Recursion Formulae for $\sum_{m=1}^{n} m^{k}$

Sen-Lin Guo and Feng Qi

Abstract

Using elementary approach and mathematical induction, several recursion formulae for $S_{k}(n)=\sum_{m=1}^{n} m^{k}$ are presented which show that $S_{k+1}(n)$ could be obtained from $S_{k}(n)$. A method and a formula of calculating Bernoulli numbers are proposed.

Keywords: Recursion formulas, sum of powers, mathematical induction, Bernoulli numbers AMS subject classification: Primary 11 B 37, secondary 11 B 68, 11 B 83

1. Introduction

By definition and geometric meanings of the definite integral, it is well-known that the area under the curve $y=x^{k}$ over the closed interval $[0,1]$ equals

$$
\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \frac{1}{n}\left(\frac{m}{n}\right)^{k}=\lim _{n \rightarrow \infty} \frac{1}{n^{k+1}}\left(\sum_{m=1}^{n} m^{k}\right)
$$

To complete the solution of this and many similar problems, it is then necessary to find the sums

$$
\begin{equation*}
S_{k}(n)=\sum_{m=1}^{n} m^{k} \tag{1}
\end{equation*}
$$

For small integer $k>0$, the sums always appear in many calculus courses. For example,

$$
S_{7}(n)=\frac{1}{24} n^{2}(n+1)^{2}\left(3 n^{4}+6 n^{3}-n^{2}-4 n+2\right)
$$

and the like [6: p. 11]. Such sums are usually proved by induction or derived from simple geometric pictures. For arbitrary k, unfortunately, the standard closed forms involve Bernoulli numbers or Stirling numbers of the second kind [4: p. 119], which come from reasonably complicated recurrence relations.
H. J. Schultz [10] derived a procedure for finding $S_{k}(n), k$ a positive integer, that is easy to remember, arises naturally, and can be used with very little background.

[^0]However, he only illustrated the method by finding $S_{6}(n)$. According to [10], if one wants to compute, in general,

$$
\begin{equation*}
S_{k}(n)=A_{k+1} n^{k+1}+\ldots+A_{1} n+A_{0} \tag{2}
\end{equation*}
$$

a system of $k+1$ equations

$$
\sum_{i=j+1}^{k+1}(-1)^{i-j+1}\binom{i}{j} A_{i}=0 \quad(0 \leq j \leq k)
$$

must be solved.
Let B_{n} be the n-th Bernoulli number defined in [6: p. 648] and [9: p. 632] by

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \quad(|x| \leq 2 \pi) \tag{3}
\end{equation*}
$$

Then A_{1} obtained from the formula for $S_{k}(n)$ is the k-th Bernoulli number B_{k} (for details see [11: p. 320]). It is noted that the concept of Bernoulli polynomial is generalized in [8] by the second author.

There are many inequalities related to the sum $S_{\alpha}(n)=\sum_{m=1}^{n} m^{\alpha}$, where α is an arbitrary real number. For instance,

$$
\begin{gathered}
n^{\alpha+1}<(\alpha+1) S_{\alpha}(n)<(n+1)^{\alpha+1}-1 \\
(\alpha+1)\left[S_{\alpha}(n)-1\right]<n^{\alpha+1}-1<(\alpha+1) S_{\alpha}(n-1) \\
(n+1)^{\alpha+1}-n^{\alpha+1}<(\alpha+1)\left[S_{\alpha}(n)-S_{\alpha}(n-1)\right]<n^{\alpha+1}-(n-1)^{\alpha+1}
\end{gathered}
$$

for $\alpha>0, \alpha<-1$ and $-1<\alpha<0$, respectively. The proofs of these inequalities could be found in [7: pp. 84-85].

In $[5,12,13]$ the relationships between Bernoulli numbers and the sum (1) were also studied using the Euler-Maclaurin formula and other devices. It is worth noting that a fascinating account of the early history of the problem above and standard recursion formulas for $S_{k}(n)$ as originally stated by Pascal are given in [3].

