Pseudo differential operators in Hardy-Triebel spaces

L. PÄIVÄRINTA

Es wird bewiesen, daß Pseudodifferentialoperatoren der Klasse $L^0_{\varrho,\delta}$, $\varrho = 1$ und $0 \leq \delta < 1$, in den Triebelschen Räumen $F^*_{p,q}$ stetig sind.

В статье доказано, что при $\varrho = 1$ и $0 \leq \delta < 1$ псевдодифференциальные операторы класса $L^{\varrho}_{\varrho,\delta}$ непрерывны в пространствах Трибеля $F'_{p,q}$.

Pseudo differential operators of class $L^0_{\delta,\varrho}$, $\varrho = 1$ and $0 \leq \delta < 1$, are proved to be continuous in Triebel spaces $F'_{p,\varrho}$.

0. Introduction

Several results concerning the boundedness of speudo differential operators in function spaces are known: From the results of HÖRMANDER [5, 6], CALDERON and VAIL-LANCOURT [2], and CHING [3] it follows that operators of class $L^0_{\varrho,\delta}$ (cf. Chapter 1) are bounded in L_2 if and only if $0 \leq \delta \leq \varrho \leq 1$ and $(0, 0) \neq (\varrho, \delta) \neq (1, 1)$. ILLNER [7] proved the boundedness of operators of class $L^0_{1,\delta}$, $0 \leq \delta < 1$, in L_p , 1 .

In this paper we consider the Triebel spaces $F_{p,q}^s$ in \mathbb{R}^n . For the definition see Chapter 2. These spaces contain many classical spaces as special cases: For 1 $we have <math>F_{p,2}^s = H_p^s$, the Bessel-potential spaces. If $s \in \mathbb{N} = \{1, 2, ...\}$ these are the usual Sobolev spaces. For $0 we obtain the local Hardy spaces <math>h_p = F_{p,2}^0$ of GOLDBERG [4]. This was proved by BUI HUY QUI in [1].

Pseudo differential operators in Triebel spaces have previously been considered in [1] and [8]. The first result in this direction was due to GOLDBERG [4] who proved that the operators in $L_{1,0}^0$ are bounded in h_p (cf. also [9]). Bui Huy Qui extended this to $F_{p,q}^s$. Recently NILSON [8] proved that also operators of class $L_{1,\delta}^0$, $0 < \delta < 1$, are bounded in h_p . Via interpolation he also succeeded to generalize this to $F_{p,q}^s$. However, his result contains some unnatural restrictions on the parameters p and q. The aim of this paper is to remove these restrictions and thus prove the following: Let $T \in L_{1,\delta}^m$, $0 \leq \delta < 1$, $-\infty < m < \infty$. Then for all $0 < p, q < \infty, -\infty < s < \infty$

$$T: F_{p,q}^s \to F_{p,q}^{s-m}$$
.

From this we get the above mentioned results of Illner, Goldberg, Bui Huy Qui and Nilsson as special cases. For further generalizations see Remark 3.7 in Chapter 3.

1. Definition of a pseudo differential operator

Let r be a polynomially bounded measurable complex valued function in $\mathbb{R}^n \times \mathbb{R}^n$. The pseudo differential operator r(x, D) with symbol r is defined by the formula

$$r(x, D) f(x) = \int e^{ix\xi} r(x, \xi) \hat{f}(\xi) d\xi, \qquad x \in \mathbf{R}^n, \qquad f \in S,$$
(1.1)

where S denotes the Schwartz space in \mathbb{R}^n and \hat{f} is the Fourier transform of f (integrals without any integration limits are taken over all \mathbb{R}^n). We say that r belongs to the class $S_{\rho,\delta}^m$, $m \in \mathbb{R}$, $0 \leq \rho, \delta \leq 1$ if for each multi-index α and β there is a constant $c_{\alpha,\beta}$ such that

