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Abstract. We consider a viscoelastic string whose mechanical behavior is governed by a non-
linear stress-strain relationship. This constitutive law is characterized'by a time-dependent
relaxation kernel k which is assumed to be unknown. The resulting motion equation is then
associated with initial and Dirichlet boundary conditions. We show that the traction measure-
ment at one end allows to identify k. More precisely, we prove an existence and uniqueness
result on a small time interval. Also, we show how the solution continuously depends on the
data. ] )
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1. Introduction

Consider a viscoelastic string of length L > 0 and indicate by u(z,t) its transversal
displacement at point z € [0, L] and at time ¢t € [0,T}, T > 0 being a fixed final time.
Denote Qr = (0,L) x (0,T). A quite general stress-strain relationship which describes
the mechanical behavior of the string has the form (see, e.g., [9, 17] and references

therein)
t

o(u:)(z,) = (2, us(z,1)) +/k(r)¢(x,u,(z,z _ 1)) dr (1.1)
: 0

for all (z,t) € Qr where ¢ and  are suitable given functions, k is the so-called relazation
kernel, and the string is supposed to be at rest for t < 0. Denoting by g the string mass
density, the evolution of u is then ruled by the Volterra.integro-differential equation

oure — (0(uz))e = f in Qr (1.2)

where f is an external force. Here g is a smooth and strictly positive function.

* An inverse problem which typically arises in applications regards the possibility of
determining the relaxation kernel k¥ through measurements related to u. A possible
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formulation of this problem takes advantage of equation (1.2). More precisely, if a set
of initial and boundary conditions is associated with (1.2), then an additional condition
is considered (e.g., u is known for some zo € [0,L] and any t € [0,T]) in order to
identify k. Consequently, the identification problem consists in finding a pair (u, k)
which satisfies equation (1.2) and fulfils the conditions mentioned above. When ¢ and
¥ are both linear with respect to u,, this kind of inverse problem has been extensively
studied by several authors during these last years (cf. (3, 5, 12 - 16, 18]; see also [1,
2, 5, 6] for multi-dimensional models). On the contrary, the most difficult nonlinear
case has received much less attention. In this respect, the only result we are aware
of concerns the case in which ¢ is linear with respect to u, (see [16]). There, by
assuming Neumann homogeneous boundary conditions (that is, free ends) and « known
at some point z¢ € (0, L], for any t € [0,T)], as additional condition, the author proves
local (in time) existence, uniqueness, and continuous dependence on the data. Here
we want to show that similar results can be obtained under weaker assumptions by
using an alternative approach which allows us to deal directly with classical (and not
variational) solutions and by changing the boundary and the additional conditions. Of
course, the most interesting (and hard) case, namely when ¢ is nonlinear with respect
to u, as well, remains open. However, it is worth recalling that, when & is known, there
are some results about the well-posedness of initial and boundary value problems for
(1.2) (see, e.g., [17] and references therein). Several results are also available for the
direct problem in our simpler setting (see [7, 8, 10, 11]).

On account of what we have just observed, we assume

p(z,2) = po(z)z ((z,2) € [0, L) x R) A (1.3)

where ¢ is a smooth function with strictly positive derivative. Then cquatlon (1.2) can
be rewritten in this form

t

o(z)ure(z,t) — | wolz)uz(z,t) + /k(r)z/)(a:,u,(:r:,t — T))dr = f(x,t) (1.4)
for (z,t) € Qr. Then we introduce the usual initial data |
u(z,0) = up(z) ’
ui(2,0) = u(2) } (ze.Ih (9

and we take Dirichlet boundary conditions (not necessarily homogenenous)
u(0,1) = a(t)
u(L,t) = (1)

We further suppose that the traction exerted at one end is known, that is

} (t € [0,T))- (1.6)

wo(0)ur(0,t) + / k(T)t/)(O,u,,(O,t - 1')) dr = g(t) (1.7)

for all ¢t € [0, T}. Here, ug,u1, @, and g are given functions.

