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Abstract. By means of the contraction principle we prove existence, uniqueness and stability 
of solutions for nonlinear equations u + G0 [D, tL] + L(G 1 [D, u], G 2 [D, uJ) = f in a Banach space 
E, where Go, C 1 , C2 satisfy Lipschitz conditions in scales of norms, L is a bilinear operator and 
D is a data parameter. The theory is applicable for inverse problems of memory identification 
and generalized convolution equations of the second kind. 
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0. Introduction 

Recently by the author and L.v. Wolfersdorf global solvability and stability with respect 
to free terms has been proved for nonlinear convolution equations of the second kind 111, 
12]. These results were generalized to abstract equations containing operators which 
are Lipschitz-continuous in scales of norms [9]. 

On the other hand, in the most important applications of this theory (see [7, 8, 10]) 
the operators involved are dependent on the data. In the present paper we generalize 
the results of the work [9] to the case when the Lipschitz operators depend on a data 
parameter D and derive stability estimates with respect to D and the free term f . In 
contrast to [9] the stability results obtained in this paper are global. As in (11, 12] we 
will use the Banach fixed point theorem in scales of norms. 
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1. Equations with Lipschitz operators in scales 

We will study the operator equation 

u+ Go[D,u]+L(Gi[D,u],G2[D,u])= f	 (1) 

in a Banach space E, where G0 E (E x E - E) and G, E (E x E - E 1 ) (i = 1, 2), 
with E a linear space, E 1 and E2 are normed spaces, and L is a bilinear operator from 
E 1 x E2 into E. 

	

We suppose that the spaces E and E1 are endowed with scales of norms	and 
II II	(a > 0), respectively, which satisfy the conditions 

	

tc ( a )II u IIo	IIIIa	lIIIo	(u E E)	 (2)

and

	

IItiIIi,o	 (vi E E1 )	 ( 3) 

where
E C(R - R)	( > 0),	 (4) 

the linear space E is endowed with a semi-norm I I and for the operators Go, G i and 
L the assumptions 

I G0[ D i, u i] - Go[D2,u2] 

< M ( I D 1 1, 1D21, II U I ha, 11 U 2110, a) ( I D 1 - D2 1 + II u i. - U 2II11)	(5) 

G [ D 1, u 11 - G1(D2,u2111 ha 
< JW(D i 1, 1D2 1, IItL lIIa, IItl 2IIa) (I Di- D21 + hltti - U211a)	 (6)

for D i , D2 e E and u, u 2 e E and 

II L (v i , V2)jIg	Nv i II1,aII t'2112,o	 (7) 

II L ( v i , V2) ha < \(-) min { Il v i 111,0 ll v2 112,a Ik-'i II la ll v2 1120 }	 (8) 

for v, E E (i = 1,2) hold. Here N > 0 and the functions M0 , Mi and A satisfy the 
conditions	 - 

fo- E C(R 5 - R+), Mo(x i , ..., x 4 , a) is increasing in x 1 , ...,	(9) 

limMo(x i ,...,x 4 ,a)=0 for any (x1,...,x4)eR4	 (10) a 00 

Mi € C(R 4 —p R +), M(x1,...,x4) is increasing in X 1,	X 4	 (11) 
A € C(R —+ R+),	limA(a) = 0.	 (12) 

where as usual R+ = [0, oc).
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Theorem. Let assumptions (2) - (12) be fulfilled. Then equation (1) has a unique 
solution u E E for any D E E and f E E. Moreover, for solutions u 1 and u 2 corre-
sponding to data D l ,fj and D2 , 12, respectively, the stability estimate 

U! - U]j	A(Q1,Q2)(1D1 - D21 + 1111 - 12110)	 (13)
holds where 

	

Qi = (ii, 11fillo, II Go[ D ,fdflo, ll G i1D ,f]lli,o, bI G2[D ,f1I12o)	(i = 1,2) 

and A E C(lR° -* R+),A > 0 and A - increasing in x1,...,x10. If the operators 
C, (i = 0, 1,2) satisfy the conditions Go 10, 01 = G 1 [0,0] G2 (0, 01 = 0, then (13) has 
the simplified form 

II u i	U 2110 <A 1 (ID i l l IIIi Ia, 1D2l, IIf2II0) (I D,- D21 + Ilf - 12110),	(14)

where A 1 E C(R -+!R..), A 1 >0 and A 1 i3 increasing in x1,...,x4. 