In this article, we prove that $S_{k}(n)$ is a $(k+1)$-th degree polynomial for n with constant term 0 (that is, formula (2) is valid) and

$$
\begin{equation*}
S_{k+1}(n)=(k+1)\left(\frac{A_{k+1}}{k+2} n^{k+2}+\frac{A_{k}}{k+1} n^{k+1}+\ldots+\frac{A_{2}}{3} n^{3}+\frac{A_{1}}{2} n^{2}\right)+b_{1} n \tag{4}
\end{equation*}
$$

where

$$
b_{1}= \begin{cases}0 & \text { for even } k>0 \\ 1-(k+1) \sum_{i=1}^{k+1} \frac{A_{i}}{i+1} & \text { for odd } k>0\end{cases}
$$

Formula (4) shows that we can use the coefficients $A_{i}(1 \leq i \leq k+1)$ in $S_{k}(n)$ to get the expression of $S_{k+1}(n)$. In fact, it also gives a method of computing Bernoulli numbers B_{k+1}. At last, other formulae for calculating Bernoulli numbers and $\sum_{m=1}^{n} m^{k}$ are given.

2. Lemmas

To obtain our main results, the following lemmas are necessary. Moreover, these lemmas also give some recursion formulae for $S_{k}(n)$.

Lemma 1. For any integers $k \geq 0$ and $n>0$, we have

$$
\begin{equation*}
(1+n)^{k+1}=1+\sum_{i=0}^{k}\binom{k+1}{i} S_{i}(n) \tag{5}
\end{equation*}
$$

Proof. Recalling the binomial expansion $(1+m)^{k+1}=\sum_{i=0}^{k+1}\left(\frac{k+1}{i}\right) m^{i}$ we obtain

$$
\begin{aligned}
(1+n)^{k+1}+S_{k+1}(n)-1 & =\sum_{m=1}^{n}(1+m)^{k+1} \\
& =\sum_{m=1}^{n}\left(\sum_{i=0}^{k+1}\binom{k+1}{i} m^{i}\right) \\
& =\sum_{i=0}^{k+1}\left(\frac{k+1}{i}\right)\left(\sum_{m=1}^{n} m^{i}\right) \\
& =\sum_{i=0}^{k+1}\left(\frac{k+1}{i}\right) S_{i}(n) .
\end{aligned}
$$

This is equivalent to

$$
(1+n)^{k+1}=1+\sum_{i=0}^{k}\left(\frac{k+1}{i}\right) S_{i}(n) .
$$

The proof of Lemma 1 is completed $\boldsymbol{\square}$
Lemma 1 shows that $S_{k}(n)$ could be deduced from $S_{0}(n), S_{1}(n), \ldots, S_{k-1}(n)$. Using Lemma 1 we can get

Lemma 2. For arbitrary integer $k>0$,

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1} n^{k+1}+\frac{1}{2} n^{k}+\sum_{i=1}^{k-1} A_{i} n^{i} \tag{6}
\end{equation*}
$$

Proof. By mathematical induction on k, the result that $S_{k}(n)$ is a $(k+1)$-th degree polynomial with constant term 0 follows straightforwardly. Equating the coefficients on the two sides of (5), it is deduced easily that the coefficients of n^{k+1} and n^{k} in $S_{k}(n)$ are $\frac{1}{k+1}$ and $\frac{1}{2}$, respectively. This completes the proof of Lemma 2

Since $S_{k}(1)=1$, formula (6) implies

$$
\begin{equation*}
\sum_{i=1}^{k-1} A_{i}=12-\frac{1}{k+1} . \tag{7}
\end{equation*}
$$

For any integer $k>0$, let $\langle k\rangle$ stand for the largest odd number less than k. Then

$$
k-\langle k\rangle= \begin{cases}1 & \text { for any even } k \\ 2 & \text { for any odd } k\end{cases}
$$

For example, $\langle 2\rangle=1,\langle 5\rangle=3$, and so forth.
Let $A_{p}^{(q)}$ denote the coefficient of n^{p} in $S_{q}(n)$. Then
Lemma 3. For any integer $k>1$,

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1} n^{k+1}+\frac{1}{2} n^{k}+\frac{1}{2} \sum_{i=1}^{\frac{(k)+1}{2}} \frac{1}{i}\binom{k}{2 i-1} A_{1}^{(2 i)} n^{k-2 i+1} \tag{9}
\end{equation*}
$$

that is,

$$
\begin{equation*}
A_{k-2 i+1}^{(k)}=\frac{1}{2 i}\binom{k}{2 i-1} A_{1}^{(2 i)} \quad\left(1 \leq i \leq \frac{(k)+1}{2}\right) \tag{10}
\end{equation*}
$$

where $A_{1}^{(2 i)}$ is the coefficient of the term n in $S_{2 i}(n)$.
Proof. We will use mathematical induction on k. It is clear that formula (9) is true for $k=2$. Suppose the result is true for $3, \ldots, k-1$. From Lemma 2, we have

$$
S_{k}(n)=\frac{1}{k+1} n^{k+1}+\frac{1}{2} n^{k}+\sum_{i=1}^{k-1} A_{k-i}^{(k)} n^{k-i}
$$

