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On stable space dependent stationary solutions	- 
• o a competition system with diffusion  

- P. DE MOTTONI, A. SCHIAFFINO and A. TESEI	 - - 

Es wird Ciii atis zwei Gleichungen bestehendes, quasilineares parabolisches Reaktions-Diffu-
sionsgleichungssystem behandelt, Avobei nur in ciner der beiden Gleichungen cin Diffusions-
term auftritt und Dirichletsche Randbedinguigen vorgeschrieben werden Untersucht wird die 

• Bifurkation nichtnegativer stationärcr Löshngcn, ihr asyiiptotischer Stabilitätsclmaiakter 
• mid ihre Abhangigkeit von der Raurnvariablen. 

- PaccltaTplIBaeTcn pea KTIII3uo- i3x!)y3uonHae1 CI1CTeMa 3ByX HIa.3uJIlIlleii}lbix Hapa6oJili- 
'ieci-oix aln)(J)epeHtuiaJ1I,Hhix ypaBlielIBü, T01biC0 B Oal1OM 113 KoTopaix liMeeTcn aliy3I1 Off HMfi 
'i.neu it nocTaB.neiio icpaeoe yeioBue J.IipBxe. 14ccJ1e1y1oTcH 6. 11(flypKatum nO.nO?IuITcJIbHIJx 
cT611lIoHuI)HbIX peiueiiii xapaep ttx ac1lM[1TOTi 11ecHofl VCTOfI'I1IBOCTII it lix 3anuduMocm 
OT lipocTpaEicTBeHHou nepelielluoll. 

A quasilinear parabolic system of two equations is considered, only one of which includes the 
diffusionrni. The bifurcation of nonnegative stationary solutions is studied together with 
their stability character and their dependence on the "space" variables. 

I. Introduction 

Quasilinear parabolic systems arise in several biological and chemical models and 
are usedto understand propagation phenomena, oscillations or stabilization towards a 
stationary state. While concerning the eistence of stationar y solutions-- subject to 
rather general boundary conditions - quite general results are available [1, 6, 7, 181, 
convergence towards such distinguished solutions and their, stability character pre- 

u sent iiore difficlt mathematical problems, and the results so far obtained do not yet 
claim to a comparable level of generality (for an extensive review, see [4]). In fact, in 
a niimbr 'of prima fade naive and very simple models, the 'problm of asymptotic 
stability of (non-trivial) t-ationary solutions is still open - this is especially true if 
the system are supplemented with homogeneous boundary conditions which are 
not piirelyof Neumann type: in such case the search for non-trivial stationary so-
lutions leads to quantities which are space-dependent 51, which niaks their stability 
analysis considerably more difficult'). These are, to our knowledge, -not very many 
results in this sense [5, 9, 17]: our aim here is to present a contribution in this direc-
tion, concerning a competition model for two species, only one of which is subject to 
diffusion (and to Diriehlet homogeneous boundary conditio'n). In spite of the appa-
rent simplicity of the model, the resulting equations are not deprived of' interest 
- they involve, by the way, a free boundary problem of non-variatioiial t ype -- and 
in fact, we shall display in' a quite complete way nontrivial bifurcation and stability 

) Pure Neumann homogeneous boundary- conditions allow. in case of constant coefficients, to 
look for constant stationary solutions, whose, stability can be investigated in a relatively easy 
way: see [4] for a survey of results.	•	 - 
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properties of (non-negative) stationary solutions. In addition, informations on the 
space structureof these solutions will be obtained.  

Specifipally, we shall be dealing with the following initial boundary value problem: 

	

u.= a1La ± u(b 1	'c iu - d1 v)	in (0,.+oo) X .6, 

O jv = v(b2 - c2v—d2u)	 .	 .. 
u=0	'	 in (0,+0e)xQ,	(1.1) 

- u=u0 ,. v='v0	
,	

.	 in {O}Q. 

Here .Q	R'1 is an open bounded set with smooth boundary Q,	ce,'d1 (1 = 1, 2)
are positive constants and 'u0 , v0 are given nonnegative functions. 

We are going to investigate existence, uniqueness and asymptotic stability prop-
erties of stationary solutions to-(1.1), namelyof solutions of the following elliptic 
problem:	 -	- 

a 1/u +'u(b1 - c1 t	d1 v)	- 
v(b2 - c2v - d2 10 = 0	.	.	in Q,	 (1.2) 

•	u=zO	..	.	 in aQ. 
Of, special interest will be the comparison with the properties of the ordinary differ-
ential system (the so-called space-clamp system) we formally obtain by dropping 
the diffusion term in the first equation in (1.1). 

Throughout this paper we shall assume the following inequalit .yto hold: 

( CO)	c 1 c2	'd 1 d2 .	.	.	 .	- 
In terms of the same space-clamp system, assumption (Co) implies the slope of the 
v-dine to be not steeper than that of the u-dine, thus ensuring the asymptotic, 
stability of the solution (if any) having both components positive. if, in addition, we 
assume..	. .	 . 