Therefore, what we want to study in this paper is the following
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Problem (P). Find a pair (u, k) satisfying (1.4) - (1.7). |

Note that, due to the assumption on o, (1.4) is a nonlinear Volterra integro-
differential equation of hyperbolic type. To solve problem (P), we first write down
the corresponding problem for the pair (v, k), where v = u,. Then by differentiating
equation (1.7) we observe that k has to solve a Volterra integral equation involving the
traces of u, and v; at z = 0. This fact allows us to formulate a further equivalent
problem for the triplet (u,v, k), provided that the initial datum satisfies a suitable non-
vanishing condition. More precisely, we shall deal with an initial and boundary value
problem for a system of two nonlinear Volterra integro-differential hyperbolic equations
coupled with a Volterra integral equation of the second kind. We can uniquely solve
that problem for T sufficiently small. Moreover, continuous dependence on the data
can be established. The plan of the paper goes as follows. The main results are stated
in the next section. Section 3 is basically devoted to establish the equivalence result
mentioned above. Sections 4 and 5 contain the proofs of the main theorems, while in
Section 6 we report the proof of a technical lemma.

2. Assumptions and main results

Let us suppose the following:

0 € C'([0,L])) with p(z) > g0 >0 for all z € [0, L] (2.1)
wo € C*([0,L]) with o(z) >co >0forall ze€l0,L] (2.2)
% € C'((0,L] x R) (2.3)
$ee, P2 € CO((0,L] x R) ' (2.4)

For all M > 0 there exists Ag(M) > 0 such that
W2:(z,21) = Yoa(z, 22)] + [z:(z,21) — ¥z:(z,22)| < Ao(M)|2y — 22

for all z €[0,L] andall z;,2; € R with |z;| + |z2| < M (2.5)
f € WH(0,7:C°((0, L)) (26)
ug,u; € C*([0, L)) (2.7)
poug + f(-,0) € C'([0, L)) ' (2.8)
a,B € WH(0,T) (2.9)
g € W20, T). (2.10)

In addition, we assume the following compatibility relations:

a(0) = uo(0) and B(0) = ue(L) (2.11)
a'(0) = u,(0) and B'(0) = u,(L) (2.12)
2(0)a"(0) = wo(0)ug(0) + ¢"(0)'(0) + £(0,0) (2.13)
o(L)B"(0) = po(L)ul(L) + " (LWu'(L) + F(L,0) (2.14)
9(0) = 90(0)ug(0). : o - (2.15)

Then we introduce a rigorous formulation of problem (P).
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Problem (P). Find a pair (u, k) satisfying

u,u, € C*(Qr) ~(2.16)
ke wh(0,T) 4 (2.17)
and (1.4) - (1.7)." _
Our first result regarding local (in time) existence and uniqueness is given by"

Theorem 2.1. Let (2.1) — (2.13) hold and set
7 = ¥(0,u,(0)). (2.18)

If :
Yy#0 , (2.19)

and the compatibility conditions

2(0)a(0) = po(0)u(0) + b (0} (0) + £(0,0)

: + ko [1:(0, u(0))ug (0) + (0, up(0))] (2.20)
o(L)B(0) = po(L)u"(L) + py(LYui (L) + fe(L,0)
+ ko [1/)1(L’ UB(L))ug(L) + 11":(La UG(L))] (2'21)
hold where
ko =77 [¢'(0) — wo(0)ui (0)], (2.22)

then there ezists Ty € (0,T) such that problem (P) has a unique solution.

The proof of this theorem will be given in Section 4. Moréover, in Section 5 we will
prove that the solution to problem (P) continuously depends on the data. Indeed, we
have the following

Theorem 2.2. Let {fj,uo,»,u,j,a,-,ﬂ;,gj} (7 =1,2) be two sets of functions sat-
isfying (2.1) — (2.15) and (2.19 — (2.21). Denote by (uj, k;) the corresponding solution
to problem (P) and consider two positive constants Cy,Cy such that

max {||(fj)n||L*(0.T;C°([0.L)))7||(fj)z(‘,0)||c°([o.L]),

je{1,2}
I1£5C 0l oo, 3y wojll 2o, Ly lwajll 2o, Ly » (2.23)
llpows; + 3¢, Ol o, 19501 lla§”u o,y 18 oo }
<G
and
max |[|kjllLiom) S C2 (2.24)

je{1,2}

where koj; is defined by (2.22) with g and u| replaced by g; and uj;, respectively, and v
substituted with -y; defined by (2.18) with ug in place of ug; (j = 1,2). Assume that

fhz(z,2)l < c1 + c2lz] ((z,2z) € (0,L) x R) (2.25)
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for some positive constants ¢, and ¢z, and
¥, € L((0,L) x R). (2.26)