$$|D_{\xi} D_{x}^{\beta} r(x,\xi)| \leq c_{\alpha,\beta} (1+|\xi|)^{m+\delta|\beta|-\varrho|\alpha|}$$

holds for all x and ξ in \mathbb{R}^n . If $r \in S^m_{\varrho,\delta}$ then the corresponding pseudo differential operator r(x, D) is said to be in class $L^m_{\varrho,\delta}$. If $r(x, D) \in L^m_{\varrho,\delta}$ then, clearly, it maps S continuously into itself. Hence we may extend it to a continuous operator from S' into S' by the formula

$$\langle r(x, D) f, \varphi \rangle = \langle \hat{f}, \tilde{\varphi} \rangle$$

where $\varphi \in S$ and $\tilde{\varphi}(\xi) = \int e^{ix\xi} r(x,\xi) \varphi(x) dx$. By S' we mean, of course, the space of tempered distributions in \mathbb{R}^n , the dual of S.

2. Function spaces

To define the Triebel spaces $F_{p,q}^s$ and the Besov spaces $B_{p,q}^s$ we choose a sequence of test functions $(\varphi_k)_{k=0}^{\infty}$ with the properties:

$$\begin{split} & \text{supp } \varphi_0 \subset \{\xi \mid |\xi| \leq 2\}, \\ & \text{supp } \varphi_k \subset \{\xi \mid 2^{k-1} \leq \xi \leq 2^{k+1}\}, \qquad k \in \mathbb{N}, \\ & \sum_{k=0}^{\infty} \varphi_k(\xi) = 1, \quad \text{for every} \quad \xi \in \mathbb{R}^n, \end{split}$$

and for any multi-index α there is a constant c_s such that

 $|D^{\alpha}\varphi_{k}(\xi)| \leq c_{\alpha}2^{-|\alpha|k}.$

For $0 < p, q < \infty$ and $-\infty < s < \infty$ we define F^s_{pq} to be the space of all $f \in S'$ such that

$$\|f\|_{F_{p,q}^{*}} := \|(2^{sk}\varphi_{k}(D) f)_{k=0}^{\infty}\|_{L_{p}(l_{q})} < \infty.$$

$$(2.1)$$

Notice that according to our notation (1.1) $\varphi_k(D) f = F^{-1}(\varphi_k \hat{f})$, where F stands for Fourier transform in S' and $\hat{f} = Ff$. By the norm $\|\cdot\|_{L_p(f_0)}$ we mean

$$||(f_k)||_{L_p(l_q)} = \left(\int \left(\sum_k |f_k(x)|^q\right)^{p/q} dx\right)^{1/p}$$

If we change the roles of $\|\cdot\|_{l_q}$ and $\|\cdot\|_{L_p}$ in the right hand side of (2.1) we get the Besov spaces $B_{p,q}^s$ consisting of those $f \in S'$ for which

$$\|f\|_{B^{s}_{p,q}} := \|(2^{sk}\varphi_k(D) f)_{k=0}^{\infty}\|_{l_q(L_p)} < \infty.$$

Remark 2.1: For the properties of $F_{p,q}^s$ and $B_{p,q}^s$ see [10, 14, 15]. We only mention that different choices of the sequence $(\varphi_k)_{k=0}^{\infty}$ lead to equivalent (quasi) norms. For simplicity we also assume that $\varphi_k(\xi) = \varphi(2^{-k+1}\xi)$, $k \in \mathbb{N}$, where $\varphi = \varphi_1$ is an appropriate function and that $\sum_{k=0}^{\infty} \varphi_k(\xi) = 1$.