(C1)
2

,	 -.	 . 
c1  

the only nontrivial stationary solutions of the space-clamp system are known to be 
(b1 /c 1 , 0) (which is stable and attracts the first open orthant) and (0, b2/c2) (which is 
unstable). Coexistence of both species at equilibrium is therefore impossible. 

The main purpose of the present paper is to prove that the above picture can he 
- destroyed 'if arbitrarily small diffusion is introduced. As we shall see, if the diffusion 

• coefficient a i is (nonzero but) small in a suitable sense, stationary, solutions of (1.1) 
describing coexistence of both species arise which have no counterpart in the ordi 
nary differential case; moreover,,one of these solutions enjoys attractivity'and stabi-
lity properties (with respect to solutions of (1.1)) in a sense to be made.precise in the 
following. Such stable stationary, solution exhibits space segregation (see, [10, 19]) as 
a consequence of the assimed homogeneous Dirichiet . boundary conditions: as a 
matter of fact, the non-diffusing species is allowed to survive near the boundary. OS2, 
namely where the size of the competing population is controlled because of the con-
dition it = 0 on 0Q.	 .	 .	 . 

It will also: be proved that diffusion dc-stabilizes the (unique) solution of (1.1) such 
that u.> 0, v = 0 in Q, whenever it exists; on the other hand, if a 1 is increased be- 
yond a critical value (and the boundary Q is connected), coexistence of both species - 
is no longer possible and the stationary olution (0, b2/c2 ) of (Li) becomes asymptoti-
cally stable in the uniform norm. In this respect, the situation just described can be 
viewed as a typical bifurcation phenomenon '(for the de-st ' abilizung effect of 'dif- 

- ,	fusion see, for instance, [1.1, 14]).	 •	.	.	.'	. .
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2., Statement-of Results  

Let Q R" be an open bounded set with smooth boundary aQ; define Q := Q  c9D.
 We shall work basically with the Banach spaces of continuous functions C(Q) and 

G0(Q) := {u € C(Q).J u = 0 on aQ}, endowed with the supremum norm; the natural 
ordering in C(Q) i.e.  u v(u v € C(D)) if u(x) t(x) for any . x E 12 will be used 
We shall also be dealing with the Banach space' G1 (Q) of continuously differentiable 
functions on Q, with the Holder spices CC(Q) (k integer; a € (0,1)) andwith the 
Soholev spaces W 2 (Q)'(p> 1)	 '	 -' 

We shall denote by -p0 < 0 the principal eigenvalue Of the Laplacian subjec ' t to 
Dirichlet homogeneous boundary conditions and by 00 the corresponding (normalized) 
cigenfunction L 'ko+ v0qS0 == 0	> 0 in Q 4 = 0 on Q,f 02(x) dx = 1 

Concerning solutions of,the initial boundary value problem (1.1), the following re-
'stilt can be easily proved.  

The ore mO: 'For any nonnegative no €-' C0(), v0 € C() there exists a unique non-
-'negative, global classical solution. 0/(1.1): u(t; •)'€ C2 (Q)'n CO(Q), v(t, ) € C(Q) for 
any t> 0. Moreover,	,. 

mx u(t, ) ^ max Jbi /cj , max u0(x)j	(t ^ 0),' 
4E T2,	 I.	XE!?  

max v(t, x)	max b2/c2 umax 0(x)1	(1 > 0) 
XE!? ' ,	'	I,	rEQ	') 

2A. Stationary Solutions Existence and Uniqueness Results 

-By a regular solution (u, v) of'system (1.2) we mean any solution such that* u, 0, 
v Oin'Q. and u E C2'(Q) ,n C0(Q), V. E C(Q). Solutions of (1.2) will be also referred to 
as stationary solutions associated with problem (1.1). Stationary solutions having both 
components (rep. one componeit) non identically vanishing in Q will be termed 
coexistence (non-coexistence, respectively) stati6nary solutions. - 

Regular non-coexistence colutions of problem (1.2) are'immediatCly seen to exist: 
hside (0, b2/c2),,the solutioh (, 0) (denoting the unique strictly positive solution of 
.he probleni: a i A ft ± ü(b 1' -- c) = 0 in Q, ft = 0 on ØQ) exists if a1 v0 <b1 . As for 

,eoexistence stationary' solution, the following theorem, will be proved. 
Theorem Al: Assume (C 1 ) and  

(S i) a1 v0 < b 1 - d1 - 

Then:  
.a) there. exists a regular * coexistence solution (u* , v*) o/(1.2. Moreover, - (u*, v*) is 

unique among regular stationary solutions (u, v) of (1.1) 'with u 0, which satisfy the 
following condition:  

, (P) u(x)	b2/d2 for any x € Q1 ':= {x'€'Q I v(x) = 0);.:	,• , 

-' b) if in additio,n the boundary Q is, connected, (u*, v*) is the unique 'regular coexistence 
'solution 0/(1.2). Moreover, v* vanishes in a closed non-empty subset of Q and is equal to 
b2'/c2 on 3Q, provided av0 is small enough.  