Equating the coefficients of n^{k-j} for $j=1,3, \ldots,\langle k\rangle$ in (5) gives us

$$
\begin{align*}
A_{k-j}^{(k)}= & \frac{1}{k+1}\left[\frac{1}{2}\binom{k+1}{k-j}-\frac{1}{k-j}\binom{k+1}{k-j-1}\right. \\
& \left.-\sum_{i=0}^{\frac{i-3}{2}} A_{k-j}^{(k-j+2 i+1)}\binom{k+1}{k-j+2 i+1}\right] . \tag{11}
\end{align*}
$$

By the inductive assumption, we have

$$
\begin{equation*}
A_{k-j}^{(k-j+2 i+1)}=A_{1}^{(2(i+1))} \frac{1}{k-j+2(i+1)}\binom{k-j+2(i+1)}{2(i+1)} \tag{12}
\end{equation*}
$$

for $0 \leq i \leq \frac{i-3}{2}$. Combining (11) and (12) yields

$$
\begin{align*}
A_{k-j}^{(k)}= & \frac{1}{k+1}\left[\frac{1}{2}\binom{k+1}{k-j}-\frac{1}{k-j}\binom{k+1}{k-j-1}\right. \\
& \left.-\sum_{i=1}^{\frac{i-1}{2}} A_{1}^{(2 i)} \frac{1}{k-j+2 i}\binom{k-j+2 i}{2 i}\binom{k+1}{k-j+2 i-1}\right] \tag{13}
\end{align*}
$$

From (7) and the inductive assumption, it follows that

$$
\begin{equation*}
A_{1}^{(j+1)}=\frac{1}{2}-\frac{1}{j+2}-\sum_{i=1}^{\frac{i-1}{2}} A_{2 i+1}^{(j+1)} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{j-2 i}^{(j+1)}=A_{1}^{(2(i+1))} \frac{1}{j+2}\binom{j+2}{2(i+1)} \quad\left(0 \leq i \leq \frac{i-3}{2}\right) . \tag{15}
\end{equation*}
$$

Substituting (15) into (14) produces

$$
\begin{align*}
A_{1}^{(j+1)} \frac{1}{k+1}\binom{k+1}{j+1}= & \frac{1}{k+1}\left[\frac{1}{2}\binom{k+1}{j+1}-\frac{1}{j+2}\left(\frac{k+1}{j+1}\right)\right. \\
& \left.-\sum_{i=1}^{\frac{i-1}{2}} A_{1}^{2 i} \frac{1}{j+2}\binom{j+2}{2 i}\binom{k+1}{j+1}\right] \\
= & \frac{1}{k+1}\left[\frac{1}{2}\binom{k+1}{k-j}-\frac{1}{k-j}\left(\frac{k+1}{k-j-1}\right)\right. \tag{16}\\
& \left.-\sum_{i=1}^{\frac{i-1}{2}} A_{1}^{2 i} \frac{1}{k-j+2 i}\binom{k-j+2 i}{2 i}\binom{k+1}{k-j+2 i-1}\right] .
\end{align*}
$$

From (13) and (16),

$$
A_{k-j}^{(k)}=\frac{1}{k+1}\binom{k+1}{j+1} A_{1}^{(j+1)} \quad(j=1,3, \ldots,\langle k\rangle)
$$

is obtained. Similarly, by mathematical induction, we can prove that

$$
A_{k-i}^{(k)}=0 \quad(i=2,4,6, \ldots,(k\rangle+1) .
$$

The proof of Lemma 3 is completed
Note Lemma 3 shows that the coefficients of the term n in $S_{2}(n), \ldots, S_{2 i-2}(n)$ can be used to calculate $S_{2 i-1}(n)$ and $S_{2 i}(n)$.