Remark 2.2: Below we shall need another sequence of test functions $(\psi_k)_{k=0}^{\infty}$ with $\psi_k(\xi) = \psi(2^{-k}\xi), k \in \mathbb{N}$, where ψ is chosen so that

 $\psi_k(\xi) = 1$, for $\xi \in \operatorname{supp} \varphi_k$ and $\operatorname{supp} \psi_k \subset \{\xi \mid 2^{k-2} \leq |\xi| \leq 2^{k+2}\}$

(with natural modification for k = 0). It is not hard to see that the use of this sequence instead of $(\varphi_k)_{k=s}^{\infty}$ in the definition of $F_{p,q}^s$ and $B_{p,q}^s$ leads to the same spaces and equivalent (quasi) norms (cf. [15: Chapter 2.1]).

Remark 2.3: We recall the following interpolation theorem:

$$B_{p,q}^{s} = (F_{p,2}^{s_0}, F_{p,2}^{s_1})_{\theta,q}, \qquad s = (1 - \theta) s_0 + \theta s_1, \qquad s_0 = s_1.$$

For this result see [14: p. 72].

3. $F_{p,q}^{s}$ – estimates for pseudo differential operators

We start with the following result.

Theorem 3.1: Let $r \in S_{1,\delta}^0$, $0 \leq \delta < 1$ and T = r(x, D) be the corresponding pseudo differential operator. Suppose additionally that $r(x, \xi)$ has compact support in x. Then

$$T: F^s_{p,q} \to F^s_{p,q} \quad for \quad 0 < p, \quad q < \infty.$$

$$(3.1)$$

More precisely, for $f \in S$

$$\|T'\|_{F_{p,q}^{*}} \leq c \, \|/\|_{F_{p,q}^{*}} \tag{3.2}$$

where c only depends on p, q, n, δ , s and on the Lebesgue measure of $\operatorname{supp}_{x} r(x, \xi)$.

Proof: For simplicity we suppose that s = 0. The general case follows similarly. We recall the Leibniz rule

$$\varphi_j(D) r(x, D) \sim \sum_{\beta} \frac{i^{-|\beta|}}{\beta!} r_{(\beta)}(x, D) \varphi_j^{(\beta)}(D).$$
(3.3)

Here $r_{(\beta)}(x,\xi) = (iD_x)^{\beta} r(x,\xi)$, $\varphi_j^{(\beta)}(\xi) = (iD_{\xi})^{\beta} \varphi_j(\xi)$ and \sim means that the operators coincide modulo a smoothing operator (cf. [13]).

Let $f \in S$. In the spirit of (3.3) we start with the expression

$$r_{(\beta)}(x, D) \varphi_j^{(\beta)}(D) f(x).$$
 (3.4)

Since $\psi_j(\xi) = 1$ in supp φ_j this is equal to $r_{(\beta)}(x, D) \psi_j(D) \varphi_j^{(\beta)}(D) f(x)$. By denoting $\psi_j(D) f$ by f_j we obtain

$$r_{(\beta)}(x, D) \varphi_j^{(\beta)}(D) f(x) = \int K^j_{(\beta)}(x, y) f_j(y) dy$$

where

$$K_{(\beta)}(x, y) = \int e^{i(x-y)\xi} r_{(\beta)}(x, \xi) \, \varphi_j^{(\beta)}(\xi) \, d\xi.$$
(3.5)

In the following lemma we estimate the kernel $K_{(\beta)}^{j}(x, y)$.

Lemma 3.2: For all $\lambda > 0$ there exists a constant $c = c_{\lambda,\beta}$ such that

$$|K_{(\beta)}^{j}(x, y)| \leq c \, \frac{2^{jn}}{(1 - 2^{j} \, |x - y|)^{i}} \,. \tag{3.6}$$

Proof: Let first j > 0. Integrating (3.5) by parts one obtains for every multi-index α

$$|(x-y)^{\mathfrak{a}} K_{(\beta)}^{j}(x,y)| = \left|\int e^{i(x-y)\xi} D_{\xi}^{\mathfrak{a}}[r_{(\beta)}(x,\xi) \varphi_{j}^{(\beta)}(\xi)] d\xi\right|.$$