The proof of Theorem is given in the next section. 
The main area of applications of equation (1) and the related Theorem are inverse 

problems for determining memory kernels in heat flow [7], viscoelasticity [5, 81 and 
therino- and poroviscoelasticity [10]. All these problems admit reductions to integral 
equations or systems of integral equations of the form 

m(t) + G0 [D, rn](t) + KID, m) * m(t) = 1(1)	(t E 10, TI) 

in a Banach space E = X", where X a functional space over the interval [0,T] and 
n'> 1. Here in is the memory kernel, or a vector of independent memory kernels, and 

Go[D,.] E (E - E)	and	K[D,.] E (E -, X") 

are operators of m depending on the data vector D of the inverse problem. The bilinear 
operator L in these cases is the convolution operator 

L(v i l v2 )(t)	v 1 * v2(t) = / v i (t - T)v2(7) dr 

and the scales of norms are defined using exponential weights of the form e	(a > 0). 
The technique of scales of norms enables to formulate statements about global exis-

tence, uniqueness and stability of solutions of these nonlinear integral equations of the 
second kind. 

It is remarkable that the method of weighted norms applies to inverse problems of 
memory identification also in the case if one makes use of an approach different from the 
reduction to integral equations (e.g., a priori estimates [2, 31, the theory of semigroups 
[11, etc.). This is due to the fact that these problems, if they are constructed from linear 
constitutive laws, contain only nonlinearities of convolution type. 

Other areas of application of the theory of the present paper are equations of au-
toconvolution type [1, 6, 11] arising in stochastics and spectroscopy as well as more 
theoretical examples of equations involving various types of generalized convolutions. 
Concerning the latter examples we refer the reader to the previous pa:pers of the author 
and L. v. Wolfersdorf [9, 11, 12].
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2. Proof of Theorem 

The proof uses the contraction principle in balls 

Bp, ,(w) = {u E E: Il u - w ll	p}	(P >0, 01	0, W E E). 	(15) 

Step 1. At first we show that the auxiliary equation 

	

g+Go[D,g]=f	 (16) 

has a solution in Bn,(f), where R = 2 11 G0[D,f]llo and a is chosen large enough. We 
define the operator A 1 9 = I - C0 [D,g]. Then equation (16) reads g A 1 g. In view of 
(2), (5) and the monotonicity of M0 we have 

A 1 9 -

	

Il Go[D , g] - Go[D,f]lI + lI Go[D,f]ll	 (17) 

Mo (I D I, IDI, h g - fll + hub, hub, a) jjg - fll + II G0ID , flibo 

and

IA 191 - A192,, 

= hI Go[D , g il - Go ID, 9211I	 (18) 

^ Mo (1 D b, I D l, h g ' - lila + hub, 1192 - fII + bulb, a) Il g i - 9211a. 

In the case 9,91,92 E B 4O (f) inequalities (17) and (18) yield 

IA, 9 - lIla	Mo(l D l, 1 DI, R + Ilfhlo, hub, a)R + R 

1A191 - A 1 92 J I.,	Mo(I D I, 1D1, .11 + llflIo, R + Ilfllo, a ) 1 1 g i - 9211a. 

By the continuity of M0 and the limit condition (10) there exists a quite large a = co 

depending continuously on Ill 11o, IDI and R, so that 

A i B ao(f) c B4 O (f),	Al is a contraction in BR,0(f). 

