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Asymptotics of Zeros of the Wright Function

Yu. Luchko

Abstract. The paper deals with the asymptotics of zeros of the Wright function

φ(ρ, β; z) =
∞X

k=0

zk

k! Γ(ρk + β)
(ρ > −1)

in the case the parameter β is a real number. The exact formulae for the order, the type and
the indicator function of the entire function φ(ρ, β; z) are given for ρ > −1. On the basis of
these results and using the obtained distribution of the zeros of the Wright function it is shown
to be a function of completely regular growth.
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1. Introduction

The entire function (of z)

φ(ρ, β; z) =
∞∑

k=0

zk

k! Γ(ρk + β)
(ρ > −1, β ∈ C), (1)

named after the British mathematician Wright, was introduced by him for the first time
in the case ρ > 0 in the paper [17] in connection with his investigations on the asymptotic
theory of partitions. In this paper and in the paper [18] he gave some elementary
properties and the asymptotics of the function (1) in the case ρ > 0. Later on, in the
paper [19] Wright considered the entire function φ(ρ, β; z) in the case −1 < ρ < 0. In
particular, he gave there its asymptotic behaviour in the complex plane C and showed
that for z → ∞ it is exponentially small in a suitable sector containing the negative
real semi-axis, exponentially large in two neighbouring sectors and, if −1 < ρ < − 1

3 , it
has an algebraic expansion in a sector containing the positive real semi-axis.

The Wright function has found many other applications, first of all in the Mikusiński
operational calculus and in the theory of integral transforms of Hankel type (see [6, 7,
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13 - 15]). Recently this function has appeared in papers related to partial differential
equations of fractional order. Considering boundary-value problems for the fractional
diffusion-wave equation, i.e., the linear partial integro-differential equation obtained
from the classical diffusion or wave equation by replacing the first- or second-order time
derivative by a fractional derivative of order α with 0 < α ≤ 2, it was found that
the corresponding Green functions can be represented in terms of the Wright function
(1). A very informative survey of these results can be found in the paper by Mainardi
[10]. The paper [11] contains a detailed discussion of the properties of the function
φ(−α

2 , 1 − α
2 ;−z) (0 < α ≤ 2) which was shown to be the Green function for the

Cauchy problem for the time-fractional of order α diffusion-wave equation. Finally,
in the recent papers [1, 5, 9] the scale-invariant solutions of some partial differential
equations of fractional order have been given in terms of the Wright and the generalized
Wright functions.

The above mentioned applications show the importance of the Wright function in
different areas of mathematics. In this paper we obtain some new properties of the
function φ(ρ, β; z) including the distribution of its zeros. Making use of the asymptotic
formulae obtained by Wright in [18, 19] we give the explicit formulae for the indica-
tor function of the Wright function showing that the Wright function is a function of
completely regular growth. Taking as a pattern the analysis of the asymptotics of zeros
of the generalized Mittag-Leffler function given by Djrbashian in [2: Chapter 1.2] we
consider the problem of distribution of zeros of the Wright function. It turns out that
in dependence of the value of the parameter ρ > −1 and the real parameter β there are
the following five different situations:

1) For ρ > 0 all zeros with large enough absolute values are simple and are lying on
the negative real semi-axis.

2) In the case ρ = 0 the Wright function is reduced to an exponential function with
a constant factor (equal to zero if β = −n, n ∈ N0) and it has no zeros.

3) For − 1
3 ≤ ρ < 0 all zeros with large enough absolute values are simple and are

lying on the positive real semi-axis.

4) In the cases ρ = − 1
2 , β = −n (n ∈ N0) and ρ = − 1

2 , β = 1
2 − n (n ∈ N0) the

Wright function has exactly 2n + 1 and 2n zeros, respectively.

5) For −1 < ρ < − 1
3 (excluding the case 4) all zeros with large enough absolute

values are simple and are lying in the neighbourhoods of the rays arg z = ± 1
2π(−1−3ρ).