Hence by using the Leibniz rule we obtain

$$\begin{aligned} |(x-y)^{\alpha} K_{{}_{(\beta)}}^{j}(x,y)| &\leq c_{\alpha} \int_{\substack{\gamma \leq \alpha}} \sum_{|\gamma| \leq \alpha} |r_{{}_{(\beta)}}^{(\gamma)}(x,\xi) D_{\xi}^{\alpha-\gamma} \varphi_{j}^{(\beta)}(\xi)| d\xi \\ &\leq c_{\alpha,\beta} \sum_{\substack{\gamma \leq \alpha}} \int (1+|\xi|)^{-|\gamma|+\delta|\beta|} 2^{-j|\alpha+\beta-\gamma|} (D_{\xi}^{\alpha+\beta-\gamma} \varphi) (2^{-j}\xi) d\xi \\ &\leq c_{\alpha,\beta} 2^{jn} (1+2^{j})^{\delta|\beta|} 2^{-j|\alpha+\beta|} \leq c_{\alpha,\beta} 2^{jn} 2^{-j|\alpha|}. \end{aligned}$$

Consequently we have for all $\lambda > 0$

$$|(x-y)|^{\lambda} |K_{(\beta)}(x,y)| \leq c_{\lambda,\beta} 2^{jn} 2^{-j\lambda}.$$
(3.7)

On the other hand it is clear that

$$|K_{(0)}^{j}(x,y)| \le c2^{jn}.$$
(3.8)

Thus we have proved the lemma for j > 0. Evidently the claim holds also for j = 0

We turn back to the proof of the theorem. From Lemma 3.2 we get the following estimate for (3.4)

$$|r_{(\beta)}(x, D) \varphi_j^{(\beta)}(D) f(x)| \leq c \int \frac{2^{jn}}{(1+2^j |x-y|)^{\lambda}} f_j(y) dy.$$

By introducing the Fefferman-Stein maximal function f_i^* ,

$$f_j^*(x) = \sup_{y \in \mathbb{R}^n} |f_j(y)| \ (1 + 2^j |x - y|)^{-\mu}, \ \mu > \frac{n}{\min(p, q)}$$

we obtain

$$|r_{(\beta)}(x, D) \varphi_{j}^{(\beta)}(D) f(x)| \leq c f_{j}^{*}(x).$$

Here we have taken $\lambda > \mu + n$.

Next we search for $\varphi_j(D) r(x, D)$ an expression similar to (3.3) and write

$$\varphi_{j}(D) r(x, D) f(x) := \sum_{|\beta| < N} \frac{i^{-|\beta|}}{\beta!} r_{(\beta)}(x, D) \varphi_{j}^{(\beta)}(D) f(x) + R_{j}^{N}(x) := g_{j}^{0}(x) + g_{j}^{1}(x).$$

For the sequence $(g_j^0)_{j=0}^{\infty}$ we get

$$\| (g_j^{0}(x))_{j=0}^{\infty} \|_{L_p(l_q)} \leq c \| (f_j^*(x))_{j=0}^{\infty} \|_{L_p(l_q)} \leq c \| (f_j(x))_{j=0}^{\infty} \|_{L_p(l_q)}.$$

The last inequality follows from a maximal inequality of Fefferman and Stein (cf. [11] or [15: p. 47]. Consequently

 $\|(g_j^0(x))_{j=0}^\infty\|_{L_p(l_q)} \leq c \|f\|_{F_{p,q}^0}.$

It remains to show the corresponding estimate for the remainder $R_j^N f$. Clearly, we may write

$$R_{j}^{N}f(x) = \int e^{ix(\eta+\xi)} \hat{f}(\xi) p_{j}^{N}(\eta,\xi) d\xi d\eta$$

where

$$p_{j}^{N}(\eta,\xi) = \hat{r}(\eta,\xi) \left(\varphi_{j}(\eta+\xi) - \sum_{|\beta| < N} \frac{i^{-|\beta|}}{\beta!} \varphi_{j}^{(\beta)}(\xi) \eta^{\beta} \right)$$
(3.9)

