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Abstract. In this paper we present some results about the characterization of modular con-
jugations of von Neumann algebras. Further, we show that hyperfinite factors of type II, IIIj, 
and lil A have algebraic conjugations which are not modular conjugations. 
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1. Introduction 

Let M be a von Neumann algebra on a separable Hubert space fl and let u be a cyclic 
and separating vector for M. Then the Tomita operator 5, the modular operator L, 
and the modular conjugation 3 are defined by 

SO MU= M* U, MEM,	S=50,	A =SS,	S=JA. 

These modular objects (,J) for (M, u) satisfy the following relations (see, e.g., E37 
14)): 

J2 = 1	and	3 is antiunitary (1) 
JZJ=L' (2) 

Ju=u (3) 
(4) 

JMJ = M'. (5)

Let U be a unitary operator on 71. Then v := Uu is cyclic and separating for Al := 
UMU and (Al, v) has the modular objects 

= (UU,UJU).	 (6) 
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We call an operator J satisfying (1) a conjugation. A conjugation J satisfying (5) is 
called an algebraic conjugation for M (in [15: p. 337] it is called a unitary involution 
of (M,N)). 

Now we are interested in the following questions: 
(a) Let J be a conjugation on a Hilbert space N. Does there exist a von Neumann 

algebra M with a cyclic and separating vector u such that J is the modular conjugation 
for (M, u)? 

(b) Let J be a conjugation on N and let A be the modular operator for (M, u) where 
M is a von Neumann algebra on N with the cyclic and separating vector u. Suppose 
(2) holds. Does there exist a von Neumann algebra M 0 with a cyclic and separating 
vector u 0 such that (,J) are the modular objects for (M,,, u,)? 

(c) Let I be an algebraic conjugation for the von Neumann algebra M. Does there 
exist a cyclic and separating vector u for M such that J is even the modular conjugation 
for (M, u)? 

The answer to question (a) is yes (at least if the Hilbert space is infinite-dimensional) 
and very easy to show. For completeness we discuss this simple question in Section 2. 
In Section 3 we show that question (b) can be answered affirmatively. The answer to 
question (c) is in general no. This question (and a partial answer without proof) is 
mentioned in [14: p. 321] in connection with a possible difference between standard von 
Neumann algebras and hyperstandard von Neumann algebras. We treat question (c) in 
some detail in Section 4. 

The modular theory plays an important role in the theory of von Neumann algebras 
and in the algebraic approach to quantum physics (see, e.g., [2, 5, 8)). Modular conju-
gations are used for studying different problems in quantum-field theory (see, e.g., [2 7 81 
12]). In particular, the characterizations of modular conjugations, which we investigate 
here, are - for example - important for some inverse problems of the modular operator 
(see, e.g., [4, 12, 17]). 

In this paper we only consider von Neumann algebras which are factors, shortly von 
Neumann factors, and which are separable, i.e. they can be represented faithfully on a 
separable Hubert space. 

If M is a von Neumann factor acting on a separable Hilbert space N, then we denote 
by MC(M) the set of modular conjugations for M. This means that I E MC(M) if 
and only if there is a cyclic and separating vector u for M such that J is the modular 
conjugation for (M, u). 

We will use the notation -unit vector for a vector with norm 1 and antiunitary 
operator for an operator V which is antilinear, i.e. V(cu) = EVu, and satisfies VV = 
VV = 1. Further, we denote the set of unitaries of M by U(M).
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2. Conjugations and modular conjugations 
First we are interested in the question whether a conjugation is always a modular 
conjugation for some von Neumann factor with a cyclic and separating vector. The 
answer is known and we will present a simple proof. For this proof we use the following 
lemma about conjugations. 

Lemma 2.1. Let J, and J2 be two conjugations acting on a separable Hubert space 
'H o . Then: 

(1) There is a unitary operator U on 1-t0 such that .12 = UJ,U and the spectral 
projections of U commute with both Ji and '12. 

	

(ii) Let A be a positive selfadjoint operator on R. such that J,AJ1 = A-' (j	1, 2).
Then the unitary operator U from (i) can be chosen such that additionally UAU = A. 