13 
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It is worthwhile pointing out that, under the assumptions (S 1 ), (C1 ), regular co-
existence solutions of (1.2) exist when OD is not connected, whièh do not satisfy 
assumption (P). This can he proved in the one-dimensional case by a direct calculation 
using phase-energy methods, as the following example shows. 

• Example: Let Q = (0, 1), c i d (i = 1, 2) and b 1 -- c 1 b2/c2 > a'1 i2. Then there 
exist a E (0, 1) and a regular coexistence solution (u, v) of (1.2) such .that: u(x) > 0 
for any x  (0, 1); v(0) = b2/c21 v(x) = 0 for any x E-(a, 1]. 

'	Besides, weak solutiois of (1-2). whose v-component is not continuous; which do 
-not satisfy assumption(P); can be easily exhibited in the one-dimensional case. 

TheoremA2: Assume (S 1 ) and	- 

•	 S	

(C2) b 1/c 1 < b/d-
 Then; there exists a unique regular coexistence solution (i, ) of (1.2); moreover ü > 0 

inQ,>0inQ. 

If the diffusion coefficient a1 is increased, the following sit.uatioh prevails.	- 
Theorem A3: Assum e 

(S2) a 1 r0 > b 1 - d1 b2/c2 .	- 

Them the only regular solution o/.(1.2) such that v> 0 i Q is (0, b2/c2). 
•	

-	 A more refined, though less general result of the same kind is given in the following 
proposition.. 

•	 Therem A4: Assume (S2 ), (C1 ) and theconnectednssoJ aD. Then (0, b2/c2 ) is the 
•	unique regular solution of (1.2) such that v	0, v	0 in Q. 

2B. Stationary Solutions:-Attraetivity and Stability Results 

Concerning asymptotic proportion of the above referred stationarV solutions, th e
 following theorem will be proved. 

Theorem B1: Assume (S 1 . Then: -	 0 

a) if (C1 ) holds, /or.any a 1 E (0,) (61 > 0) and any a2 > 1 the set 

d(a1 a2) = {(u v) E C0()(DC((3) I a	U :S^ a2u* 

•	 I - d2au	< v < -[b. - d20ri90]+} 
• 

is invariant with respect to the e'vblution dci inedby system (1.1). Moreover, any solution  
of (1.1) with initial data (u0, v0) E d(a, a2) approaches (u v*) in the C0(Q)	C(Q)
norm as t diverges;	•	 -	.	 -	- 

b) if (C2) holds, the same result holds for (ü, ) with respect to the invariant set (a 1 E 

-	S	 • 

•	2) := {(u v) E Co()	.C(Q) 1,a10	U	a2u' • .	 -	 • 

— d2 a2ifl+ < v	-k-- [b2 --d2a19201^I. 
•	 S	 S	 C2	 .	 C2	 J.. 

•	'I	•	 •
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Let us observe that the lower hound	162 - d2 a2u*J^ ^ v is satisfied for any 
•c2	 1 nonnegative v	t3*; on the other hand, the upper constraint v	- [b2 —.d2a101+ 

is in a way not very severe, as the v-component of any nonnegative solution of (1.1)-
•	satisfies the inequality v(t) :5 b2/c2 + s for any s > 0, provided t is large enough. 

If conditions (S 1 ) and (C2 ) hold (which imply the unique regular coexistence so- 
•	l tit ion to -have a strictly positive v-component in -Q), a different .attractivity result 
•	can be proved. 

Theorem B2: Assume(S 1 ) and (C2 ). Then (ü, ) attracts in the C0(Q)	C(Q)-norm 
any solution of (1.1) with i'iiitialdata (?L, v0) such that: uo E 00(Q), u > 0, it	Oin Q;
v0 E C1(Q),v0 >0 in D. 

Rema'rk: A related result for predator-prey systems is contained in [15]. 

Theorem 133: Assume (80). Then. (0, b2/c2) is asymptotically stable and attracts (in 
the ,C0(Q)	C(Q)-norm) any solution 0/ (1.1)_with initial data (u0 , v0) such that: 
'll E CO(D), no	O in- Q; v0 € C(Q), v0 > 0. in 12.  

•	As already remarked, regular coexistence solutions not satisfying assumption (P) 
may exist; however, the following theorein shows that they are unstable' 	fact,
instability will he proved for solutions of (1.2) violating (P) and having possibly 

- discontinuous v-components - in which case the first equation in (1.2) must he inter-
preted in a weak sense, an appropriate function space being ( W 2 (Q) nC0(Q))L(Q) 
(p>l). 

Theorem B4: Let (u, ) € (W P(Q) n G0(Q))	L(Q) (p	1) be a solution of
(1.2) such that ü ^ 0, ü 0 and > Oalmost everywhere in S?. Assume that 

•	
(P) The set ij , := (x € Q I (x) = 0, and u(z) < b2/d2 } has positive measure. 