Then there ezists a function A, € C°((0, +00)*; (0, +00)) such that

fluy — uzllczoqy + (w1 — u?)t"cz(QT) + k1 = k2llwra o,
< AI(M,CI,Cz,T){”(_fl = f2)eell Lo, 7000,y

+ 10 = f2)e(, 0)lleogo,py + 1(F1 = £2)(, 0)ll oo,z

+ lluor — wozlleaqo, Ly + llun — wazlle(o, 1) (2.27)
+ llvo(ugy = ugy) + (fr = £2)(, 0)llcr (fo, 1)

+l(er = @)l 0,1y + 181 = B2) D107

191 = 92O + ll(or = 92)" 20 }

where p = min{|y1|7!,|y2|7'}. Moreover, A, is non-decreasing in each of its variables
and also depends on L, g, 0o, 0,1, Co,C1,C2.

Remark 2.1. Assumptions (2.25) - (2.26) allow to obtain a bound for u; and its
time derivative in C*(Q7) taking advantage of (2.23) - (2.24). In place of (2.25) - (2.26)
we can suppose to have an a priori bound on (u;). in C%(Qr) (see below Section (5.12)
- (5.14)). ‘

3. An equivalent problem and a preliminary lemma

Let us assume that problem (P) has a solution (u, k). Then differentiate equations (1.4)
and (1.7) with respect to time. Setting

v = ug (3.1)

we obtain
Q(I)v"(xvt) - (990(1)0:(1, t))z

~ [ KO pestonatet = et = |
+ ee(2,us(@,t = )aa(z,t — Iou(z,t — 7) (32)
+ 9.2, uz (3, — 7))vee(z,t — 7)|dr
= fu(z,t) + k(1) 2z, up () (2) + e (2, ()
for all (z,t) € QT and
©0(0)v2(0,¢) + (0, ug(0))k(t)

+ /0 E(m).(0,uz(0,t — 7))vL(0,t — 7)dr = g'(t)

- (83)
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for all t € [0, T). Then, from (1.5) and (1.4) with ¢t = 0, we derive the initial conditions

v(z,0) = vo(z)
vi(,0) = v1() } (= € [0.L])
where
vo(z) = ui(z) }
v(z) = (e(ﬂf))_l [vo(2)ug (2) + o (2)ug(z) + f(z,0)]
for any z € [0, L]. Note that, recalling (2.1) - (2.2) and (2.5) - (2.7),
vo € C2(QT)}
v € CY(Qr)

follows. Regarding the boundary conditions, on account of (1.6) we have

v(0,1) = &(t)

o(L,1) = B() } (.10
where :( ) )

a(t) =o'(t

Bt = (1) } (t<l0.7D.

Then due to (2.8) observe that
& B e w(0,T).
On the other hand, from equation (3.3) we infer (cf. (2.2))
k(0) = ko.
Moreover, thanks to (2.19), equation (3.3) can be rewritten in the form
k=7 [k * Ni(u,v) + Nao(v) + ¢ in [0,7)
where * denotes the time convolution product over (0,t) and

N (@, 5)(t) = —1:(0,2(0,))5:(0, 1)
Na(8)(t) = —¢0(0)9:(0, 1)

for any t € [0,7] and any i,5 € C}(Qr). Set now
h=Fk a.e. in (0,T)
and note that (cf. (3.10))

k=ko+1xh in {0,7).

(3.4)

(3.5)

(3.6)

(3.7

(3-8)

(3.9)

(3.10)

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)
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Then equation (3.11) becomes
ko+1xh=~""[(ko+1%h)*Ny(u,v) + No(v) + q'] in (0,7,
and differentiating it with respect to time we obtain
h=~""[koNi(u,v) + h+ Ni(u,v) + Na(ve) +¢"]  ae in [0,T). (3.16)
Taking advantage of (3.15), we can write down equations (14) and (3.2) this way as