and $\hat{r}(\eta, \xi)$ is the Fourier transform of $r(x, \xi)$ with respect to x. In order to write (3.9) in a more convenient form we recall that $\sum_{\nu=0}^{\infty} \varphi_{\nu}(\xi) \equiv 1$ and that $\psi_{\nu}(\xi) = 1$ if ξ is in

the support of φ_r . This provides us with the formula

$$R_{j}^{N}f(x) = \sum_{r=0}^{\infty} \int e^{i(x-y)\xi} \varphi_{r}(\xi) q_{j}^{N}(x,\xi) f_{r}(y) dy d\xi$$
(3.10)

where $f_r = \psi_r(D) f$ and $q_j^N(x,\xi) = \int e^{ix\eta} p_j^N(\eta,\xi) d\eta$. In the following lemma we estimate the symbol $q_j^N(x,\xi)$.

Lemma 3.3: For each multi-index α and L > 0 there exist $N \in \mathbb{N}$ and a constant $c = C_{\alpha,L}$ such that

$$|D_{\xi} q_{j}^{N}(x,\xi)| \leq c 2^{-j} (1+|\xi|)^{-L}.$$
(3.11)

Proof: According to Leibniz's rule we have

$$|D_{\xi^{\alpha}}p_{j}^{N}(\eta,\xi)| \leq c \sum_{\gamma \leq \alpha} |D_{\xi^{\gamma}}\hat{r}(\eta,\xi)| \left| \varphi_{j}^{(\alpha-\gamma)}(\eta+\xi) - \sum_{|\beta| < N} \frac{i^{-|\beta|}}{\beta!} \varphi_{j}^{(\alpha-\gamma+\beta)}(\xi) \eta^{\beta} \right|.$$

By using the Lagrange remainder term in Taylor's formula we obtain

$$D_{\xi^{\alpha}} p_{j^{N}}(\eta, \xi)| \leq c \sum_{\gamma \leq \alpha} |D_{\xi^{\gamma}} \hat{\tau}(\eta, \xi)| \left| \sum_{|\beta|=N} \varphi_{j^{(\alpha-\gamma+\beta)}}(\xi + \theta_{\gamma}\eta) \eta^{\beta} \right|,$$

where $0 > \theta_{\gamma} < 1$, $\gamma \leq \alpha$. But because $r(x, \xi)$ has compact support in x it can easily be seen (cf. [5: Lemma 2.3]) that for each M > 0

$$|D_{\xi}^{\gamma}\hat{r}(\eta,\xi)| \leq C_{M}(1+|\xi|)^{-|\gamma|+\delta M} (1+|\eta|)^{-M}.$$
(3.12)

Thus we can estimate as follows

$$\begin{aligned} |D_{\xi^{\alpha}} p_{j}^{N}(\eta, \xi)| &\leq c \sum_{\gamma \leq \alpha} |D_{\xi^{\gamma}} \hat{r}(\eta, \xi)| \ 2^{-j(N+|\alpha-\gamma|)} |\eta|^{N} \\ &\leq C_{M} \sum_{\gamma \leq \alpha} (1+|\xi|)^{-|\gamma|+\delta M} (1+|\eta|)^{-M+N} 2^{-j(N+|\alpha-\gamma|)}. \end{aligned}$$
(3.13)

We assume from now on that j > 0. The case j = 0 follows in the same manner. We also consider the two cases $|\xi| > 2 |\eta|$ and $|\xi| \le 2 |\eta|$ separately. Let us first assume that $|\xi| > 2 |\eta|$. In this case we have

$$\frac{1}{2}|\xi| < |\xi + \theta\eta| < 2|\xi| \tag{3.14}$$

for every $0 \le \theta \le 1$. By taking into account this and the fact that $2^{j-1} \le |\xi + \theta_j \eta| < 2^{j+1}$ we see that $|\xi| \sim 2^j$. Thus we get from (3.13)

$$|D_{\xi}^{a}p_{j}^{N}(\eta,\xi)| \leq c(1+|\xi|)^{-L+n} 2^{-j}(1+|\xi|)^{n-|\alpha|+L+\delta M-N+1} (1+|\eta|)^{N-M}.$$
(3.15)