Proof. 1. First we - note that the relation JWJ = W for a conjugation J and 
a unitary operator W implies that J commutes with the spectral projections of W, 
JEw(I')J = Ew(r) with r c [0,27r]. This follows from the spectral representation 
W = f e"Ew(di) (see, e.g., [1: p. 46]). 

2. We set V = .12.11. The operator V is unitary and 1 = (.12 )2 = V.1, . VJ, implies 
that J,VJ, = V* . Thus, by Step 1, the spectral projections Ev(r) commute with 
J,. We set U = f c'2 Ev(dy). The functional calculus gives V = U . U (see, e.g., 
[1: p. 46]) and JEv(r) = Ev(r)J implies J,UJ, = U. From VJ, = J2 therefore 
J2 = VJ1 = UUJ, = UJ,U follows. Further, 

J2 UJ2 = VJ,UVJ, = UUJ,UUUJ 1 = UU . UUU = U. 
because of J,U = UJ,. The relations JUJ. = U (i = 1,2) imply, by Step 1, that 
the spectral projections of U commute with '1, and J2 . This shows that U satisfies all 
desired relations in (i). 

3. From JI AJI = A- ' (i = 1,2) it follows, with V = J2 J1 , that 
VAV = J2 J,AJ,J2 = J2 A'J2 = A. 

Thus the spectral projections of V commute with A and, by the definition of U above, 
U commutes with A, too U 

Now we come to the answer of the mentioned question. 
Proposition 2.2. Let 7_to be a separable Hubert space with dim 1-t0 = m2 for a 

natural number m or dim R. = 00. Let K be a conjugation on 1_ta. Then there is a von 
Neumann factor M 0 on 1_t, with a cyclic and separating vector u 0 such that K is the 
modular conjugation for (M 0 ,u0 ), i.e. K E MC(MO). 

Proof. 1. The assumption on the dimension of R. secures that we can identify 1_ta 
with a tensor product AC. We define M = £(1C)1 and u = E i Ae 1 ® e i where (e,) 
is a basis in K and A 1 > 0 with , A = 1. It is easy to show that u is a cyclic and 
separating vector for M. 

2. Now let (Lx, J) be the modular objects for (M, u). For the two conjugations J 
and K there exist a unitary operator U such that UJU = K (see Lemma 2.1). We put 
U .— Uuand Mo.= UMU. Then (6) implies that tz, is a cyclic and separating vector 
for the von Neumann factor M 0 and that the modular objects (A 0 ,J0 ) for (M0,u0) 
are given by A o = UU and J0 = UJU = K. This concludes the proof U
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This proposition says that the dimension requirement is sufficient to secure that a 
conjugation K on 'H, is a modular conjugation. It is also easy to see that the assumption 
on the dimension is necessary. Since without this assumption there is no von Neumann 
factor M on 1-( with a cyclic and separating vector. 

If we look at the proof of Proposition 2.2 we easily see that one can prove the 
following stronger result (in the case dim 71 = on): 

Let K be a conjugation on a separable infinite- dimensional Hubert space. Let Al be 
a separable von Neumann factor of type I, II, or III. Then there is a von Neumann 
factor M 0 on ?1 such that M 0 is isomorphic to Al, M 0 has a cyclic and separating 
vector u 0 , and K is the modular conjugation for (M 0 , u0). 

3. Modular conjugations for a modular operator 

In this section we consider the question how the set of modular conjugations for a fixed 
modular operator looks like. 

Proposition 3.1. Let (z 0 , J0 ) be the modular objects for (M,,, u.). Let J be a 
conjugation satisfying JA,, = /. 1 J. Then there is a unitary operator W such that 
WL 0 W = &,, WJO W = J, u := Wu 0 is a cyclic and separating vector for M 
WM O W, and (z 0 ,J) are the modular objects for (M, u). 

Proof. By Lemma 2.1 we have for the two conjugations J and J. a unitary operator 
W such that WJO W = J and WZ0W* = . Defining M = WM O W and u = Wu0 
the proposition is proved with the help of (6) I 

Proposition 3.2. Let (i. ° , J0 ) be the modular objects for (M 0 , u 0 ). Let u be a unit 
ezgenvector of z., to the eigenvalue 1. Let J be a conjugation satisfying JA,, = 
and Ju = u. Then there is a unitary operator W such that WL0W* = o, WJO W = 
J, u = Wu 0 , u is a cyclic and separating vector for M := WM O W, and	J) are 
the modular objects for (M, u). 