Uy —Quzz —bu; = (ko + 1% h)*Ry(u)+ F (3.17)
Uty — avzz — bug = (ko + 1% h) * Ra(u,v) + (1 * h)c + koc + F, (3.18)

in Qr, where a,b, ¢, F are defined by, respectively,

a(z) = (e(2)) 'po(z), b(z) = (o(z))'wp(z) Vze(0,L) (3.19)
o(z) = (e(z)) ™" [¥:(z, ug(z))ug () + ¥=(z,ug(z))] Vz € (0,L)] (3:20)
F(z,t) = (o(z))"' f(z,t) V(z,t)€Qr (3.21)

for all (z,t) € Qr, while R;, R, are given by

R (@)(z,t) = (oz))~* [1/,:(:,12:(:1:,1!)) + ¥z, a,(z,t))a,,(z,t)] (3.22)
Ra(@,)(z,t) = (e(z)) ™! [1/1::(3,11:(3:&))'7:(1,0 + ¥::(z, 4z (2, t))

X ixa(, 052 (2,) + $a(2, 122, ) e (2, 1)] (3.23)

for any (z,t) € Qr and all 4,5 € C*(Q7).
We have thus shown that the triplet (u,v, k) is a solution to the following

Problem (Pl). Find a triplet (u,v, k) € (C*(Qr))? x L'(0,T) solving equations
(8.16) - (3.18) and fulfilling conditions (1.5) - (1.6), (3.4) and (3.7).

Conversely, taking the compatibility relations (2.13) - (2.15) and (2.20) - (2.21) into
account, one can also prove that if (u, v, h) solves problem (P1), then (u, k) is a solution
to problem (P), where k is given by (3.15).

. Summing up, we have

Proposition 3.1. Let (2.1) — (2.15) and (2.19) — (2.21) kold. Then problem (P)
has a unique solution if and only if problem (P1) has a unique solution.

We conclude this section by reporting for the reader’s convenience a quite standard
result which is a slight generalization of [7: Theorem 2.3], namely
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Lemma 3.1. Let

£ € C([0,L)) ,with e(z) > €0 >0 forall z €(0,L] (3.24)
n € C°([0, L)) (3.25)
e Wh(0,T;C°([0, L)) ERT : (3.26)
wo € C*([0,L)]) and w; € C'([0, L)) (3.27)
p,g € W3(0,T) S (3.28)
P(0) = wo(0) and ¢(0) = wo(L) - (3.29)
P'(0)=wi(0) and ¢'(0) =wi(L) (3.30)
P"(0) = €(0)wg (0) + 7(0)w(0) + €(0,0) _ (3.31)
q"(0) = e(L)wg (L) + n(L)wo(L) + &L, 0). . . (3.32)

Then there ezists a unique w € C*(Qr) such that

Wep — EWrr — Nwg = £ in Qr (3.33)
and the initial .con_dition. ‘ .
10 = ) .
w(z,0) = wo(=) (z € [0, L)) (3.34)
we(z,0) = wi(z,0) )

as well as the boundary condition

w(0,1) = p(t)

w(L.1) = q(t) } ,(t € (0,T}) (3.35)

are fulfilled. Moreover, there ezists a positive constant Cs which only depends on
L, |lellcr(jo, 1)y, €0 and |inllco(o,Ly) such that, for any t € [0,T),

lwlloxgn < Co{ (1 + ) 1€l o000,y + 1€, O)licaqo.cp (3.36)
o+ lwollex o,y + llwiller o,y + ||P(3)||L’(o,:) + ||q(3)||u(o,z)}~

This lemma, whose proof is given in Section 6, will be very useful in the sequél.

4. Proof of Theorem 2.1

We are going to solve problem (P1) locally in time by using the Contraction Mapping
Principle. Let us set

XT = I(CQ(Q_T))Z X LI(O,T).

We endow X1 with the norm

(&, 5,0) x5 = llillczory) + 18llc2aryy + IRILi0,T) : - (4.1)
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and introduce the bounded subset of X .
B(E,T) = {(i,5,k) € X(T)| &, 5, B)lIx, < E}

for some positive constant E. This set is clearly a complete metric space with respect
to the metric induced by the norm of X7. Fix (#,9; k) € X7 and set (cf. (3.16))

h=M(&,5,k) := v [koN1(&,5) + b * Ny (i, 5) + No(i0) + ¢"] (4.2)
a.e. in [0, T)]. Recalling (2.3), (2.10) and (3.12) - (3.13), one casily realizes that
h e L'(0,T). (4.3)

Consider then the following problem (cf. (3.17) - (3.18)).