By taking first M large (e.g. $(1 - \delta) M > L + n + 1$) and afterwards N we see that

$$(1+|\xi|)^{n-|\alpha|+L+\delta M-N+1} (1+|\eta|)^{N-M} \le c(1+|\eta|)^{-|\alpha|+L+1+(\delta-1)M} \le c$$

and hence we obtain

$$|D_{\xi} {}^{n} p_{j} {}^{N}(\eta, \xi)| \leq c(1 + |\xi|)^{-L-n} 2^{-j}.$$
(3.16)

On the other hand if $|\xi| \leq 2 |\eta|$ we get from (3.13)

$$\begin{aligned} |D_{\xi^{a}} p_{j}^{N}(\eta, \xi)| &\leq c(1 + |\xi|)^{-L} (1 + |\eta|)^{(\delta-1)M+L+N} 2^{-j} \\ &\leq c(1 + |\xi|)^{-L} (1 + |\eta|)^{-(n+1)} 2^{-j} \end{aligned}$$
(3.17)

for M large enough.

To end up the proof of the lemma we conclude from (3.16) and (3.17) that

$$\int_{|\eta| \le \frac{1}{2} |\xi|} |D^{\alpha} p_{j}^{N}(\eta, \xi)| \, d\eta + \int_{|\eta| \ge \frac{1}{2} |\xi|} |D^{\alpha} p_{j}^{N}(\eta, \xi)| \, d\eta$$

$$\leq c |\xi|^{n} (1 + |\xi|)^{-L-n} 2^{-j} + (1 + |\xi|)^{-L} 2^{-j} \int (1 + |\eta|)^{-n-1} \, d\eta$$

$$\leq c (1 + |\xi|)^{-L} 2^{-j}$$

which is the desired estimate

To complete the proof of the theorem we write (3.10) as follows

$$|R_{j}^{N}f(x)| \leq \left|\sum_{r=0}^{\infty} \int \varphi_{r}(D) f(y) K_{r}^{j}(x, y) dy\right|$$

where

$$K^{j}(x, y) = \int e^{i(x-y)\xi} q_{j}^{N}(x, \xi) \psi_{\nu}(\xi) d\xi.$$

By taking $L = \lambda + 1$ in Lemma 3.3 we obtain for all $\lambda > 0$ that

$$K_{\star}^{j}(x, y) \leq c \frac{2^{-j} 2^{*n} 2^{-*}}{(1 + 2^{*} |x - y|)^{j}}.$$

Thus we have the estimate

$$|R_{j}^{N}f(x)| \leq c2^{-j}\sum_{\mu=0}^{\infty} 2^{-\mu}f_{\mu}^{*}(x).$$

Obviously for $0 < q \leq 1$.

$$\sum_{r=0}^{\infty} 2^{-r} f_r^*(x) \le c \left(\sum_{r=0}^{\infty} |f_r^*(x)|^q \right)^{1/q}.$$
(3.18)

For $1 < q < \infty$, (3.18) follows from Hölder's inequality. Hence for any $0 < q < \infty$

$$\|(R_{j}^{N}f(x))_{j=0}^{\infty}\||_{l_{q}} \leq c \|(f_{r}^{*}(x))_{r=0}^{\infty}\||_{l_{q}}$$

and finally the Fefferman-Stein maximal inequality yields (take λ large enough)

 $\left\|\left(R_{j}^{N}f(x)\right)_{j=0}^{\infty}\right\|_{L_{p}(l_{q})} \leq c \left\|f\right\|_{F_{p,q}^{0}}.$

This gives (3.2) and consequently the proof is complete

In the following theorem-we are going to abandon the restriction made on $supp_x r$.