Therefore, equation (16) has for every f E E a unique solution g in the ball BR0(f). 
Next we derive some estimates for the solution g of equation (16). To this end we 

introduce the vector 

Q =	hub, 11G0ID, f]hbo, bI G 1 [D, f]IIi,o, ib G2[ D , f]h12o) E R. 
By definition (15) of the ball BR,ao(f) the solution g satisfies the inequality 

hh - fihao < R = 2ibGo[D,f]bbo.
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Thus, by means of (2) and (4) we obtain 

Il g Ilo	po(Q)	 (19) 

where
yo(Q) r'2IlGo(D, f 111 ('( o (Q))Y ' + 11f lb 

is a positive continuous function of Q . Further, using (2) and (6) we can estimate 

II G , [ D , g ]111,o	11 G 1[D , g] - G[D, f]II,o + II G [D , f]II,o 

< A4(D, IDI, Il g Ilo, If ho) lI - fib + iI G [D, 1] II 

Applying here (11) and (19) we obtain 

IG[D, g ]iIo < p i ( Q)	(i = 1,2)	 (20) 

where
= 2A/.f, ( 1 D b, 1 D b, Ito (Q)	biGo[D, f]blo 11111°)	 + Ii G [D, 1] Ibi,o i(ao(Q)) 

are again positive continuous functions of Q. 

Step 2. Let us return to equation (1). In view of (16) we write it in the operator 
form u = Au, where 

Au = g - L(Gi[D,u],G2[D,u]) + Go[D,g] - G0 ID, u]. 

We are going to show that equation (1) has a solution in the ball Bp, (g), where p is 
small enough and a is large enough. 

Observing estimates (2), (3) and (5) - (8), the bilinearity of L as well as the mono-
tonicity of the functions M0 , M1 and M2 we obtain 

II Au — giIa 

L(Gi[D,u]_Gi[D,g],G2[D,u)_G2[D,g])j 

• L(G i [D,u] - Gi[D,g],G2[D,g]) 

• L(Gi [D,g],G2 [D,u] - G2[D,g]) 

• 

• Go[D,g] - Go[D,u]IL	 (21) 
NZ%'11 (1 D 1, IDI, Jju - g lIa + II g Ibo, Ilgibo) 
x A?!2 (I D I, IDI, Il u - g il, + il g ibo, llglbo) 

JJU _9112 a 
2 

+ A(o) > A?! ( 1 D 1, 1Db, Il u - g lIc + lb g llo, Il g ibo) 11 G , [D, g ill3,0 Mu - 
:=1 

+ A (a )ll G i [D,gIlIi3O11G2[D,gjll2,0 
+ Mo(D, 1Db, Mu — g Iba + lI g llo, Il g llo, a) H U -
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and 

ll Au i - AU 2 la 

<L(Gi [D,u i ] - G,[D,u,G2[D,u,] - G2 [D,g] + G2[D,g]) 

+ L(G,[D,u 2 ] —G,[D,g] + G i[D , g ], G2[D , u i] - G2[D,u21)M 

+ IGo[D,u i ] —00 [D, u2111	 (22) 

M1 (I D I, IDI, lI u i - 911a + Il g Ilo, l2 - Ylla + 119110) 

x [NM (I D I, IDI, llt - g lla + Il g llo, Il g Ilo) ll u - g lIa + (a )ll G1 [D, ]llio] 

+ M0 (I D I, IDI, JjUl - g lia + Il g llo, ll u2 - g i + llgllo,a)	lu, - U26 

where j- is defined so that j , = 2 and j2 = 1. Further, assuming that u, u 1 , u 2 E Bp,a(g) 
and applying estimates (19) and (20) in (21) and (22) we have 

ljAu — glla 

P2 NMI (I D I, IDI, p + ,uo(Q), 1zo(Q))it'12 (I D I, IDI, p + ,uo(Q), izo(Q)) 
2 

+ pA(a)	M (l D l, IDI,p + po(Q),jio(Q))ij(Q)	
(23)

 

+ )(a)jz i (Q)/12(Q) + pJWo (I D I, IDI, p + io(Q), io(Q), a) 

and
llAui - Au211a 

(2
IDI,p + jio(Q),p + po(Q))

(24) 
x [pN M, (I D I, IDI, p + iio(Q), jo(Q)) + 

+ Mo(I D I, lDl,p + o(Q), p + iio(Q),a) }ll u i - U211a. 