Problem (P2). Find a pair (u,v) € € (C*(Qr))? satisfying (1.5) - (1.6), (3.4) and
(3.6) and such that

Uy — QU — bu, = U(T, D
vy — avzz — bu, = V(4,7, ;l) . (4.5)
where )
U(a,s, h) = (ko + 1% H(@,,h)) * Ry(@) + F " (4.6)
V(i,,k) = (ko + 1% H(i, 5, h)) * Ro(d, 8) + (1% H(it,,k))c+ koc + Fr  (4.7)
in Q7. '
Observe that (cf. (2. 1) (2.4), (2.6) - (2.7) and (3. 19) (3. 23))
a€CY([0,L]) and b,ce C°([0,L]) . (4.8)
F,Fy € W"'(0,T;C°([0, L)) (4.9)

Ri(@), R2(4, ) € C*(Qr). (4.10)
-Consequently, we have (cf. also (4.3)) . . :
Ui, 5,5),V(G,5,k) € W (0,T;C°(0, 1)) (4.11)

On account of (2.7) - (2.9), (2.11) - (2.14), (2.20) - (2.21), (3.4) -.(3.9) and (4.11) we
are in a position to apply Lemma 3.1 which ensures that problem (P2) has a unique
solution (u,v) € C%(Q7): Also, estimate (3.36) entails that, for any ¢ € (0,7,

||U”C’(Q:) + lvllcr g,
<c{a+y)
x (@G, 3, B)ellago,coqo, ey + U0V B Rl 21 o.scaqo,eny
+ 16,3, R)C,Olleogo,uiy + IV(E 5, ), Ollcsqo.n] |
+ ||u0||c7([o ) + lvollexqgo,eyy + llwalic o,y + llvsllcr o, L]) SRR
+ [la® [ Lico,0 + NED 110,y + 118C Mo + 1B )"L'(o,:)}

(4.12)
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Thus we can define a mapping J : X7 — X7 by setting
I, 5,h) = (u,v,k)  (&,7,h) € X7). (4.13)

We are now going to show that J has a unique fixed point in B(Ep,Tp) for some
(Eo,To) € (0,+00) x (0,T]. Of course, on account of (3.16) - (3.18) this is equivalent
to say that problem (P1) has a unique solution for T = Tj. Recalling (2.3) and (3.12) -
(3.13), from (4.2) we easily deduce

1M, 3, B)ll 10,0 < 117" [Ca(E + EPt +1lg" | o,0)) (4.14)

for any (@,9,k) € B(E,t) (t € (0,T}) where C4 is a positive constant depending only
on ko, 0(0) and ||%:|| e ((0,2)x(~E,E)). Observe now that (cf. (4.6) - (4.7)) :

U(a, ,h)(-,0) := F(-,0) (4.15)
V(i,3,k)(-,0) := koc + Fi(-,0)  (4.16)
(U@, 5,h))e := Fo + (ko + H(ii, 5, h) * )Ry (@) (4.17)

(V(@,,h))e := H(d, B, h)e + Fue + (ko + (i, 3, k) * )Ra(4, 9). (4.18)
Hence, thanks to (2.1), (2.3) - (2.4) and (3.22) - (3.23), from (4.15) - (4.18) we derive
(cf. also (4.8) - (4.9))
W@, 5, B))ell L1 (o,6000, 1) + IOV, B, R))ell 13 0,6:00(00,2)
+ Ui, 5, h)(-, 0)llcoqo,py + 1V, 3, R)(-, 0)llcoqro, )
S IFdlwra 60000, + IF Gy )l eoqo, L))
+ 1F:(s )llco o,y + lkollielicoro, L))
+ Cs(E? + EY{1 + | H(i, 5, ) L1 0,0)}
+ llellcoo, p I H (i, , )| L1 co,0)

(4.19)

for any (i,9,kh) € B(E,t). Here Cs is a positive constant which only depends on
ko, 0o, 1o and on the L*-norms of ¥, ¥,,¥:;,%., on (0 L) x (—E,+E). Then combin-
ing (4.14) and (4.19), we obtain for any ¢t € (0, T
@i, B, B))ell 1 o000,y + II(V(E, 5, h))ellz: o,6:00¢0.1))
+ U@, 3, B)(:, 0)llcoqo,L)y + IV, B, R)(:, 0)llco o,
S HElwrr o,6¢0(00, 1)) + HECH E)lcogio,p