In the cases 1, 3 and 5 the asymptotics of zeros of the Wright function is given. In
the case 4 the function φ(ρ, β; z) is expressed as a product of an exponential function
with a polynomial.
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2. The indicator function of φ(ρ, β; z)

We give at first the formulae for the order and type of the Wright function (1). In the
case −1 < ρ < 0 they have been presented in [3: Chapter 1.3]; the case ρ > 0 is even
more simpler. To get the result in this case we use the standard formulae for the order
p and the type σ of an entire function f defined by the power series f(z) =

∑∞
k=0 cnzn:

p = lim sup
n→∞

n log n

log 1
|cn|

, (σep)
1
p = lim sup

n→∞
n

1
p n
√

cn

and the Stirling asymptotic formula

Γ(z) =
√

2πzz− 1
2 e−z

[
1 + O

(
1
z

)] (| arg z| ≤ π − ε, ε > 0, |z| → ∞)
.

After straightforward evaluations we arrive at the following result.

Theorem 1. The Wright function φ(ρ, β; z) (ρ > −1; β 6= −n (n ∈ N0) if ρ = 0)
is an entire function of finite order with the order p and the type σ given by

p =
1

1 + ρ
, σ = (1 + ρ)|ρ|− ρ

1+ρ . (2)

Remark 1. In the case ρ = 0 the Wright function is reduced to the exponential
function with the constant factor 1

Γ(β) :

φ(0, β; z) =
exp(z)
Γ(β)

(3)

which turns out to vanish identically for β = −n, n ∈ N0. For all other values of the
parameter β and ρ = 0 formulas (2) (with σ = limρ→0(1+ρ)|ρ|− ρ

1+ρ = 1) are still valid.

The basic characteristic of the growth of an entire function f = f(z) of finite order
p in different directions is its indicator function h = h(θ) (|θ| ≤ π) defined by

h(θ) = lim sup
r→+∞

log |f(reiθ)|
rp

. (4)

The indicator function hρ(θ) of the entire function φ(ρ, β; z) is given by the following
results.

Theorem 2. Let ρ > −1 (β 6= −n, n ∈ N0 if ρ = 0). Then the indicator function
hρ(θ) of the Wright function φ(ρ, β; z) is given as follows:

(a) In the case ρ ≥ 0 by

hρ(θ) = σ cos pθ (|θ| ≤ π). (5)

(b) In the cases
(i) − 1

3 ≤ ρ < 0
(ii) ρ = − 1

2 , β = −n (n ∈ N0)
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(iii) ρ = − 1
2 , β = 1

2 − n (n ∈ N0)

by

hρ(θ) =
{−σ cos p(π + θ) for −π ≤ θ ≤ 0
−σ cos p(θ − π) for 0 ≤ θ ≤ π

. (6)

(c) In the case −1 < ρ < − 1
3 (β 6= −n, n ∈ N0 and β 6= 1

2 −n, n ∈ N0 if ρ = − 1
2 ) by

hρ(θ) =





−σ cos p(π + θ) for −π ≤ θ ≤ 3
2

π
p − π

0 for |θ| ≤ π − 3
2

π
p

−σ cos p(θ − π) for π − 3
2

π
p ≤ θ ≤ π

. (7)

Here p and σ are the order and type of the Wright function, respectively, defined by (2).

Proof. To get formula (5) for |θ| < π we use the asymptotic expansion of the
Wright function given in [18]:

φ(ρ, β; z) = H(Z) (ρ > 0) (8)

where

H(Z) = Z
1
2−βe

1+ρ
ρ Z

{
M∑

m=0

(−1)m am

Zm
+ O

( 1
|Z|M+1

)}
(Z →∞) (9)

with Z = (ρ|z|) 1
ρ+1 ei θ

ρ+1 and a0 = (2π(1 + ρ))−
1
2 > 0. This formula is valid if arg z =

θ (|θ| ≤ π − ε, ε > 0). We then have

hρ(θ) = lim sup
r→+∞

log
∣∣φ(ρ, β; reiθ)

∣∣
rp

= lim sup
r→+∞

log
∣∣H((ρr)

1
ρ+1 ei θ

ρ+1 )
∣∣

rp

= lim
r→+∞

log
(
(ρr)

1
2−β

ρ+1 e
1+ρ

ρ (ρr)
1

ρ+1 cos θ
ρ+1

{
a0 + O

(
r−

1
ρ+1

)})

rp

=
1 + ρ

ρ
ρ

1
ρ+1 cos

θ

ρ + 1
= σ cos(pθ).

(10)

Due to the fact that the indicator function of an entire function of finite order is con-
tinuous [4: Chapter 2.5] the obtained formula (5) is also valid for |θ| = π.