Proof. 1. First we note that according to Proposition 3.1 there is a unitary W1 
such that W1 L 0 = Z 0 W1 , W1 J0 W = J, v := W1 u0 is a cyclic and separating vector 
for M 1 := W1 M 0 W, and ( 0 ,J) are the modular objects for (Mi,v). 

2. We have Jv = v and L 0v = v. According to Lemma 5.2 there is a unitary 
V1 such that V1 L 0 = A 0 V1 , V1JV1* = J and u = V1 v. Then the pair (ViMiV,Viv) 
has the modular objects (V1L0V1*,V1JVfl = ( 0 ,J) because (M i ,v)'has the modular 
objects	J). Setting W = V1 W1 we find the desired result I 

From Propositions 3.1 and 3.2 we see first that the condition JA,, = L'J is 
necessary and sufficient that a conjugation J is a modular conjugation for a given 
modular operator t. Second we see that each cigenvector u for A. and J to the 
eigenvalue 1 is a cyclic and separating vector for some von Neumann factor M such 
that (A., J) are the modular objects for (M, u). Third we find that the construction 
of the von Neumann factor M is given by M = WM O W where W depends only on 

, J0 , J, u 0 , u and does not depend on the whole algebra M0.
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4. Algebraic conjugations and modular conjugations 

First we note a simple characterization of the set of modular conjugations for a von 
Neumann factor. 

Proposition 4.1. Let J. be a modular conjugation for (M 0 ,u 0 ). Then 

MC(M O ) = { J = UJ0 U: U E U(M'0)}. 

Proof. 1. If J is a modular conjugation for a pair (M 0 , u 0 ), then J = U'J0 U with 
some U E U(M,) (see, e.g., [14: p. 331]). 

2. Conversely, let J = U'J0 U with some U E U(M,). Then (6) gives that J is the 
modular conjugation for (UM O U, U'u 0). But UM O U = M 0 in our case. Thus we 
get J  MC(M 0 )I	-	 - 

Next we characterize the modular conjugations J for M 0 with the help of the unitary 
V	JJ0. 

Proposition 4.2. Let M 0 be a von Neumann factor on a separable Hubert space 1-1 
with a cyclic and separating vector u 0 . Let J0 be the modular conjugation for (M 0 , u0) 
and let J be an algebraic conjugation for M 0 . Further let V := JJ0 . Then: 

(1) adVEautMo. 
(ii) ad  E . intM o if and only if J E MC(MO). 

(iii) If intM 0 = autM 0 , then J E MC(MO). 

Proof. (i). From (5) for J and J. it follows that ad  E autM0. 
(ii) Now suppose J is a modular conjugation. Then from Proposition 4.1 we get that 

J = UJO U for some U E U(M'0 ) and V:= JJ0 = U' JO UJO . Since J0 UJ0 E U(M0) 
and U' E U(M'0 ) we find that ad  is from intM0. 

Conversely, suppose that ad V is an inner automorphism of M 0. Then we can 
decompose V in the form V = V1 V2 where V1 E U(M 0 ) and V2 E U(M,). By P = 
VJ0 VJ0 = 1, we get JO VJO = V' and find V' = VV1 = JO V1 V2JO = J0 V1 J0 . J0V2J0 
with .J0 V1 J0 ,V' E M 1c, and JO V2JO , V1' E M 0 . Now using the uniqueness of such a 
product from unitaries from M 0 and M'0 (see Lemma 5.1) we obtain J0 V1 J0 = 
and J0 V2 4 = V'e. By using the freedom in the decomposition V1 V2 we can 
transform c into zero. Therefore V = J01/'J0 . V = 1/ . JO V2 JO and J = VJ0 = 
V2JO V'JO . = V2 J0 V'. This proves J has the form of an element of MC(MO) 
(see Proposition 4.1) and therefore J is a modular conjugation. This proves the other 
direction of (ii). 