Then (u, ) is unstable in the C0(Q) E[)L(Q)-norm.	 - 
As a consequence of Theorem B4 , the non-coexistence solution (u, 0)-whose counterpart 

in the space'-clamp case is the solution (b 1 /c 1 , 0) - is, always unstable. 
The situation outlined in the above theorems can be summarized as follows: 

-'(i) (C 1 ) holds. Then in the absence' of diffusion (i.e., if a 1 = O) there exists a unique 
as 	stable stationary solution, namely (6 1 /c 1 , 0). If a 1 v0' € (o b 1 — d1 12) 

(i.e., if "small" diffusion is introduced), the coexistence stationary solution (u*, v*) 

	

arises (which has n6 space-clamp analogous); such solution enjoys the uniqueness and	• 

	

attractivity properties stated in Theorems Al, Bi a). In particular, if t9b is connected,	•
itis uniquely determined among the regular coexistence stationary solutions, and in 
that case it exhibits a marked space structure (see Theorem A3 b)). Yet even without 
assuming the con pectedness of Q, (u* , v*) plays a unique role; since, according to 
Theorem B4, any other coexistence st'tionary solution of (1.1) is unstable, if diffusion 

is increased (i.e., if a 1v0 > b 1 — d0 4), (u* , v*) ceases to exist and 
C2	 c2,

asymptotically stable and attractive as asserted in Theorem B3 (see Fig. I, where 
-• 'stable stationary solutions are depicted in the case Q = [0, 11, v(0) = v(1).	• 

(ii) (02 ) holds: in particular, let its discuss the significant case where, in addition, 
c 1 c2 > d i d, and b 1 - d1 

.-! > 0 (observe that the last inequality is implied by (S1),
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I	 'a	 I
V 

	

x_	 \•_, 
am. 

•	0	 1x.0	 lx	0	 lx 

(a)	 .	 N.	 (c) 

Fig. 1. Stable. stationary regular solutions for Q = ( 0, 1),v(0) = v(1) under hypothesis (C1): 
(a) no diffusion: a1v0 = 0;	-	 - 
- -•	 •'	/ -	 b	

(b' a1v0 \ _ 0 
(b) small diffusion a 1v0 E 10, b 1 '— d1 --t : 1. •,	 b2. •	 c2/	(b") a 1v0	b 1 -- d1. 

—	 C2.	 --

(C) large diffusion:,. a,v, > b - d1 b2/c2 . -	 = 

•	while it is'compatible with (S2 ); the case b 1 — d 1	< 0 is not-very interesting, since 

•

	

	it makes (S2 ) trivially satisfied: with respect to the space-clamp situation, no new 
feature is introduced by diffusion). Then, if diffusidn is absent (a 1 = 0), a unique. 

•	asymptotically stable coexistence stationary solution exists. Such situation is pre-
•	served if "small" diffusion is introuced (a i vo E (0, b1 - d 1	in fact, the coexist.-

O ) arises, which enjoys the uniqueness and attractivity ence stationary solution (fi, i3  
properties stated in Theorems A2, BI b), B2. No other coexistence stationary solution 

•	- exists. If strong diffusion is present ( a ivo> b1 ---- d1	(ft, ) disappears and the 
•	 .	 .	 .	 C21 

•	situation is much the same as that described under (i) above (see Fig: 2). 

	

U '	 V 

	

(J	 .•	- — — — — — — —
I-

01	0 x	U -	 1 
(a) •	.	•	 (b)	 (c) 

Fig. 2. Thesame under hypothesis (CO .	 •	- 

•	It can be said 'that introducing diffusion allows branches of attractive coexistence 
•

	

	stationary solutions to exist, which connect asymptotically stable stationary solutions 
-. of the problem without diffusion as a matter of fact, (u*, v*) converges to -(b 1 /c1 , 0) 

•	(uniformly on the Compact subsets of Q) as a 1 - 0 [12] and converges to (0, b2/c2)'as 

a 1 approaches from the left a* : - k-- (b 1 - d1 2 (this can be proved by general - 
•	•	 •	 •	 •VO	 C)	 -	 -
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bifurcaton results and checked by a direct calculation 1113]); similar results hold true 
for (u, 0) and (u, fl. Consequently, the overall situation can bd viewed as a typical 
bifurcation phenomen with respect to the paranieter' 1 (See-Figs. 3, 4). 

VA •	 ,..	.. 

01*	 ,	'.	
S 

- - - 

- •	Fig. 3. Bifurcation diagram of regular stationary solutions in case of connected 
•	 •••	 S 	 b1 b •	 S	 oundary, 'under hypothesis (C 1 ); a 1 = —(b 1 - d 1 	a 1° = -. 

S	 V0 \	 V0	 S 

VA 

S	

/• .00  

I-. ....- 
S	7'	 Fig. 4. The.same under hypo- 

I' u	 S	

•,	 ,	 thesis (C 2 ).	 S 

U. Stationary Solutions: a Singular Pertubation Result  

It is an open problem whether a situation similar to the 'above prevails when also the - 

	

v-component undergoes small diffusion; to discuss this point amounts to investigating	S

the elliptic problem  
•	-,	a 1 A u + u(b 1 5— cu - d1 v) ,_ 0

 

V	

'	 u + (b2 - c2v - d2u)= 0 	in Q,, 

on . aQ,  

where 0 <'e <a1 (the case where c/a, is not small and c 'i d (i '= 1, 2) was st'udied • 
in [17]). However, the following theorem can he proved. 