To get formula (6) in the case (i) we use exactly the same reasoning as in the case
ρ > 0 and the asymptotic expansion of the Wright function given in [19]:

φ(ρ, β; z) = I(Y ) (−1 < ρ < 0) (11)
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where

I(Y ) = Y
1
2−βe−Y

{
M−1∑
m=0

AmY −m + O(Y −M )

}
(Y →∞) (12)

with

Y = (1 + ρ)((−ρ)−ρy)
1

1+ρ , y = −z (−π < arg z ≤ π,−π < arg y ≤ π)

and A0 = (2π)−
1
2 (−ρ)

1
2−β(1 + ρ)β > 0. This formula is valid if | arg y| ≤ min{3

2π(1 +
ρ), π} − ε, ε > 0.

Let us consider the cases (ii) and (iii). We have in the case (ii)

φ(− 1
2 ,−n; z) =

∞∑

k=0

zk

k! Γ(− 1
2k − n)

=
∞∑

l=0

z2l+1

(2l + 1)! Γ(− 1
2 − l − n)

. (13)

We now use the Gauss-Legendre and the supplement formulae for the gamma function
to represent the last series in formula (13) in terms of the hypergeometric function
1F1(z):

φ(− 1
2 ,−n; z) =

∞∑

l=0

√
π

22l+1l! Γ(l + 3
2 )

sin(π(n + l + 3
2 )) Γ( 3

2 + n + l)
π

z2l+1

=
(−1)n+1z

2
√

π

Γ( 3
2 + n)
Γ( 3

2 )

∞∑

l=0

( 3
2 + n)l

( 3
2 )l

(− z2

4

)l

l!

=
(−1)n+1z

π
Γ( 3

2 + n) 1F1( 3
2 + n; 3

2 ;− z2

4 ).

(14)

In the case (iii) using the same transformations we get

φ(− 1
2 , 1

2 − n; z) =
(−1)n

π
Γ( 1

2 + n) 1F1( 1
2 + n; 1

2 ;− z2

4 ) (n ∈ N0). (15)

We can rewrite formulas (14) - (15) by using the Kummer formula [12: Chapter 6]

1F1(a; c; z) = ez
1F1(c− a; c;−z)

in the form

φ(− 1
2 ,−n; z) = e−

1
4 z2

zPn(z2) (n ∈ N0) (16)

φ(− 1
2 , 1

2 − n; z) = e−
1
4 z2

Qn(z2) (n ∈ N0) (17)

where Pn, Qn are polynomials of degree n defined as

Pn(z) =
(−1)n+1

π
Γ( 3

2 + n) 1F1(−n; 3
2 ; z

4 )

Qn(z) =
(−1)n

π
Γ( 1

2 + n) 1F1(−n; 1
2 ; z

4 )





.
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Formulas (16) - (17) gives us the indicator function of the Wright function in the cases
(ii) and (iii) in the form

hρ(θ) = − 1
4 cos(2θ) (|θ| ≤ π)

which is in accordance with formula (6).

Finally, to get formula (7) we use the standard formula (4), the asymptotic expansion
(11) in the sector | arg(−z)| ≤ 3

2π(1 + ρ) − ε, ε > 0 and the asymptotic expansion (see
Wright [19])

φ(ρ, β; z) = J(z) (−1 < ρ < − 1
3 ) (18)

where

J(z) =
M−1∑
m=0

z
β−1−m
−ρ

(−ρ) Γ(m + 1)Γ(1 + β−m−1
−ρ )

+ O
(
z

β−1−M
−ρ

)
(z →∞) (19)

in the sector | arg z| ≤ 1
2π(−1−3ρ)−ε, ε > 0. We note here that in the cases (ii) and (iii)

(and only in these cases) all coefficients of the algebraic asymptotic expansion (19) are
zeros. As we have seen (see formulas (16) - (17)) the Wright function is exponentially
small in a suitable sector for these values of parameters

Remark 2. It can be seen from formulas (5) - (6) that the indicator function
hρ(θ) of the Wright function φ(ρ, β; z) is reduced to the function cos θ (the indicator
function of the exponential function ez) if ρ → 0. This property is not valid for another
generalization of the exponential function – the Mittag-Leffler function defined by