3. Main results

Now we use Lemma 3 to prove
Main Theorem. For any integer $k>1$, let

$$
S_{k}(n)=\frac{1}{k+1} n^{k+1}+\frac{1}{2} n^{k}+\sum_{i=1}^{\frac{(k)+1}{2}} A_{k-2 i+1} n^{k-2 i+1}
$$

Then

$$
S_{k+1}(n)=\frac{1}{k+2} n^{k+2}+\frac{1}{2} n^{k+1}+(k+1) \sum_{i=1}^{\frac{\langle k\rangle+1}{2}} \frac{A_{k-2 i+1}}{k-2(i-1)} n^{k-2(i-1)}+b_{1} n
$$

where

$$
b_{1}= \begin{cases}0 & \text { for even } k \tag{17}\\ \frac{1}{2}-\left[\frac{1}{k+2}+(k+1) \sum_{i=1}^{\frac{k-1}{2}} \frac{A_{k-2 i+1}}{k-2 i+2}\right] & \text { for odd } k .\end{cases}
$$

Proof. From (10) we know that the coefficients of $n^{k-j}(j=1,3, \ldots,\langle k\rangle)$ in $S_{k}(n)$ are

$$
A_{k-j}^{(k)}=\frac{1}{k+1}\binom{k+1}{j+1} A_{1}^{(j+1)} .
$$

Therefore

$$
\begin{aligned}
A_{k-j}^{(k)} \frac{k+1}{k-j+1} & =A_{1}^{(j+1)} \frac{1}{k+1}\binom{k+1}{j+1} \frac{k+1}{k-j+1} \\
& =A_{1}^{(j+1)} \frac{1}{k+2}\binom{k+2}{j+1} \\
& =A_{k-j+1}^{(k+1)}
\end{aligned}
$$

is the coefficient of $n^{k+1-j}(j=1,3, \ldots,\langle k\rangle)$ in $S_{k+1}(n)$. If k is even, since $k-\langle k\rangle+1=$ $(k+1)-\langle k+1\rangle$, then $b_{1}=0$ follows from (9). If k is odd, formula (17) follows from (7). This completes the proof I

Corollary. Let A_{i} be the coefficients of the terms $n^{i}(1 \leq i \leq k+1)$ in $S_{k}(n)$ and let $B_{i}(i>1)$ be the i-th Bernoulli numbers. Then

$$
\begin{aligned}
B_{2 j+1} & =0 \\
B_{2 j} & =\frac{1}{2}-\left[\frac{1}{2 j+1}+2 j \sum_{i=1}^{j-1} \frac{A_{2(j-i)}}{2(j-i)+1}\right]
\end{aligned}
$$

for every integer $j \geq 1$,
Remark. By Lemmas 1-3 and Main Theorem, calculating directly we obtain

$$
\begin{aligned}
S_{10}(n)= & \frac{1}{11} n^{11}+\frac{1}{2} n^{10}+\frac{5}{6} n^{9}-n^{7}+n^{5}-\frac{1}{2} n^{3}+\frac{5}{66} n \\
S_{11}(n)= & \frac{1}{12} n^{12}+\frac{1}{2} n^{11}+\frac{11}{12} n^{10}-\frac{11}{8} n^{8}+\frac{11}{6} n^{6}-\frac{11}{8} n^{4}+\frac{5}{12} n^{2} \\
S_{12}(n)= & \frac{1}{13} n^{13}+\frac{1}{2} n^{12}+n^{11}-\frac{11}{6} n^{9}+\frac{22}{7} n^{7}-\frac{33}{10} n^{5}+\frac{5}{3} n^{3}-\frac{691}{2730} n \\
S_{20}(n)= & \frac{1}{21} n^{21}+\frac{1}{2} n^{20}+\frac{5}{3} n^{19}-\frac{19}{2} n^{17}+\frac{1292}{21} n^{15}-323 n^{13}+\frac{41990}{33} n^{11} \\
& -\frac{223193}{63} n^{9}+6460 n^{7}-\frac{68723}{10} n^{5}+\frac{219335}{63} n^{3}-\frac{174611}{330} n \\
S_{21}(n)= & \frac{1}{22} n^{22}+\frac{1}{2} n^{21}+\frac{7}{4} n^{20}-\frac{133}{12} n^{18}+\frac{323}{4} n^{16}-\frac{969}{2} n^{14}+\frac{146965}{66} n^{12} \\
& -\frac{223193}{30} n^{10}+\frac{33915}{2} n^{8}-\frac{481061}{20} n^{6}+\frac{219335}{12} n^{4}-\frac{1222277}{220} n^{2} .
\end{aligned}
$$

From here the Bernoulli numbers

$$
B_{10}=566, \quad B_{12}=-\frac{691}{2730}, \quad B_{20}=-\frac{174611}{330}
$$

are obtained.

4. Another formulae for $\sum_{m=1}^{\boldsymbol{n}} \boldsymbol{m}^{\boldsymbol{k}}$ and Bernoulli numbers

In this section, another formulae for computing Bernoulli numbers and $\sum_{m=1}^{n} m^{k}$ will be given, from which we can get the Bernoulli numbers more easily (see [1] and [2: pp. 246-265]).

