)Iz,=f.(x)I :5; Ke,	82 =.(2k + 1) max (m21 m2), 

where the last follows fiom the estimate 

fexp (22h1) dt 

Then, because of S2	2k + 1, the barrier function 

1. •	1 
K 1s' - K2e21 v(x2) 

yields 

Theorem 2.2: Let L 0	_x22 ' -- and let the singular line belong to the boundary 
of Q. Then it holds that 

II ? e - (92 + V)11 ^ Ke 

wit82	(2k + 1) max (n121 m2 ).	 -

The case 

Q = {(z, X2)I—i <x i < +1, —1 1 (x 1 ) <x2 < 0} 

is analogous to that which has been considered first. Setting gIzo = g0(x 1 ) we obtain 

ju - (g ± v)It	Ke8 with 83 = (2k + 1) max (?n 1 , m1). 
O Now let 1 be odd, 1 .= 2k - 1. In this case the sign of +x22 'is of decisive 
importance. First we consider	- 

Lu	 -	 = 0 in Q 

u1 =g on.Q 
with	•	 • 

• Q = {(x 1 , x2) I —1 < x 1 < +1, —11 (x 1 ) < x2 < 12(x1)).
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Because of r_ = Q the solution of the global problem'becomes 

= 92(x), X2 > 0 I g I(X0 I x2<0 
and at x2 = 0 a free boundary layer originates. By setting . = - in the neigh-
bourhood of x2 = 0 we obtain 

I	 92k 
b2 a L = 2k { ' a(x) -	- 21 -} -1- e	4*. 

The requirements

92-91 
2'	 2 

yield	 S 

v=92_9iJexp 
( k t2k) dt with A* =f exp (__t2k)dt. 

Theorem 2.3: Let L0 ' _x22k1	and let the singular line lie in the interior 
of Q. Then it holds that	 ax2 

(Y	+ ) 	K je
,2 line] 'i/ k = 1 and 54 = 2 

otherwise 

with 84 = 2k max (m2 + , m, rn 1 + , mi). 

Proof: According to the construction we have 

2k-i 4 (u. — (92 91 +	KS 2	in Q. 

Since  is a function of -boundary layer type, it follows that 

92 +91 - Vlr = g + r with Irl	(N arbitrary) 

in the domain lxi ;5 x0 < . I. However, analogous to the above, we obtain only 

-	

(92 ±g 
+sv)r 

with 84 = 2k max (m2 + 1 m2 , mi + , m,). Now, 'we can conclude that K1s8' -s-- K2 52k 

X w1 (x2 ) and K1e2 I In e — K2e2 w(x2 ) if Ic = 1 and 84 = 2, respectively, with 

x,I,2k q 

- We(X2) = f f exp U (p 2k — q2k)) dp dg,
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\ are barrier functions for uf - 192+g1 
 k 2	+ v . Because of 

iw(x2 )1	K . Iln*el for k = 1 and lw(x2)1 5 K for 'k'> 1 

we obtain the assertion of Theorem 2.3 I 
In 'the case Q = {(x 11 x2) I —1 <x1 < +1, 0 <x2 </2(x 1 )) a boundary layer 

of the above type appears and' it does not change so muèh. 

Now we consider an other type of a singularly perturbed probleI, namely 

OU 
Lu	eL1u + x22k'	= 0 in Q 

u, ='g on  

where  = {( 1 ,x2')i —1 <xi <+	 x1; —/ 1(xj< <J()J.Here we have .. 

= 1( , , 0) u(—1,0)}. 

'Therefore we cannot impose conditions on the solution of the global problem U(x1). 
Let v1 • 2 be 'the local correctors in the neighbourhood of the boundary, such that 
ILv1'9. K 2 and v1 •2 + U satisfy the boundary conditions for x2 =. /2(zj) and 

= —1 1(x 1 ), respectively. Then, it holds  

V12 = V01 + 6V1112 ± EV2L2  

with  

= (gi -' U) exp	
/I 2k-1 1 1(x 1 )+ x2)  

v02 = (g2 - U) exp	
/22k:1 /2(x 1 ) — xi)	-	- 

If a11 , a1 and a0 do not depend on x21 then we can improve: the accuracy of the 
approximation by requiring 

'	
U a11 —i + a1 - + a0 U = 0. xi	'	xi  

If follows I4(U - (U + v' + v2))I :!z^ Ke2 .	•' ' ',	' 

In the domain lxi x0 < 1 vol and v02 are again exponentially small for x 2 = /2(x1) 
and x2 = —11(x 1 ), respectively. In the neighbourhood of lxii = 1 we obtain the 
conditions 

U(1) =g(1) and U(—i)=g(—l) 

by requiring
2	 '	 - 

Io1 lz,=f.(x)l + lV02ix=_f(ri)I	K	(s >0).  