Eα(z) =
∞∑

n=0

zn

Γ(αn + 1)
(α > 0, z ∈ C). (20)

Even though
E1(z) = ez,

the indicator function of the Mittag-Leffler function given for 0 < α < 2, α 6= 1 by (see
[4: Chapter 2.7])

h(θ) =
{

cos θ
α for |θ| ≤ πα

2
0 for πα

2 ≤ |θ| ≤ π

does not coincide with the indicator function of ez if α → 1.
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3. Asymptotics of zeros of φ(ρ, β; z)

In the case ρ = 0 the Wright function is an exponential function with a constant factor
(equal to zero if β = −n, n ∈ N0) and it has no zeros. For ρ = − 1

2 , β = −n (n ∈ N0)
and ρ = − 1

2 , β = 1
2 − n (n ∈ N0) the Wright function is reduced to a product of an

exponential function and a polynomial of the degree 2n + 1 and 2n (see formulas (16)
- (17)) and it has exactly 2n + 1 and 2n zeros in the complex plane, respectively. For
all other values of parameters the Wright function has an infinite number of zeros. We
give the asymptotics of zeros of the Wright function in Theorem 3 (the case ρ ≥ − 1

3 )
and Theorem 4 (the case −1 < ρ < − 1

3 (β 6= −n (n ∈ N0) and β 6= 1
2 − n (n ∈ N0) if

ρ = − 1
2 )).

Theorem 3. Let {γk}∞k=1 be the sequence of zeros of the function φ(ρ, β; z) (ρ ≥
− 1

3 but ρ 6= 0; β ∈ R), where |γk| ≤ |γk+1| and each zero is counted according to its
multiplicity. Then:

(A) In the case ρ > 0 all zeros with large enough k are simple and are lying on the
negative real semi-axis. The asymptotic formula

γk = −
(

πk + π(pβ − p−1
2 )

σ sinπp

) 1
p (

1 + O(k−2)
)

(k → +∞) (21)

is true. Here and in the next formulae p and σ are the order and type of the Wright
function given by (2), respectively.

(B) In the case − 1
3 ≤ ρ < 0 all zeros with large enough k are simple, lying on the

positive real semi-axis and the asymptotic formula

γk =

(
πk + π(pβ − p−1

2 )
−σ sinπp

) 1
p (

1 + O(k−2)
)

(k → +∞)

is true.

Proof. We consider at first the case (A). It follows from the asymptotic formula (8)
that all zeros of the function φ(ρ, β; z) with large enough index are lying in the sector
| arg(−z)| ≤ ε, ε > 0 containing the semi-axis (−∞, 0].

We now prove the fact that the function φ(ρ, β; z) has exactly a countable set of
zeros on the negative real half-axis. To do this we use the asymptotic expansion of the
Wright function given by Wright [19]:

φ(ρ, β; z) = H(Z1) + H(Z2) (23)

where
Z1 = (ρ|z|) 1

ρ+1 ei ξ+π
ρ+1

Z2 = (ρ|z|) 1
ρ+1 ei ξ−π

ρ+1
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arg(−z) = ξ (|ξ| ≤ π) and H(Z) is given by (9). In particular, if β ∈ R, we deduce from
formula (23) the asymptotic expansion of the Wright function φ(ρ, β;−r) for r → +∞
in the form

(ρr)−p( 1
2−β)e−σrp cos πpφ(ρ, β;−r)

= 2a0 cos
(
πp( 1

2 − β) + σrp sin πp
)

+ O(r−p)
(24)

where p and σ are the order and type of the Wright function, respectively, given by (2).
Since the function

(ρr)−p( 1
2−β)e−σrp cos πpφ(ρ, β;−r) (0 < r < +∞)

takes only real values and the function cos
(
πp( 1

2 − β) + σrp sin πp
)

vanishes if πp( 1
2 −

β)+σrp sin πp = π
2 +πk (k ∈ N0), the function φ(ρ, β;−r) has a countable set of zeros

rk (k ≥ k0) and in a small enough neighbourhood of the point π
2 + πk (k ≥ k0) there is

only one point of the form πp( 1
2 − β) + σrp

k sin πp. Summarizing the above-mentioned
reasoning we arrive at the fact that the function φ(ρ, β; z) has a countable set of zeros
{−rk}∞k0

and
πp( 1

2 − β) + σrp
k sin πp = π

2 + πk + αk (k ≥ k0) (25)

where αk = O(1) (k → +∞).