+ 1 Fe(-, )llcoqqo, Ly + [kolllellcogpo,

+Cs(E* + Et {1+ 177" [Ca(E + E»)t+1lg" L1 (0,0)] )

+ 717 elleoqo, Ly [Co(E + E®t + " L1 (0,0 -
Taking advantage of (4.12), (4.14), (4.20), we can find a polynomial function P(y;,y2)

such that P(y;,y2) > 0 for any yi,y2 > 0 and P(y,,O) = 0 for any 1 > 0, and a pair
of positive constants Cs, C7 such that (cf. (4:13))

(4.20)

13(@,,h)llx, < CeP(E,t)+Cs (4.21)
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for any (i, %, k) € B(E,t). We note that Cs and C7 depend on L, g, co, ko, ¥}, o, 0o and
on the norms of ug,uy, f,a,8,g. Also, Cs depends on the L™-norms of Yoo, Yz, ¥uz
on (0,L) x (-E,+E).

Choosing for instance Ey = 2C; and, consequently, Ty € (0,T} such that 0 <
CsP(Ey,To) < C7 we have from (4.21) that J maps B(Ey,Tp) into itself. Let us now
prove that J" is a contraction for n € N large enough. This suffices to conclude by
means of the generalized Contraction Mapping Principle (see, e.g., [4: Theorem 2.2/p.
88]).

Let (@,4',h') € B(Eo,To) and consider (u',v', k') = J(@*,%',h') (i = 1,2). Ob-
serve that (cf. (4.2))

h! — h? = 47! [ko(N,(ﬁ‘ 8) = M(@,5%) + (B = B) « Ny (3", 5")
(4.22)
+ A% (Ni(@',9") — Ny (a? vz)) + No(3f — 37)

a.e. in [0,T). Also, setting U = u! —u? and V = v! - v?, on account of problem (P2)
we easily deduce that

U — aUs, — U, = U(G', 5, RY) — U(@?, 52, %) (4.23)
Vie — aViz — bV, = V(a!, "1,;1 ) = V(@2 5%, h?) (4.24)

in Q1,. In addition, U and V satisfy homogeneous initial and boundary conditions.
From (2.3) - (2.4) and (3.12) we infer

|Vvy (@t ') - Nl(ﬁz,ﬁz)”co([o‘,]) <Gy (la' = @llerg,y + 113" — 9%llerca,y)  (4-25)

for any t € (0,To), where Cs > 0 depends on Ey and on the L®-norms of 1,,%,, on
(0,L) x (—Eqo, +Ejp). Hence, thanks to (4.25) from (4.22) we deduce, for any t € (0, To),

IR = 22,0

t, _ i N o (4.26)
<Co [ (I8 = Fllom + 18 = @lerg, + 19~ Plera,)) dr
0

Here Cy is a positive Vconstant only depending on ko, p0(0), To; Eq and on the L°-norms
of ¥.,%.: on (0,L) x (—Ep, +Eg). On the other ha.nd recalling (2.1), (2.3) - (2.4) and
(3.22), we have

IR1(w") = Ri(u)llcogqny < (00)7* Crolld! — @lleaq,) (4.27)

for any t € (0,To], where Cyg is a positive constant which only depends on the L-
norms of ¥, ¥z, ¥:: on (0,L) x (—Eo, +Ep). Moreover, thanks to (2.1) and (2.3) -
(2.5), from (3.23) we derive, for any t € (0, Tg],

[Raw ') = Rau?, %) cnca,

] L o (4.28)
< (eo)~'Cn (J|&* = lcag, + 15" - 5*llcrg,)) -
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Here C;; > 0 only depends on Ey and on the L®-norms of Y2, 22,9z, on (0,L) x
(—Eo, +Ep). On account of (4.27) - (4.28) and recalling (4.17) - (4.18) we'then obtain

@@, 5", B = U@, 52, h%))ell 11 o.650000, 1))
+Hv@', o' kY - V@2, %, hz))t||Ll(o,z;c°.(to,L]))

t
< Clz{/; (Ia' - ﬂ2||C’(Qr) + |5 - 62“02(@)) dr (4.29)

LR - h2||Li(o;,)}

for all ¢t € (0,T;] where C;2 > 0 depends on gq, g, ko and on the same quantities as
C11 does. Using estimate (3.36) and taking advantage of (4.29), we infer