By virtue of the limit conditions (10) and (12) and the monotonicity of M0 , M, and M2 
there exist a quite small but positive p = p i and quite large a = a1 so that 

ABp , ,a (g) c Bp, , a(g),	A is a contraction in B,,(g) 

for every a > a1. 

Therefore, equation (1) has a unique solution in every ball Bp , ,a (g), where a
a 1 . Particularly, this proves the existence assertion of Theorem. Since the functions
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/1O, Al, /t2, M0 , MI , M2 and A are continuous, the quantities pi and a 1 depend also 
continuously on Q. 

Step 3. Let us show the uniqueness of the solution of equation (1) in the whole 
space E. Suppose that u 1 E E and u 2 E E are two arbitrary solutions of (1). Then 
from (1) in view of (2), (3), (5), (8) and (16) we obtain 

ll	-	L(G1 [D, U;], G 2 [D, u]) 

+ II G0[D , u i j - Go[D,gJ[ 

< .A(a)G 1 [D, udlliolI G2[D , ui]112o 
+ Jtf0 (I D I, IDI, Il u ;llo, Il g ilo, a) II u - gilo. 

Due to the limit conditions (10) and (12) the relations lima_ ll u -	= 0 hold for 
= 1, 2. Thus, there exists a quite large o r > a 1 so that ll u - g ' for i 1, 2. 

Observing definition (15) we see that u 1 arid 11 2 belong to a ball Bp i ,a(g), where the 
uniqueness has already been show. Consequently, u 1 = 

Step 4. Finally, let us derive the stability estimates (13) and (14). To this end we 
need a bound for Ijullo iii terms Q . In the second part of the proof we have shown that 
the solution of equation (1) belongs to the ball B 1 , 1 (g). Thus, by definition (15) we 
get the inequality Iju - g 1l0	p i . Using here (2) and (19) we obtain 

Il u llo	IL(Q)	 (25) 

where (Q) = pi(Q)'(ai(Q)) + po(Q). 
Since p, a i , n and /o are positive continuous functions of Q i is also positive and 

continuous. 
Further we denote the solutions of equation (16) coresponding the data Di and f1 

by g 1 (i = 1, 2), respectively, and subtract the equations (1) with D I , f, and D2,f2. 
We get the relation 

111- u 2 = Ii f2 + Go[D2 ,u2 ] - Go[Di,ui] 

• L(G i [D2 ,u 2 ] - G i[D i, u i], G2(D2, u 21 - G2 [D2 ,92 ] + G2[D2,921) 

• L(G 1 ID 1 ,u i ] - G 1 [D 1 ,g i ] + G 1 [D 1 ,g 1 ],G2 [D2 ,u 2 ] - G21Di,ui]). 

By means of assumptions (2),'(5), (6), (8) and the rnonotonicity of M0 , MI , M2 we 
derive the estimate 

ll u i - U211a 

A4o(1D2 1, I D I 1, 1111 2110, iI u i ho, a) (I DI- D21 + hl u i - U211a) 
2 

+ A(o)	1W (1, 1, lDi, Iju ij 11 ° , hlujlo) 
i= I 

[ir, ( I D1; I, j Djj I, ll u j; ho, Ilgii ho) lI u	- gj; ho + hG 1; [Dj; , 9j; IIjj,o] 

x (I D 1 - D21 + hi u i	1t211a) + Ill' —12110.
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Applying here inequalities (19), (20) and (25) we have 

II u i - U2I1

ID, I,/1(Q2),/1(QI),a) 

+ (a)	M1 (I D1, I, ID1I, ;(Q), 1,(Qi)) 

[, (ID , D I, (Qi ), iio(Q)) (/1(Q) + /L0(QJ)) 

+ Aji (Qj] I 11U1 - U211u	
(26) 

+ { M0 (I D2 I, ID, I, /(Q2), p (Qi ), a) 

+ (a)	M, ( I D1, I, IDI, (Qj), /1(Q)) 

x [M1, ( I D1 , ID , p(Q ), 11(Q )) (i(Q) + po(Q)) 