Substituting the expression for rk from (25) into (24) we get αk = O(r−p
k ). It follows

from (25) that rp
k ³ k and, consequently, the asymptotic formula (25) can be rewritten

in the form

πp( 1
2 − β) + σrp

k sinπp = π
2 + πk + O( 1

k ) (k → +∞). (26)

From this last formula we get the representation for the zeros of the function φ(ρ, β; z)
as

−rk = −
(

πk + π(pβ − p−1
2 ) + O( 1

k )
σ sin πp

) 1
p

= −
(

πk + π(pβ − p−1
2 )

σ sinπp

) 1
p (

1 + O(k−2)
)

(k → +∞). (27)

Let us establish the fact that these zeros −rk are simple if k ≥ k1 ≥ k0. Indeed,
differentiation term by term of the series (1) gives us the formula

d

dr
φ(ρ, β;−r) = −φ(ρ, β + ρ;−r).

We multiply now both parts of this identity by (ρr)−p( 1
2−β−ρ)e−σrp cos πp and use the

asymptotic formula (24) thus obtaining the relation

(ρr)−p( 1
2−β−ρ)e−σrp cos πp d

dr
φ(ρ, β;−r)

= −2a0 cos
(
πp( 1

2 − β − ρ) + σrp sinπp
)

+ O(r−p).
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Setting r = rk (k ≥ k0) in the last formula and using (25) with αk = O( 1
k ) we get

(ρrk)−p( 1
2−β−ρ)e−σrp

k
cos πp d

dr
φ(ρ, β;−r)

∣∣∣
r=rk

= (−1)k2a0 sin(πρp) + O( 1
k )

as k → +∞. Since 0 < ρp < 1 for ρ > 0, it follows from the last relation that all zeros
−rk beginning with some index k1 ≥ k0 are simple.

To finish the proof of statement (A) of Theorem 3, we have to establish the fact
that the set of all zeros of the function φ(ρ, β; z) with large enough index coincides with
the set of numbers {−rk}∞k2

(k2 ≥ k1). Indeed, let us define a subdomain D
(k)
ε of the

sector Dε = {z ∈ C : | arg(−z)| ≤ ε}, ε > 0 by
(

πk + πp(β − 1
2 )

σ sinπp

) 1
p

≤ |z| ≤
(

π(k + 1) + πp(β − 1
2 )

σ sinπp

) 1
p

and let lk(ε) be a boundary curve of this subdomain. Then we have

min
z∈lk(ε)

∣∣∣∣cos
(

πp(
1
2
− β) + σ(−z)p sin πp

)∣∣∣∣ = m(ε) > 0

where m(ε) is some constant not depending on k. Further, using (23) we arrive at
(z ∈ Dε)

(−ρz)−p( 1
2−β)e−σ(−z)p cos πpφ(ρ, β; z)− 2a0 cos

(
πp( 1

2 − β) + σ(−z)p sin πp
)

= O(|z|−p|).
Since the left part of the last relation tends to zero if z →∞, it follows from the Rouché
theorem that the function φ(ρ, β; z) has inside the domain D

(k)
ε (k ≥ k2 ≥ k1) as many

zeros as the function cos
(
πp(1

2 − β) + σ(−z)p sinπp
)
, that means, a single zero only.

In this case this zero of the function φ(ρ, β; z) is a point −rk ∈ D
(k)
ε . It follows from

the above-mentioned arguments that γk = −rk−N (k ≥ N + k2) for some fixed N ≥ 1.
Using this fact and (27) we arrive at the asymptotic formula (21).