(iii) It follows from (i) and (ii) I 

Remark 4.3. If we restrict ourselves to hyperfinite factors, then the property 
int = aut M is only true for type I factors. At present it is not clear if there are 
(non-hyperfinite) type II factors with mt M = aut M. But we see from this proposition 
that every algebraic conjugation for a type I factor is even a modular conjugation for 
this factor	 -	-	--	 - 

From Proposition 4.2 we get a further characterization of algebraic conjugations.
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Proposition 4.4. Let J0 , J, V be as in Proposition 4.2. Then: 

(i) J V . .1,, = W - J0 . V with a unitary W such that ad 	E intM0. 
(ii) V 2 = WW' = J0 W• J and VWV = W. 

Proof. (i) From the fact that ad V is an automorphism of M. and from (6) we get 
that VJO V is a modular conjugation for M 0 . Thus VJO V = WJ0 with ad W E mt M0 
(see Proposition 4.2). This implies J = VJ0 = WJ0 V where W has the described 
properties. 

(ii) We get V 2 = WJ0 VJ0 . V = WJ0 VVJ0 = W. The second property follows 
from

J0 WJ0 = J0 V 2 J0 = JO(JJO . JJO)JO = J.J. J0J = V V = ( V2 )* = W 

Further, using that V2 = W we find VWV = VV 2 V = V 2 = W I 
Before we use this assertion about the structure of algebraic conjugations we con-

struct for a large class of non type I factors M,, algebraic conjugations which are not 
modular conjugations (shortly we call such algebraic conjugations purely algebraic con-
jugations). The construction uses the flip automorphism and the fact that "many" 
factors M. are tensor squares, M0 A/jV. 

Theorem 4.5. Let M0 be a separable von Neumann factor with a cyclic and sep-
arating vector u 0 . Suppose M 0 is isomorphic to iVN where N is a von Neumann 
factor and M 0 is not a type I factor. Then there is an algebraic conjugation for M0 
which is not a modular conjugation. 

Proof. 1. Since M 0 is separable the factor Al is also separable. Thus Al is isomor-
phic to a von Neumann factor £ on a separable Hubert space and £ has a cyclic and 
separating vector v0 (see [3: Proposition 2.5.6]). This implies that £C is a von Neu-
mann factor with the cyclic and separating vector v := v0 ® v0 (see [9]). Further, M0 
is isomorphic to £C. Since both von Neumann factors have a cyclic and separating 
vector they are spatially isomorphic. Thus, without loss of generality, we can assume 
in the following that M 0 = .A1Al on ii = 7 IO 1 1O and M 0 has a cyclic and separating 
vector u = U0 ® U0. 

2. We consider the flip automorphism a on AlN given by a(X ® Y) = Y ® 
X(X,YEAI). We obtain 

(u, a(X (9 Y)u) = (u, Y (& Xu) = (u 0 , Yu 0 )(u 0 , Xu 0 ) = (u, X (& Yu). 

This gives that a leaves invariant the vector state (u, .u). Thus, for a there exist a 
unitary operator V,, such that ad Va = a, Vau = u, and 1/ commutes with the modular 
objects (,, .1,,) for (M 0 , u) (see, e.g., [3]) . Since M. is not of type I we have that a 
(the flip) is an outer automorphism (see [111). 

3. Next we show that V, = 1. Since a2 is the identity automorphism we find 
thata 2 (M) = VM(V) 2 = M (ME M 0 ) and therefore Y : = V,2, E M,. This implies, 
with Vu = u, Mu = MVu = VMu (M E M 0 ). Since u is cyclic for M. we get that 
V =1, thus V0, V.
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4. Now we define an antiunitary operator J = V0 J0 . Since V0 commutes with the 
modular conjugation J,, (see Step 2) we have J2 VO JO VQ JO = VQ JO JO = 1, i.e. J is a 
conjugation. Further, 

JM OJ V0 JO M O VO JO = JO VO M Q VO JO = J0 c(M 0 )J0 = JO M O JO = M, 

i.e. J is an algebraic conjugation for M 0. Since V0 = JJ0 implements an outer au-
tomorphism of M 0 we obtain from Proposition 4.2 that J is an algebraic conjugation 
which is not a modular conjugation I 

The next question is which von Neumann factors are tensor squares. First, we 
note that not all von Neumann factors have such a structure. For example, finite von 
Neumann factors of type I, where n is not a square of a natural number are not tensor 
squares. Second, for some non-hyperfinite type III factors it is not known if they have 
outer automorphisms and therefore it is not clear if they are tensor squares (tensor 
squares of non type I factors have an outer automorphism, the flip automorphism [11]). 
Third, there are hyperfinite III,, factors (even ITPFI factors) which are not tensor 
squares (see [7]).  