Since a0 0 we can determine the solution U(x 1 ) of the global problem as the'unique" 
solution of the boundary value problem  

a2u	au 
aX12	ax,.	 (2.2) 

U(1)	g(1),	U(-1) = g(—l).	'
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For s we obtain, as above, that	 - 

8 85 = max (mm (m1+, m2+) + lm i+, mm (mj+, +) + l 2 + 1 -	S 

mm (n, m2 ) _.lL lmi , mm (m1 , m2 ) - -f- lm2j 

By means of the barrier function 

Kles- K2e exp(—K3x1) 

we immediately obtain 

Theorem 2.4: Let L0 = z221 - and let the singular line lie in the interior 
ax, 

of the domain Q. Furthermore, let a 11 . a 1 , a0 be independent of x 2 . Then it holds 

- (U + Vol + V0 2 )11:5-, Ken' 

with the above defined s 51 where U(x 1 ) denotes the solution of the boundaiy value problem 
(2.2). 

Remark: In the case k = I a, a 1 and a0 can also depend on x 2 . Then, we require 
2 U	 ou	 S a11(x 1 , 0)	+ a1 (x1 , 0)7 + a0(x 1 , 0) U = 01 

set b. = U(x1) + eU 1 (X i , x2 ) + v' + v2 and determine U 1 from 

eU1	 a2U au	-. 
X2 ----- = [a11 (zj , x2 ) - a11(x1, 0)]----j ± [a1 (x1 , z2 ) - a1 (x 1 , 0)] --- 

aX2 •

	

	
x,,

 x2) - a0(x 1 , 0)] U. 

• It always hold s 2. a = 2 holds if and only if m 1 = m2 + = M l- M2_ 1 and 
k = 1. The assertion of GRASMAN [6], that s = 1 for k = 1, is not valid. 

The cases 

Q = { (xi, x2)j O < x2<f2(x 1)} and Q={(x1,x2)I—f1(xi)<x2<0}, 
respectively, are less interesting since the solutions of the global problem, namely 
g1(x1 ) and 92(x1), respectively are uniquely determined. 

3. A singular line parallel to the characteristics 

We now consider 

4ue= eL 1u +'X2'

	

	0 in Q• 

u=g on 092 

with Q = 1(xi, x2 ) I - 1 <x 1 < -f- 1 1 0 <z2 <f(x1 )} and 'assume that the lines 
= const. intersect Q at exactly two points (except x 2 = 0 and x 2 = sup f(x1)). 

Furthermore, let us assume that /(z) </(0) for all x 1 + 0, such that 

r= {(x 1, x2)I- 1 < xi< o, z2 = I(x1)I, •' - 
r+=((x1,x2),Io<x1<±l,x2=t(xi)).
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Let u be the solution of the global problem' 

- Ou 
----=0,	Uj'. 

is a smooth function in D except a neighbourhood of (0,1(0)). Near the singular 
line x2 = 0 let ,=	and let v satisfy 

a22(x 11 0)— - -.= 0,	vk,o = g - x1 

This boundary layer probleni has been studied in [16], because of the singularity of 
3va2V' 

2 at (— 1,0) a regularization method has been applied. 
C9X j ac ex,

Theorem 3.1: Let Q = Q n {x I di'st (x, 1'.)>. Then it holds 

IIu - (u + v)o ^ Ke''. 

Proof: In Q, for corresponding regularization, we have' 

• ILL(u. - (u + v))I	K2+)1, 
ju, - (u ± v)I0 :!E^Ks(2+'),. ju, —(u ± v)Ir = 0, ju, - (u + v)I ;5 K 

according to the construction. Now, let V = (x 11 x2 ) be a smooth function with 
= 0 in Q, ip = 1 inQ\Q and --- 0. We construct a barrier fuietion S. by. 

setting	 2 ' 

8 (x11 x 2 ) = K 1 (x 1 , x2 ) + K2 E2 ( 2 + 1 ) exp (K3x 1 ) (K44-, V(x2 ))	 -. 
with

	

/ 2	2+!	1 
V(x2) - e l(2+l)x22	2-1	2	1 

x2 2	2 

2(2±I)'2+1	+ 

and appropriately chosen constants K1 , K2', K3, 'K 4 . S( . ) denotes the Lommel 
function. Asa result we obtain that 5, majorizes u, - (u + v) in Q. The restriction 
to Q,, yields the assertion . 1	 . 

Remark: Of course, it is possible to construct a local corrector in the neigh-
bourhood of 1'.,. For the study of the asymptotic behaviour in the neighbourhood 
of the points (0,/(0)) and (1,0) we refer to [14, 9]. 

The case'Q = {(x 1 x2 ) 1 —1 <x1 < +1, —/(x) <x2 </2(x1 )} and 1 even is not 
interesting, since nothing happens along the singular line. However, if 1 = odd, the 
problem becomes more difficult. For 1 = 1 this case have been considered by BARTON 
[1] and GORKOV [5].	.	 •
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