Statement (B) of Theorem 3 is proved by using exactly the same technique as
statement (A) and we omit the details. We only note that in this case we use instead
of (23) - (24) the asymptotic formula given by Wright [19]

φ(ρ, β; z) = I(Y1) + I(Y2) (− 1
3 < ρ < 0, | arg z| ≤ π(1 + ρ)− ε (ε > 0)) (28)

where I(Y ) is defined by (12),

Y1 = (1 + ρ)
(
(−ρ)−ρz eπi

) 1
1+ρ

Y2 = (1 + ρ)
(
(−ρ)−ρz e−πi

) 1
1+ρ



 (29)

and its modified form (r → +∞, β ∈ R)

(σrp)β− 1
2 eσrp cos πpφ(ρ, β; r) = 2A0 cos

(
πp( 1

2 − β)− σrp sin πp
)

+ O(r−p). (30)

In the case ρ = − 1
3 the asymptotic formula from Wright [19] is used:

φ(ρ, β; z) = I(Y1) + I(Y2) + J(z) (ρ = − 1
3 , | arg z| ≤ π(1 + ρ)− ε (ε > 0)) (31)

where I(Y ) is defined by (12), Y1, Y2 by (29) and J(z) by (19)
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Remark 3. Due to the relation

Jν(z) = ( z
2 )νφ(1, ν + 1;− 1

4z2) (32)

Wright considered the function φ(ρ, β; z) as a generalization of the Bessel function Jν(z).
Combining the representation (32) with the asymptotic formula (21) we get the known
formula (see, for example, [16: p. 506]) for the asymptotic expansion of the large zeros
rk of the Bessel function Jν(z):

rk = π(k + 1
2ν − 1

4 ) + O(k−1) (k →∞).

We consider now the case −1 < ρ < − 1
3 . It follows from the asymptotic formulas

(11) and (18) that in this case all zeros of the function φ(ρ, β; z) with large enough
absolute value are lying inside of the angular domains

Ω(±)
ε =

{
z ∈ C :

∣∣ arg z ∓ (
π − 3π

2p

)∣∣ < ε
}

(33)

where ε is any number of the interval (0,min{π − 3π
2p , 3π

2p }). Consequently, the function
φ(ρ, β; z) has on the real axis only finitely many zeros. Let

{γ(+)
k }∞k=1 ∈ G(+) = {z ∈ C : =(z) > 0}

{γ(−)
k }∞k=1 ∈ G(−) = {z ∈ C : =(z) < 0}

}

be sequences of zeros of the function φ(ρ, β; z) in the upper and lower half-plane, respec-
tively, such that |γ(+)

k | ≤ |γ(+)
k+1| and |γ(−)

k | ≤ |γ(−)
k+1| and each zero is counted according

to its multiplicity. We have the following result.

Theorem 4. In the case −1 < ρ < − 1
3 (β 6= −n (n ∈ N0) and β 6= 1

2 −n (n ∈ N0)
if ρ = − 1

2 ) all zeros of the function φ(ρ, β; z) (β ∈ R) with large enough k are simple
and the asymptotic formula

γ
(±)
k = e±i(π− 3π

2p )
(2πk

σ

) 1
p (

1 + O
(

log k
k

))
(k → +∞) (34)

is true.

Proof. If −1 < ρ < − 1
3 and z ∈ Ω(±)

ε the asymptotics of the Wright function is
given in [19] as

φ(ρ, β; z) = I(Y ) + J(z) (35)

where I(Y ) and J(z) are defined by (12) and (19), respectively. Let us introduce the
notations (β 6= −n (n ∈ N0) and β 6= 1

2 − n (n ∈ N0) if ρ = − 1
2 )

τρ =

{
β−1
−ρ if 1 + β−1

−ρ 6∈ −N0

−1− k + 1
ρ if 1 + β−1

−ρ = −k (k ∈ N0)

cρ =





1

(−ρ) Γ(1+ β−1
−ρ )

if 1 + β−1
−ρ 6∈ N0

1
(−ρ) Γ(−k+ 1

ρ )
if 1 + β−1

−ρ = −k (k ∈ N0).
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With these notations formula (35) gives us

z−τρφ(ρ, β; z) = z−τρ(σ(−z)p)
1
2−βe−σ(−z)p(

A0 + O(|z|−p)
)

+ cρ + O(z
1
ρ ) (36)

where −π < arg z ≤ π and −π < arg(−z) ≤ π. We consider now the equation

A0z
−τρ(σ(−z)p)

1
2−βe−σ(−z)p

+ cρ = 0. (37)

Let us define the curve

L0 =
{

z ∈ C : |A0z
−τρ(σ(−z)p)

1
2−βe−σ(−z)p | = |cρ|

}
. (38)