Theorem 3.4: Let T = r(x, D) be in $L^0_{1,\delta}, 0 \leq \delta < 1$. Then for all $0 < p, q < \infty$ and s sufficiently large $T : F^s_{p,q} \to F^s_{p,q}$.

Proof: Let φ be a C^{∞} -function supported in $|x| \leq 1$. Furthermore, let ψ be another C^{∞} -function with $\psi(x) = 1$ in $|x| \leq 2$ and $\sup \psi \subset \{x \mid |x| \leq 4\}$. We put $\varphi_k(x) = \varphi(x - g_k)$ and $\psi_k(x) = \psi(x - g_k)$ where g_k , k = 1, 2, ..., goes through all the lattice points in \mathbb{R}^n . We also assume that $\sum \varphi_k \equiv 1$. Because of the known local representation of $F_{p,q}^s$ -spaces [16] we have

$$\|u\|_{F_{p,q}^{*}}^{p} \sim \sum_{k} \|\varphi_{k}u\|_{F_{p,q}^{*}}^{p} \sim \sum_{k} \|\psi_{k}u\|_{F_{p,q}^{*}}^{p}$$

(3.20)

for s large enough.

241

Now we break up T into two parts, $T = T_0 + T_1$, where $T_0 = \sum_{k=1}^{\infty} \varphi_k T \psi_k$. By using 3.20) we obtain

$$\|T_0 u\|_{F^*_{p,q}}^{p} \leq c \sum_{j} \|\varphi_j T_0 u\|_{F^*_{p,q}}^{p} \leq c \sum_{j} \left\|\sum_{k} \varphi_j \varphi_k T \psi_k u\right\|_{F^*_{p,q}}^{p}$$

and hence by Theorem 3.1

$$||T_0 u||_{F_{p,q}^{*}}^{p} \leq c \sum_{j} ||\psi_j u||_{F_{p,q}^{*}}^{p} \sim c ||u||_{F_{p,q}^{*}}^{p}.$$

- To estimate T_1 write $\chi_k = 1 - \psi_k$ and $T_1 = \sum \varphi_k T \chi_k$. Let $K(x, \cdot)$ denote the Fourier transform of $r(x, \xi)$, with respect to ξ . We get

$$T(\chi_k u) (x) = \int K(x, x - z) \chi_k(z) u(z) dz.$$
(3.21)

If $\varphi_k(x) T(\chi_k u) (x) = 0$ we must have $|x - z| \ge 1$ in (3.21). Thus we may assume that K(x, z) = 0 for $|z| \le 1/2$. Note that this also means a modification to $r(x, \xi)$. But, for $|\gamma|$ sufficiently large $|z^{\gamma} D_x^{\beta} D_z^{\alpha} K(x, z)| \le c_{\alpha\beta\gamma}$ and hence we obtain for all $N \in \mathbb{N}$

 $|D_{z}^{\beta}D_{z}^{\alpha}K(x,z)| \leq c_{\alpha\beta N}(1+|z|)^{-N}.$

Consequently, we also have

$$|D_x^{\beta}D_{\xi}^{\alpha}r(x,\xi)| \leq c_{\alpha\beta N}(1+|\xi|)^{-N}$$

for each N and therefore $r(x, D) \in L_{1,0}^{-\infty}$ and $T_1 \in L_{1,0}^{-\infty}$. Thus $T_1 : F_{p,q}^s \to F_{p,q}^s$ which proves the theorem

Having now done all the hard work we may prove the following assertion.

Theorem 3.5: Let T = r(x, D) be a pseudo differential operator of class $L_{1,\delta}^m, -\infty < m < \infty, 0 \leq \delta < 1$. Then for all $0 < p, q < \infty$ and $-\infty < s < \infty$.