+ /1i(Qi)] }D 1 - D2 1 + IIfi —12110 

where, as before, j = 2 and 32 = 1. Due to the limit conditions (10) and (12) there 
exists a quite large 93 so that the coefficient of 11u, - 122 hg in the right-hand side of (26) 
becomes less than one if a = a3 . Hence, there holds the relation 

hI u i -	/ L (Qi, Q2)(I D 1 —D2I + Ihfi — 12110)	 (27) 

with some coefficient 113. Since /2,110,111,112, M0 ,M1 ,M2 and \ are continuous, the 
quantities 0'3 and /23 are positive continuous functions of Qi and Q2. Applying in (27) 
the left inequality (2) we derive the stability estimate (13) with 

A(Q 1 , Q) = / 3(Q1, Q2)'c(a3(Q1 , Q))' 

Since 43,93 and K are positive and continuous functions of Qi and Q2, the coefficient A 
is also positive and continuous. Without loss of generality we may assume A(x i , ... , x10) 

to be increasing in each of its arguments. 
In order to prove estimate (14) we observe that inequalities (5) and (6) in view of 

the assumptions G 1 [0,0] = 0 (i = 0,1,2) yield the following bounds for components of 
the vectors Q1: 

Go(D3 , f]lIo	M0 ( 1 D31, 0 ,1111 ho, 0,0) ( 1 D31 + hhfhIo) 

I G 11 D , f]Il,o 5 M 1(I D I, 0 , lIf 110, 0 ) ( h D1h + IhfIIo)	(i = 1,2). 

Using these relations in (13) we obtain assertion (14). Theorem is proved U



Nonlinear Equations with Operators in Scales	295 

References 

[1] Bukhgeim, A. L.: Inverse problems of memory reconstruction. J. Inv. Ill-Posed Probl. 1 
(1993), 193 - 205. 

[2) Cavaterra, C. and M. Grasselli: On an inverse problem for a model of linear mscoelastic 
Kirchhoff plate. J. mt. Equ. AppI. 9 (1997), 179 - 218. 

(3] Cavaterra, C.: An inverse problem for a rnscoelastic Timoshenko beam model. Z. Anal. 
Anw. 17 (1998), 67 - 87. 

(4] Gripenberg, G., Londen, S.-O. and 0. Staffans: Volterra Integral and Functional Equa-
tions. Cambridge: Univ. Press 1990. 

1 5] Janno, J.: On an inverse problem for a model of radially wave propagation in the media 
with memory. In: Numerical Methods and Optimization, Vol.2 (eds.: G.Vainikko et al.). 
Tallinn: Estonian Acad. Sci. 1990, pp. 4 - 19. 

[6] Janno, J.: On a regularization method for the autoconvolution equation. Z. Ang. Math. 
Mech. (ZAMM) 77 (1997), 393 - 394. 

[ 7 1 Janno, J. and L. v. Wolfersdorf: Inverse problems for identification of memory kernels in 
heat flow. J. Inv. Ill-Posed Problems 4 (1996), 39-66. 

[8) Jan no, J. and L. v. Wolfersdorf: Inverse problems for identification of memory kernels in 
viscoelasticity. Math. Meth. AppI. Sci. 20 (1997), 291 - 314. 

[9] Janno, J. and L. v. Wolfersdorf: On a class of multilinear operator equations. Z. Anal. 
Anw. 15 (1996), 935 - 948. 

[10] Janno, J. and L. v. Wolfersdorf: Inverse problems for identification of memory kernels in 
thermo- and poroviscoelasticity. Math. Meth. AppI. Sd. 21(1998), 1495 - 1517. 

[11] Wolfersdorf, L. von: A class of multidimensional nonlinear Volterra equations of convolu-
tion type. Demonstratio Math. 28 (1995), 807 - 820. 

[12] Wolfersdorf, L. von and J. Janno: On a class of nonlinear convolution equations. Z. Anal. 
Anw. 14 (1995), 497 - 508. 

Received 19.03.1998