Assuming z = reiφ ∈ L0 (π ≥ φ > 0) we get −z = rei(φ−π) and (−z)p = rpeip(φ−π).
The equation of the branch of the curve L0 in the domain G(+) can be rewritten in the
form

|A0|σ 1
2−βr−τρ+p( 1

2−β)e−σrp cos p(φ−π) = |cρ| (39)

or, after some transformations, in the form

−σ cos p(φ− π) = (τρ − p( 1
2 − β))

log r

rp
+ O(r−p). (40)

Equation (40) gives us

φ = π − 3π

2p
+

τρ − p(1
2 − β)

pσ

log r

rp
+ O(r−p), (41)

that is, the branch of the curve L0 in the domain G(+) is in the sector Ω(+)
ε for large

enough r. If z = reiφ (π ≥ φ > 0), then

arg(z−τρ(−z)p( 1
2−β)e−σ(−z)p

) = −τρφ + ( 1
2 − β)p(φ− π)− σrp sin p(φ− π). (42)

This means that there is a countable set of points λk = rkeiφk (k ∈ N0, 0 ≤ φk ≤ π)
lying on the curve L0 for which

−τρφk + ( 1
2 − β)p(φk − π)− σrp

k sin p(φk − π) = 2πk + C (k ∈ Z) (43)

where C = arg(−cρσ
β− 1

2 /A0) is equal to π or to 0. Evidently, these points coincide
with those solutions of equation (37) that lie in the domain G(+). Using (41) and (43)
we arrive for k →∞ at

σrp
k = 2πk + O(1) (44)

which gives us the formula

rk =
(

2π

σ
k

) 1
p

(1 + O( 1
k )). (45)
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This formula and (41) gives us

φk = π − 3π

2p
+ O( log k

k ) (46)

which, together with (45), leads to

λk = rkeiφk =
(

2π

σ
k

) 1
p

ei(π− 3π
2p )(1 + O( log k

k )).

Using the asymptotic formula (36) and exactly the same technique as in the proof of
Theorem 3 we arrive at the representation (34) of the zeros γ

(+)
k of the Wright function

lying in the domain G(+).

Finally, if β ∈ R, then φ(ρ, β; z) = φ(ρ, β; z) and, consequently, γ
(−)
k = γ

(+)
k (k ∈ N)

which gives us the representation (34) in the domain G(−)

As a consequence of Theorems 2 - 4 we get the following

Theorem 5. The Wright function φ(ρ, β; z) (ρ > −1) is an entire function of
completely regular growth.

We recall [8: Chapter 3] that an entire function f(z) of finite order p is called a
function of completely regular growth (CRG-function) if for all θ, |θ| ≤ π, there exist a
set Eθ ⊂ R+ and the limit

lim
r→+∞
r∈E∗

θ

log |f(reiθ)|
rp

(47)

where

E∗
θ = R+ \ Eθ, lim

r→+∞
mesEθ ∩ (0, r)

r
= 0.

It is known [4: Chapter 2.6] that the zeros of a CRG-function f(z) are regularly dis-
tributed, namely, they possess the finite angular density

lim
r→+∞

n(r, θ)
rp

= ν(θ) (48)

where n(r, θ) is the number of zeros of f(z) in the sector 0 < arg z < θ, |z| < r and p
is the order of f(z). From the other side, the angular density ν(θ) is connected with
the indicator function h(θ) of a CRG-function. In particular (see [4: Chapter 2.6]), the
jump of h′(θ) at θ = θ0 is equal to 2πp∆, where ∆ is the density of zeros of f(z) in an
arbitrary small angle containing the ray arg z = θ0.

In our case we get from Theorem 2 that the derivative of the indicator function of
the Wright function has the jump 2σp sin πp at θ = π for ρ > 0, the same jump at θ = 0
for − 1

3 ≤ ρ < 0, and the jump σp at θ = ±(π− 3π
2p ) for −1 < ρ < − 1

3 (β 6= −n (n ∈ N0)
and β 6= 1

2 −n (n ∈ N0) if ρ = − 1
2 ), where p and σ are the order and type of the Wright

function, respectively, given by (2); if ρ = 0 or ρ = − 1
2 and either β = −n (n ∈ N0)

or β = 1
2 − n (n ∈ N0), the derivative of the indicator function has no jumps. As we

see, the behaviour of the derivative of the indicator function of the Wright function is
in accordance with the distribution of its zeros given by Theorems 3 and 4 as predicted
by the general theory of the CRG-functions.
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