Theorem C: Let (u, vi) . denote any classical solution of (2.1) swih , that u	0,	•.,
v-, 0 in Q. Then the set {(u, v)} is relatively compact in the topology defined by the G1(Q) 

•	 S	
5	 •S	 S	 •	 •
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(respectively, L2(12) weak) convergence of the first (respectively, second) component,* any 
limiting point of {(u, v)} in such topologyis a regular solution-of (1.2) satisfying con-
dition (P). In particular, if (S,)and (C 1 ) (resp. (C2 )) hold, the only limiting points are 

• 
(0'
	and (u., v* ((0,	and (ü, )' respectively); if (S2 )7tolds, (ue, v converge to 
 C21	 \• C2, 

• (0, b2/c2 ) in Me above topology as e goes to zero. 

• Iet 'us remark that the above theorem makes no statements àbout the actual 
existence of nonnegative solutions M (2.1); singular perturbation methods such as 
those developped in [3] seem not applicable in the present context. In. the case (S1) 
And (C 1 ) hold, however, it highlights further the distinguished role of (u*, v*): from 
Theorem BI a) we already kilow about the attractivity property of such stationary - 
solution, any other nonnegative (in particular, coexistence) solution of (1.2) being 
unstable; from Theorem C we learn that (u* , v*) is the only coexistence stationary 
solution to which solutions of (2.1) (if any) can converge as s goes to zero. 

- 3. Proof of Existence and Uniqueness Results	 - 

-Let us first observe that the stationary system (1.2) involves a free boundary problem, 
the free boundary being the interface between-the two regions where either factor of 
the second equation vanishes, namely Q 1	{x € Q 'v()	0} and -Q2 := {x € Q I
b2 - c2v(x) — d2u(x) = 0). ' However, because of the non-variational nature of 
system (1.2), the usual matheivatical'toolsfor dealingwit.h free boundary probleni 
cannot he used; theieforc we shall proceed in a direct way.,	- -	To start with, let us observe-that aelass of regular êoexistenee solutions of (1.1) is 

• given by couples (v, v) such- that it is a nonnegative classical solution of the following - 
problem:  

a 1 A u j- (1 — c 1 u — ! [b2_.d2u1+) = 0 in. Q,	 - 
--	 c2	 S	 (3.1). 

u=Oon	Q	 --	
5	

•, 

and v := --- [b — d2u], As is immediately seen, an epiivalent va of character-
C2 

Ming such solutions amoig all (regular) solutions of (1.2) is to say that they satisfy 
assumption (P).	 S	 - 

Le m tu a 3. 1:.a) If(S 1 ) holds, there is a unique nonegative nontrivial solution u* of 
(3.1). b) If (S2) holds, no nonnegative nontrivial solution of (3.1) exists.	- 

Proof: Observe that problem (3.1) is of the form: a 1 L it ± ul(u) = 0 in Q, u = 0
on tQ, wherelp [0, -I- oo) —>'Ris(i) Lipschitz continuoiison bounded subsets, (ii) non-



increasing, (iii) negative for it > b 1 /c 1 , ( iv) differentiable for it > b2/d2 , wjth negative
- derivative. As a consequence, we can apply to (3.1) the results of [12] relating the 
`-existence of a (unique) nontrivial nonnegativ solution of (3.1) to the sign of (C o) - 

a i vo). As (0)	b 1 — d1 12 t he result follows I	• ' 

•	In the following lemmas, • t-he space structure of regular coexistence stationary 
solutions is investigated. -	/	 -	 • 

•	-Lemma 3.2: Assume (C 1 ). Then, for any regular coexistence solution (u, v) o/(1.2), •	'	u	0 in Q. In particular, it > 0 in Q;	-	 - 

1'
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Proof: It suffices to observe that, due to assumption (C 1 ), b 1 '— cu — d 1 v	0 
inQi	 S 

Lemma 3.3: Let (it, v) be a regular solution of (1.2)..'l'hen:	0 

a)Q=Q 1 uQ0 ,	Q1uQ2naQ='. 

b) v is constant on any connected conponent of as?. 