The following proposition presents a class of von Neumann factors which are tensor 
squares. It follows directly from well-known results in the literature. 

Proposition 4.6. Let M 0 be a hyperfinite factor. Then: 

(i) If M 0 is neither of type I nor of type 1110 , then M 0 is a tensor square, i.e. 
iVV where Al is a hyperfinite factor. 

(ii) If M 0 is a type 1110 factor whose flow of weights has pure point spectrum, then 
M 0 AlAl where Al. is a hyperfinite factor. 

Proof. 1. First we note that the tensor square A1A( of a hyperfinite factor A l is 
again a hyperfinite factor. This follows from the fact that such factors are injective (we 
consider only separable von Neumann factors where injective is the same as hyperfinite) 
and injectivity is stable under tensor products (see, e.g., [ 5D, and from the fact that the 
tensor product of factors is again a factor (see [9]). 

2. If Al is a hyperfinite factor of type III (II), then AlV is again.a factor of 
type III (II) (see [9]), and it is hyperfinite because of Step 1. Since these factors are 
unique (see, e.g., [5]), we get that the hyperfinite factors of type III and of type II, 
are tensor squares. 

3. There exists a hyperfinite type 1110 factor Al such that M = AlAl is a hyperfi-
nite type 1I1 factor (a hyperfinite type "A factor, for each A € (0,1)) (see [61). Since 
the hyperfinite factors of type III and of type "A, A E (0,1) are unique (see [5)), we 
obtain that they are tensor squares. 

4. If M. is a hyperfinite type 1110 factor whose flow of weights has pure point 
spectrum, then there is a hyperfinite type 1110 factor Al with M 0 A/Al (see [61)1 

Remark 4.7. 1. From Proposition 4.6 and Theorem 4.5 we get that all hyperfinite 
factors of type II, "A, III,, and Illo (whose flow of weights has pure point spectrum) 
have purely algebraic conjugations.
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2. For the hyperfinite factors described in item 1 we have that they are even tensor 
squares of themselves, i.e. M MM (see [6, 10)). 

For factors which are not hyperfinite or do not belong to the set of hyperfinite type 
1110 factors described in Proposition 4.6 the existence of purely algebraic conjugations 
is not clear. 

At the end of this section we shortly discuss the question how "large" the set of 
purely algebraic conjugations is. 

From Proposition 4.2 we see that the set of algebraic conjugations for a von Neumann 
factor M 0 is given by 

{J=V . Jo : adVautM 0 and Vi0=J0v*} 

where J0 is a fixed modular conjugation of M 0 . Thus the set of algebraiè conjugations 
is determined by the set of automorphisms ad V. Now the set of automorphisms of M0 
can be classified with the help of the outer conjugacy relation. Two automorphisms 
and 0 are said to be outer conjugate if there is a 9 E aut M. such that 8 = 0 . a . 
modulo intM 0 . In our case (adV)P = ad  E intM 0 and adV(W) = yW with p = 2 
and -y = 1 (see Proposition 4.4). This means the automorphisms ad  defining the 
purely algebraic conjugations have the outer conjugacy class invariants p(ad V) = 2 and 
7(ad V) = 1) (for details about outer conjugacy, see [5: Section V.6)). Thus we get the 
following result. 

Proposition 4.8. Let lvi,, be a hyperfinite factor of type II with a cyclic and sepa-
rating vector u 0 . Let J,, be the modular conjugation for (M,,, u,,). Further, let J, Vi . J. 
and J2 = V2 . J,, be two purely algebraic conjugations for M 0 . Then ad V, and ad V2 are 
outer conjugate. 