1Ulic2q0 + IVl o0
: . t- L. . :
S CSCI2{ /0 (”ﬁl - ‘&2”01((27) + ”171 - 62”C7(Q,)) dT ’ (430)

F (4R - h2||u<o,-'.)}

for all t € (0, To}). Finally, thanks to (4.26) and (4.30), we can find a positive constant
C\3 depending on L, kg, o, o, 0, 00, To, Eo and on the L*-norms of ¥;,%z,,%;; on
(0,L) x (- Eq, +Ey) such that, for any t € (0, To},

t
3@, e, RY) = 3@, 52, k)|, < Cis [ ||(@Y, 90, RY) — (62,92, kD), dr.  -(4.31)
X, X

Inequality (4.31) entails that J" is a contraction of B(Ey,Tp) into itself provided that
n € Nis large enough. This completes the proof.

5. Proof of Theqrem 2.2

Let us set (cf. (3.1)) v; = (ﬁj)¢ (7 = .1,2). Moreover,. on account of (3.14), set h; = k.
Then, recalling Section 3, we easily realize that (uj,v;) solves (cf. (4.4) - (4.5))

()ee = a(uy)ee = b(wj)e = Us(uovzhy) (5.1)
(v = a(vy)er = b(v): = Vi(ujivishy) - (8.2)

where (cf. (4.6) - (4.7))

Ui(uj,v5, k) = (koj + 1% hj) * Ri(u;) + F) (5.3)
Vi(uj,vj, hj) = (koj + 1% hj) * Ro(uj,v;) + (1 * hj)ej + koje; + (Fj)e  (5.4)
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in Qr and (cf. (2.22) and (3.20) - (3.21))

koj = 77 [95(0) — wo(0)u};(0)] (5:5)
cj(z) = (e(2))™" [W:(z,u0;(2))ug;(2) + $:(z,up;(2))] (z €[0,L]) - (5.6)
Fi(z,t) = (e(2))™" fi(z,t) ((3.%) € Qr). (5.7)

Also, (uj,v;) fulfills the mltla.l and boundary conditions (cf. (1. 5) (1.6), (3.4) and (3.7)
-(38))

u;(2,0) = uoj(z)  (u;)i(2,0) =uy(2,0)  (z€(0,L]). (5.8)
vj(2,0) = vo;(z)  (v;)e(2,0) =v1j(,0)  (z €[0,L]) (5.9)
u(0,t) = a;(t) ‘u(L,t) =B;(t) (tefo,T]) (5.10)
o(0,8) = (1) WL =B ((el0T).  (51D)

Here vo; and v, ; are defined by (3.5) with uo,u;, f replaced by ugj,u1j, f;, respectively.
Applying estimate (3.36) to the Cauchy-Dirichlét problem (5.1),(5.8); (5.10), -we deduce
that, for any ¢ € (0,7,

||uj||c7(Q,) ‘
< Cs{ll(uj(uj,vj, hiDdlLro,seoqo,pyy + Ui (uz, 05, )G, 0)lcoqo,L)y  (5.12)
3 3
+ lluoslleago.ep + lussllerqo.cp + e lro,n + 1B NLron } -

~ On the other hand, from (2.23) - (2.26), (3.22) and (5.3) we. mfer (cf. also (4.15) and
(4.17))

(@5 (wj, v, R3))ell 1 o,ic0q10,20) + 1525, 055 5 )(5 Ol eogros )y
t
< AQ(CI,CQ,T){H/ IIujllcz'(Q,)dT}
0

for any t:€ (0,7]. Here and in the sequel of the proof, A, (r € N) denotes a positive
and continuous function which is non-decreasing in each of its variables and depends

on g, 00,%0,%,c0,¢1,¢c2 at most. Then, combining (5.12) with (5.13) and using the
Gronwall lemma, we obtain e

(5.13)

”“J’“C’(d,-) S A3(Cl ) CZ: T) (.7 = 1: 2) (514)
éoﬁsider now a Cauchy-Diriéhlet p’roblém for v; ,l nar&léfy (5.2), .(5.9), (511) Esti-
mate (3.36) yields again
losller@n < Co{IVs(ussvi, bl o.coqoum ™
+1IVi(uj,v5, h5)( 0lleogo, Ly + llvosllcaqo, L (5.15)
+ llvijllero.Ly + ”05'4)|IL‘(0,:) + ||ﬂ§-4)||u(o,t)}-
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Recalling (2.3) - (2.4), (3.23) and (5.4) - (5.7) and using (2.23) - (2.24) and (5.14), we
obtain (cf. also (4.16) and (4.18))