Proof: a) is obvious. b) follows from the ssunied continuity of v, v being zero or 
equal to b21c2 on Q I 

Lemma 3.4: ASsltflze (C 1 ); let moreover (u; v) be a,regnlarcoexistence solution of (1.2) 
and Q consist of a, single connected component. Then aQ Q2 (namely, v = b2/c2 oi 
the whole of aQ).	 -	 - 

Proof: Assume the contrary: .then, according to Lemma 3.3b), there exists 
P E a_Q such that v(P) = 0, hence d2'u(P) '+ c2v(P) 4 b2 . Let .K denote a neighbour-
hood of P in Q Such that d2u + c2v4 b2 in .iY (such aneighhburhoocl exist,' due to 
the assumed regularity Of-(u, v); thus	J, Q v = 0 in V, ie. .jV	). Let	denote the 
connected component of  in {x E Q I d2u(x) + c2v(x) 4 b2 }	.4", and set 9° = P1 
uP2 , where F, :=	n Q, P2 := 9" n Q.. It is easily seen that: 1 4 
construction), P2 4- (otherwise Q,.= Q and (u, v) is not a coexistence stationary 
solution). By the very definition of 5'°, it =b2/d2 on F2 , hence-on F21 follows; then 
P2 u P1 = and the assumed connectedness of Q implies 1 2 = (Q\"). Due to 
Lemma 3.2 and the maximum principle, it follows u ^ b2/d2 , hence v '= 0 on Q\99 ; as 
i consequence, v = 0 on the whole Of Q and (u, v) cannot be a coexistence stationary 
solution. The' contradiction proves the result I	-. 

•

	

	Lemma 3.5: Assume (C1 ) and let Q consist of a single connected component. Then
every regular coexistence solution of (1.2) satisfies'condition (P). 

Proof: By Lemma 3.4, v = b2/c2 on the whole of 00 under the present assuniptions: 
let le denote the connected component Of Q in {x E Q I v(x) + > 01 and set r: = 	n -Q, 
aw =	P thus, if P = , Q1 =	and condition (P) is triviall y satisfied. If
P4 , it = 62/d2 on P by the very definition of V, so thatu ^ b2/c2 on Q\C by' 
Lemma 3.2 and the maxiumimni principle; then v	0 on Q\W and theresult fol-
lows I 

Proof of Theorem A. 1: We gather claim a) from Lemma 3.1 a), claim b)froin 
LCninia 3.2 a) and Lemma :3.5. The last claim follows because, as a, v ,-i- 0, max u--- b1/ 
c 1 .> b,1d2 (see [12: Thni. 1.3])  

•

	

	Proof of Theorem A.2: Due to assumption(C 2 ) and the maxinimim principle, by 
which it :E^:b 1 /c 1 , the.v-component of any regular coexistence solution of (1.2) satis-

fies the inequality v	b2	d2	0 in Q21 which implies Q 1 = and v> 0 in ..
Then regular coexistence. solutions of (1.2) are in one-to-one correspondence with 
nontrivial nonhegative solutions of the problem	 - 

11	 \ i 1	 1	 ' a 1 u + U	
b2 

jI. bi - 
d1 -) - - 

(c 1 c2 — d1 d2 ) uJ. =- 0 in Q,	
(3.2) C2	C2 

u=O in Q	
-

whence the result follows by assumption (S 1 ) I
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• - Proofof Theorem A. 3: Looking for regular solutions of (1.2) such that v>0 in Q 
amounts again to looking for nonnegative solutions of (3.2), the v-component being 
consequently determined;, tinder. .assumption (S 2 ) no such'solutions of (3.2) exist but 
the trivial one, which proves the claim I 

• Proof of Theorem A.4: According to Lemma 3.5, assumption (C i ) and the 
connectedness of aQ ensure regular coexistence solutions of (1.2) to he in one-to-one 
correspondence with nonnegative (classical) solutions of (3.1); according to Lemma 
3.1 b), theuñique solution of this kind isthe trivial one in t.he.present case, whence th 
claim follows U	 - 

4; Proof of Attractivity and Stability Results	 - 

Let us first prove Theorem Bi: Since system (1.2) is quasi-monotOne [16], let 
us look for upper-lower and lower-upper solutions. 

It is well known (and easy to verify) that, whenever a.> 1,u := au* isan- upper 
solution to  

u +u (S1 —c1u---[b2 _ d2 u]+)= 0 in Q ,, .	
. (4.1)

n=0 in aQ; 

definiiig V. = -f--- [b2 - d2ua ] 1, it is immediately seen that	 S 

C2 - 

+ ua (b 1 -	- d1v) <.0 in Q, 

.n=0 in	Q,  

v-(b2 -.	- d2u) =.0,	 . .	. 
•	so- tlat (, v) is an upper-lower sblition to(1.2). Similarly, sihe a 0 isa loser o-

•	lution to (4.1) for .a > 0, a small enough, setting v 0 := a 0, v := -- [b0 - 

(u0 , va) is a lower-upper solution to (1.2), provided a > 0 is small enough. 
To complete the proof we have to adapt to the present casewell-knovn monotone:-

methods. Since the lower-upper solution (ui,, v) satisfies v ^ 0, v 0 0, V0	0, we
•know [16] that the sblution of (1.1) with Cauchy data v0 = v, v0 = ° has the follow-
ing properties: . 'roperties:	 . 

	

• -	1. (u(t)) (x) increases in 1, for any x E Q; due to the a. prior bound of Theorem 0, 
•u(t) –*-1 pointwise as t	00; ii > 0 in Q;	. 
2. likewise, (v(l)) (x) decreases in £ for any x E Q and v(t) ->4 pointwise as I	cc, - 

S	i5^OinQ.	-	. .5.	 •	 . 