 $T: F_{n,a}^s \to F_{n,a}^{s-m}$

Proof: The claim follows reading from the following basic facts: If σ_s is the pseudo differential operator $(1 - \Delta)^{s/2}$ then $\sigma_s \in L^s_{1,0}$. Moreover, $\sigma_s \colon F^{s'}_{p,q} \to F^{s'+s}_{p,q}$. Finally, if $S \in L^m_{1,\delta}$ and $T \in L^m_{1,\delta}$ then $ST \in L^{m+m'}_{1,\delta}$ (cf. [13: p. 225])

Corollary 3.6: If T is as in Theorem 3.5 then $T: B_{p,q}^s \to B_{p,q}^{s-m}$ for all $-\infty < s$, $m < \infty$ and $0 < p, q < \infty$.

Proof: Use Theorem 3.5 and Remark 2.3

Remark 3.7: The question arises whether the result in Theorem 3.5 can be extended for the values $0 < \varrho < 1$ as in L_2 . The answer is negative because there are symbols in $S_{\varrho,0}^0$, $0 < \varrho < 1$, independent of x which are not Fourier multipliers in L_p , $p \neq 2$. This can be seen, as noted by P. Nilsson, in the following way. Let $\|\cdot\|$ denote the multiplier norm in L_p and assume that

$$||m|| \leq c \sup_{\alpha} ||m^{\alpha}(\xi)|/(1+|\xi|)^{-\varrho|\alpha|}.$$

To obtain a contradiction replace m by $m(\cdot/\varepsilon)$ and observe that the left hand side does not depend on ε .

16. Analysis Bd. 2, Heft 3 (1983)

REFERENCES

- [1] BUI HUY QUI: Some aspects of weighted and non-weighted Hardy spaces. Preprint.
- [2] CALDERON, A. P., VAILLANCOURT, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187.
- [3] CHING, C.-H.: Pseudo-differential operators with nonregular symbols. J. Differential Equations 11 (1972), 436-447.
- [4] GOLDBERG, D.: A local version of real Hardy space. Duke Math. J. 46 (1979), 27-41.
- [5] HÖRMANDER, L.: Pseudo-differential operators and hypoelliptic equations. In: Proc. Symp. Pure Math. Vol 10, Amer. Math. Soc., Providence. R.1. 1966, 138-183.
- [6] HÖRMANDER, L.: On the L_2 continuity of pseudo-differential operators. Comm. Pure Appl. Math. 24 (1971), 529-535.
- [7] ILLNER, R.: A class of L^p -bounded pseudo-differential operators. Proc. Amer. Math. Soc. 51 (2) (1975), 347-355.
- [8] NILSSON, P.: Pseudo differential operators in Hardy spaces. Preprint: Lund 1980.
- [9] PEETRE, J.: Classes de Hardy sur les variétés. C.R. Acad. Sci. Paris (Sér A-B) 280 (1975); 439-441.
- [10] PEETRE, J.: New thoughts on Besov spaces. Duke Univ. Math. Series, Duke Univ.: Durham 1976.
- [11] PEETRE, J.: On spaces of Triebel-Lizorkin type. Ark. Mat. 13 (1975), 123-130.
- [12] SJÖLIN, P.: Two inequalities for pseudo differential operators. Anal. Math. 5 (1979), 235-249.
- [13] TREVES, F.: Introduction to pseudodifferential and Fourier integral operators, vol. 1 and 2. The University Series in Mathematics: New York 1980.
- [14] TRIEBEL, H.: Interpolation theory, function spaces, differential operators. North-Holland Publ. Comp.: Amsterdam-New York 1978.
- [15] TRIEBEL, H.: Spaces of Besov-Hardy-Sobolev type. Teubner-Texte Math. Leipzig: Teubner 1978.
- [16] TRIEBEL, H.: Personal communication.

Manuskripteingang: 24, 02, 1982

VERFASSER:

Lassi Päivärinta

Department of Mathematics, University of Helsinki SF-00100 Helsinki 10, Hallituskatu 15