Define functions B_{n} by

$$
\frac{z e^{x z}}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} z^{n} \quad(|z|<2 \pi)
$$

and write $B_{n}=B_{n}(0)$ for the Bernoulli numbers. Then formula (3) follows by putting $x=0$. We can equate coefficients of z^{n} in

$$
\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} z^{n}=\frac{z}{e^{z}-1} \cdot e^{x z}=\left(\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}\right)\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!} z^{n}\right)
$$

to get

$$
B_{n}(x)=\sum_{k=0}^{n}\left(\begin{array}{l}
n \tag{18}\\
k
\end{array} B_{k} x^{n-k}\right) .
$$

Also, since

$$
\frac{z e^{(x+1) z}}{e^{z}-1}-\frac{z e^{x z}}{e^{z}-1}=z e^{x z}
$$

we have

$$
\sum_{n=0}^{\infty} \frac{B_{n}(x+1)-B_{n}(x)}{n!} z^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} z^{n+1}
$$

and by equating coefficients of z^{n} we get

$$
\begin{equation*}
B_{n}(x+1)-B_{n}(x)=n x^{n-1} . \tag{19}
\end{equation*}
$$

So putting $x=0$ we have

$$
\begin{equation*}
B_{n}=B_{n}(0)=B_{n}(1) \quad(n \neq 1) . \tag{20}
\end{equation*}
$$

Thus for $n \geq 2$ we can put $x=1$ in (18) and use (20) to obtain

$$
B_{n}=B_{n}(1)=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

This is a much simpler recursion formula for computing Bernoulli numbers.
Result (19) can be used, taking $x=1,2, \ldots, k-1, k$ and adding, to give

$$
\begin{aligned}
B_{n}(k+1)-B_{n}(1) & =\sum_{i=0}^{k-1}\left[B_{n}(k+1-i)-B_{n}(k-i)\right] \\
& =n \cdot k^{n-1}+n(k-1)^{n-1}+\ldots+n \cdot 2^{n-1}+n \cdot 1^{n-1} \\
& =n \sum_{m=1}^{k} m^{k-1},
\end{aligned}
$$

that is,

$$
\sum_{m=1}^{k} m^{k-1}=\frac{B_{n}(k+1)-B_{n}}{n}
$$

References

[1] Apostol, T.: Mathematical Analysis, 2nd edition. New York: Addison-Wesley 1974.
[2] Apostol, T.: Introduction to Analytic Number Theory. Berlin: Springer-Verlag 1976.
[3] Boyer, C. B.: Pascal's formula for the sums of powers of the integers. Scripta Math. 9 (1943), 237 - 244.
[4] Brualdi, R.: Introductory Combinatories. Amsterdam: North-Holland 1977.
[5] Jing-Tian Cao: A method of summing series and some corollaries (in Chinese). Mathematics in Practice and Theory 20 (1990)2, 77-84.
[6] Group of Compilation: Handbook of Mathematics (in Chinese). Beijing: Higher Education Press 1979.
[7] Ji-Chang Kuang: Applied Inequalities, 2nd ed. (in Chinese). Changsha: Hunan Education Press 1993.
[8] Feng Qi: Generalized Bernoulli polynomial. Mathematics and Informatics Quarterly (to appear).
[9] Mitrinović, D. S., Pec̆arić, J. E. and A. M. Fink: Classical and New Inequalities in Analysis. Dordrecht - Boston - London: Kluwer Acad. Publ. 1993.
[10] Schultz, H. J.: The sums of the k-th powers of the first n integers. Amer. Math. Monthly 87 (1980), 478-481.
[11] Struik, D. J.: A Source Book in Mathematics 1200-1800. Cambridge (Mass.): Harvad Univ. Press, Cambridge 1969.
[12] Bi-Cheng Yang: Formulae related to Bernoulli number and for sums of the same power of natural numbers (in Chinese). Mathematics in Practice and Theory 24 (1994)4, 52 56 and 74.
[13] Nan-Yue Zhang: Euler's number and some sums related to Zeta function (in Chinese). Mathematics in Practice and Theory 20 (1990)4, 62 - 70.

[^0]: Sen-Lin Guo: Zhengzhou Textile Inst., Dept. Basic Sci., Zhengzhou City, Henan 450007, P. R. China
 Feng Qi: Jiaozuo Inst. Techn., Dept. Math., Jiaozuo City, Henen 454000, P. R. China; e-mail: qifeng@jzit.edu.cn. Partially supported by NSF of Henan Province, P. R. China