Using the regularizing properties of t.heequation for u( . ), it is easil y seen that 
u(I) –ii in ' the supremuni norm, thus ,& E CO(D). 

On the other hand, since	.	•	 •	 S	 - 

•	

.	 v(t) = v(t) (b2 - C2V(t) - d2ü) + /(I)	(1.> 0)	 . 

• where/(1) := d2 ?;(t) (z - u(1))	.0 • for I --* cc, an easy argument shows that v(.) 
behaves, for large I's as the solution w( . ) of the equation  

	

•	 3w(I) = w(t) [b2 - c20) - d211] . (1> 0). •	 .	 •	 -•
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Hince we get.  

= 4. [b2 - d2z]^ 

which proves v E C(Th (and v(t) -- in the suprenlurn norm as £ - oo by Dini's 
theorem). As a consequence, is 6, regular stationary sàlution, satisfying (P). 
Since ft > u0 > 0 in Q, Theorem A1 applies, yielding (fl, ) ='(u, v*). 

•	A similar argument holds for the upper-lower 'solution (u& , v,), which satisfies 
Va	0, v	0 in Q; this completes the proof. I	. 

Let us now tui'n to the proof of Theorem B2; to this end, we prentit a technical 
lemma. •	 ,0 ,	 •	 .	 , .	 .. - 

Leiima 4.1 :Let (u, v) bean arbitrary classical solution o/ (1.1)such that u(t)	0,
v(t)., ^!. 0 /or any t ^ 0.  

	

-	. 
a) is well defined as a. continuous function on Q, for any 1 >

'

0. 

b) Let (C2 ) hold; moreover, 'assume u, E C0(f), u 	O, v0	0; v0 € C'(Q), v0 > 0 
• , . on Q. Then; for, any ö > 0 the trajectory  

= {(u(t),\v(t)) I t ^ 

is a relatively compact set in C0(Q)	C(P) 

Proof: a) We have to check that is well behaved near aQ: By a local 

change of coordinates we can suppose tQ to he the hyperplane x 1 = 0; then, 
u(t, x) has a Taylor, expansion near eQ:  

u(tx)=c 1 (tx2	x)x1±R(tx)	(t	0; x= (x1 r2	x)EQ) 

Because of Hopf'sniaxinium principle c 1 (t, x2 .. x)	0, so that 	- 

1u(t, x) = ac 1 (t, x2 , ... x) + aR(t, x)  

e(t,.)  whence u(t . 
is well def i ned . ' (and in fact, a smooth function) on Q. Using now 

• ,
	 'the equation, it isimiiiediately seen that the claim follows. 

To proie b) observe that, because of the assumptions, v(t) E CI (D), v(t) > 0 on'Q. 
It is a standard matter to find an a priori estimate for u(t, x)I, £ ^ a > 0, x € Q [2]. - 

To find a parallel etiite for ao,v, 'ob'serv'e that, since 0':E^ u :!E^ b1k1, v 1 ^! V(b_ cv . 

— (12 ), and, hecaus of (C2), v 
is 

hounded below above zero: v(t, x) 	> 0. Con- 

sequently, w =: log v, is well defin 'ed :arid satisfies 3 1w = b2 — c2e D — d2u; thus z 1 =: aiw 
fulfils- (z 1) = (—c2v) z — d2 ,u. Now, —c2v	— 2 z and, as noted above, 'I ul is
uniformly bounded for £ ô> 0 ind XE Q. Then itis easy to see that I z i l is uniformly 
hoiindes, too, whence the claim follows I	' . •	'	 '"	 '	 ,	, - 

We shall also need the following result. "- •	 --	 ' 

Lemma 4.2: , Assume (S 1 ) and (C2 ). Thenthe quantity	' • '	 - 

U	di 
-	'	 ,,	•
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has the /ollowing properties: 
a) V : C0(Q)' C(Q) -* R is well defined and continuous for any (u, v) E C0(Q) 
C(Q) such that u/u > 0, v' 0 in Q;  

b) the map I	V(u(t), v(t)) (where (u(t), v(t)) is any solution 01(1.1) in C0(Q)	C(Q. 
with Cauchy data u	0, v > 0 in, Q)\is nonincreasing; in fact, it is differentiable 
along such trajectories of (1.1), and 

V(u(t), v(t)) 
= _-f grad U- –'grad 11 (t ) j) dx _J. i [CI(U(J)- 

^ 2di (it(t) — u) (v (/) — )+ ! c2(v(t)	)2] dx.	(4.2)' 

Proof: Claim a) is straightforward. Proceeding as in Lemma 4.1 a), we see that 
u/u > 0 in Q on the trajectories, so that V(u(t), v(t)) is well defined for I ô > 0, 
as well as its time derivative (see again Lemma 4.1 a)). Moreover, due to (C 0), the 
integrand of the second term in, the right-hand side of (4.2) is a seinidefinite positive 
quadratic form (it, is definite positive if strict inequality holds in (Co)). Then claim h) 
follows by a direct calculation U 