Proof. From the considerations before we know that ad V1 and ad V2 have the same 
invariants p = 2 and y = 1. From [5: Section V.6/Theorems 14 and 16] it follows that 
then ad V, and ad V2 are outer conjugate U 

Remark 4.9. 1. From this proposition and Remark 4.7 we see that for hyperfinite 
type II factors there exists only one purely algebraic conjugation up to outer conjugacy. 
One can partly extend this result to such hyperfinite type III factors as described in 
Remark 4.7 with the help of the classification of the automorphisms of these factors (see 
[161). We omit the details. 

2. Naturally, if an outer automorphism ad V of M 0 satisfies p(ad V) = 2 and 
y(adV) = 1, then J := V - J0 is in generally not an algebraic conjugation for M.. The 
relation J2 = 1 does not follow from these assumptions. 

Acknowledgments. We thank one of the referees for the suggestion to separate 
a part of the proof of Proposition 2.2 as a lemma (Lemma 2.1). This paper is partly 
based on the Diploma thesis of the first author.
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5. Appendix 

In this appendix we prove two simple but useful lemmas. 

Lemma 5.1. Suppose U = U i U2 with elements U 1 E M and U2 E M' which are 
bounded invertible. Then this decomposition of U in bounded invertible elements from 
M and M' is unique up to a bounded invertible element from the center of M. This 
means if there is another such decomposition U = V1 V2 with V1 E M and V2 E M', 
then U1 = G V1 and U2 =	V2 with C E Z(M). 

Proof. If U = U 1 - U2 = V1 . V2 with U1 , V1 EM and U2 , V2 EM', then we get 
that G := V1 'U1 = V2 Uç' is from M flM'. Clearly, C has an inverse. This proves the 
assertion I 

Lemma 5.2. Let H be a selfadjoint operator on a separable Hilbert space W. Sup-
pose H has the eigenvalue 1. Let u 1 ,u 2 be two unit eigenvectors of H to the eigenvalue 
1. Suppose there is an antiunitary operator J with J 2 = 1, Jul = u 1 , and Ju2 = u2. 
Then there is a unitary operator V1 on 'K with the properties V1 H = HV1 ,VI J = JV1, 
and V1 u 1 = u2. 

Proof. 1. Assume u 1 = e'°u 2 . Then we get 

u l = Jul = Je'°u 2 = e°Ju2 = e'°u 2 = eu1. 

Thus, e1 is 1 or —1. So we can choose V1 as 1 or -1. 
2. Next assume that u 1 , u 2 generate a two-dimensional subspace 'K 0 of 'K. We can 

choose orthonormal bases {u i ,u} and {u 2 , u'2 } in 'K,, such that Ju = u'3 (j = 1, 2). 
Namely, suppose that {u j , v 1 ) is an orthonormal basis in 'K,, such that fy i 54 v 1 . We 
have (Jv i , u i ) = (Ju l , v i ) = (u i , v i ) = 0. Further, J'K,, = 'K,,. This gives that {u 1 , Jvi} 
is again an orthonormal basis in 'K,, like {u 1 , v 1 }. Thus Jv 1 = e"v1. 

Now we set u'1 = e"'2 v 1 . Then Ju'1 = Je'v 1 = eJvj = e'v 1 = u. Clearly, 
ul is from H. and is orthogonal to u 1 . This shows {u i , u' } has the right invariance 
under J. The same can be done with {u 2 ,u'2 }. So our assumption on the bases can be 
fulfilled. Next we define V. as a partial isometry from 'K onto 'K,, with V0 u 1 = u 2 and 
V0u = U 2 - 

3. We make the ansatz V1 (1— P,,)+ V0 where P. is the orthoprojection onto 'Kr,. 
Clearly, P0 commutes with H and V. commutes with H. Thus V1 H = HV1 . Further, 
we get V1 u 1 = V0 u 1 = u2. 

4. It remains to show V1 J = JV1 . First from Ju3 = uj and J2	1 it follows 
JP,, = P0 J. Second, we have for u E 1-1,, 

JV0u = JV,,(a i u i + a2 u) J(a1 u 2 + a2u) = a i u2 +ä2U2 
V0 Ju = V,,J(a i u i + a2 u'1 ) = V,,(ã i u i + 62 u) = ä 1 u2 + ã2u'. 

This implies JV,, = V.J. Thus JV1 = V1 J. This concludes the proof I
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