Remark: The definition of V was suggested by [8], where a discrete model was 
considered; see aswell [15]: 

Proof of Theorem'B2: Due to the well known La Salle's invariance argument

	

-	and Lemma 4.-i h), the result will followfrom the investigation of the critical set of. V.
Let us distinguish two cases: 

	

•	(I) Strong inequality holds in (C O). Then the critical set of V is easily seen to shrink
to the unique point {(u, )}. - 

(ii) Equality holds in	Then the second term on the righthand side of (4.2) 

	

•	vanishes if and'only if c1 u(t) + d 1 v(t) = c --i- d1 () (1 ^ 0). As for the first term, it 
vanishes ifanci only if u(t) = y(t)ft r ni fosoe smooth positive function y( . ) (t > > 0). 
As a consequence, the'largest subset of the critical set of V,'hich is invariaTnt' with 
respect to (1.1) consists of (u, 3)}. This completes the proof U 

The proof of Theorem B3 issimilai'a'nd will he omitted. Finally, , let us prove the 
•	instability result asserted in Theorem B4. 

Proof of Theorem  134: Pick a stationary solution (, ) satisfying the hypothesis. 
If (u( . ) v( . )) is a solution of (1.1), the deviations h( . ) := u( . ) — ü, lc( . ) := v( . ) _ 

satisfy the system  
a ih = a 1 Ah ± /t(b 1 — 2c1 ü — d1 7) + d 1 ük — h(c 1 h ± d1k) 

a tk = k(b2, — 2c2 —Td2u) '- d2 i11 — k(c2k + (12h), 

(plus Dirichiet homogeneous boundary conditions for h). Note first that, as-a conse-
quence of the maximum principle, if h(0) ;5 0, k(0)	0, then h(t) :!E^ 0, k(t) > 0 for all
£ ^ Q. Pick now h(0) -0, k(0) =.aq, where q is a non negative non zero function with 
supp qc: Q 1 , and a is a positive number. Since for any x  supp q, (x) = 0 and 

— d2ü(x) > 0, the component k solves, for any such x, the problem 

a,k = k(t, x) {b2	d2u(x) — d2h(t, x)} — c2 k2(t, x), 

k(0, x) =
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Since b2 -. d2ü(x) -- d2h((, x)	b2 —d2ü(x)> 0 1 it follows that k(t, .) does not remain, 
for all t	0, in an arbitrarily fixed C(Q)-neighbourhood of 0, however small a is 

- -	choen:thus(ü, ) is unstable I 

5. Sniall Diffusion on the v-Component 

Our aim in-this seciion is to prove Theorem C: For this purpose let us 
•	proceed stepwise, denoting by (u,, v) a solution of (2.1) such that v,	0, v	0 in Q.

• (i) Because of the maxfrnuni principle there exists k > 0 such that 

•	Max max v(x) , max fv,(x) I	k.	 - 
zEQ	ZEn  

•Then front sstem (2.1) weget, with a suitable k' > 0max I u, (x)I :-5 V. Asa con- 
-	 xEQ 

sequence, {v,} is relativel y compact in C'(Q); similarly for {v},. {v, 2 } in the L2(Q) weak 
topology, so that we have, along suitable sequences (we shall label b y the same index 
for notational simplicity),.	 •	 - 

•	u - u in G'(Q);	v, - v,	: v,2 ->- w  in J2() 

(ii)' Observe that w	v2 almost everywhere in 17; this follows easily from the
estiniate (which holds for almost every x E 17) 

•	 v,2(x)	v2(x)-F 2v(x) (v,(x) - v(x)), as v, - v in 72(17). 

(iii) Asv, is the principal eigenfunction of the elliptic operator	+ (b2 - c2v,
- d2 701 the inequality 

M	+ (b - c 2v1 - d2v) ] dx !E^ 0 

holds for an y (b E 11o1 (9.)). AsE— . 0we get 

(b2 - c v - d2u) dx 0 

• which implies
 

C2V + d2 71 	b 2	 (5.1) 
almOst everywhere inQ, due to the arbitrariness of 4.	- / 

	

• (iv) Let us prove that in fact w = v2 (almost everwhere in 17). Taking the limit in,	- 
the sense df distributions as c -± 0 of the second equation in (2.1) we get b2v - c2w 
- d0uv - 0 almosteverywherc in 17; this in turn implies, due to (5.1), w	v2 in

• the same sense. Then the claiiii follows from step (ii). 
(v) If follows from (i), (iv) above that- the limiting point (u, v) satisfies'the first 

equation of (1.2) in the 1 weak sense, the second almost everywhere in 17. On the other 

hand, inequality (5.1) entails v = -- [b2 .— d2u],, thus v E C() and (u, v) is a regu-
Jar solutionof , ( 1.2) which satisfies condition (P). Then the remaining claims follow 
by Theorem A 1—A 3, thus completing the proof I
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