1
1V5(u5505, Billwra 0,600, L) < A4(Chcz,T){1 + /0 ||”J'“c2(Q,)dT}- (5.16)

A combination of (5.15) and (5.16) yields, via the Gronwall lemma,
lvillczory < As(C1,C2, T) (5 =1,2). (5.17)

Thanks to bounds (5.14) and (5.17), we can now proceed to get estimate (2.26). Set

u=1u; —u V =7 — U2 h=h]—h2 (5.18)
ug = ugy — Uo2 up = Uy — U f=hH-F (5.19)
E8=91—92 a=a —az b =8 - B, (5.20)

Taking (4.2) into account, we deduce (cf. also (5.18) and (5.20))

=(n-7)" [kle(ﬁl,f)l) + hy * Ny(uy,v1) + No((v1)e) + 9;']

+ 72 [(km -~ ko2)N1(uy,v1)

. (5.21)
+ ko2 (N1(u1,v1) — Ni(uz,v2)) + h * Ni(uq,vy)
+ ho (Nl(ul,vl) - Nl(u%»vz)) + No((v1 — v2)e) + g"]
a.e. in [0,T]. Recalling (2.3), (2.18) and (2.22) - (2.23) we easily get
(71 = 72) ™| + |kor — koz|
(5.22)

< Aok ) I llcogo,up + 10 oo,z + 18(0)1}

where ¢ = min{|y1|™?,|y2/7'}. On the other hand, taking (2.4), (3.12) - (3. 13) and
(5.14) into account, we have, for any ¢ € [0, T,

|V (e, w1 )(t) — Nl(uz,vz)(t)l + | Na((v1 = v2)o)(2)]

(5.23)
< A(C) {lluzllcoq,) + Ivelleren } -

Using now (2.3), (2.23) - (2 24) (5.14), (5.17) and (5.22) - (5.23), from (5.21) we derive
the inequality e . : '

Ihllsco0 < AsGs o, o DY bl
+ lluilicoqo,zp + 18" (O + lig”ll L1 0.0 (5.24)
t t
+ [ Muclonan + Ivellexanl dr + [ bl |
0
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for any t € [0, T]. An application of the Gronwall lemma to (5.24) gives

Iblse < A Cr O D I losoay
+lluillcoqo,z) + 18'(0) + lIg" 2100 (¢ €0, T)). (5.25)
t
+ [ acllonie + Ivsllran] a7

We can now observe that the pair (u, v) solves the Cauchy Dirichlet problem (cf. (5.1)
- (5.2), (5.8) - (5.11) and (5.18-20))

g — augy — buy = U(uy,v1, hy) —Ua(uaz,v2, k) )
Vie —aver — bve = Vi(uy, 0, k) - V2(u2,;)2, hz)
u(z,0) = ug(z), ue(z,0)=uy(z,0). (z€(0,L])
v(z,0) = vo(z), vi(z,0) =vy(z,0) (z €[0,L))
u(0,t) = a(t), wu(L,t)=b(t) (t €0,T))

v(0,t) = a'(t), v(L,t)=b'(t) (t€]0,T)). )

(5.26)

Then, estimate (3.36) applied to (5.26) entails

lullcza.) + IVllez
< Ca{ [|@h (ur, 01, k) = Ua(ua, e, h'l))'“Ll(o;(;C"([O,L]))
+||(Vi(u1, 01, h1) — Vz(uz»vmh2))t||Lx(o,z;c°([o,L]))
+ || @ (ur, 01, R) — Us (u2, 2, hQ))("O)”C%[o,L]) (5.27)
+[| (Vi (w1, h1) = Va(uz, v2,52))( 0l cogo, 1
+ lluollczo,zpy + lIvollez(o,Ly + Nl llcrpo,zyy + Ivaller o,y
+1a® w0, + ||b(3)||wl-‘(0,t)}

for any ¢ € [0,T]. From (5.3) - (5.4) we infer
Ul(ul,vl,h’l) —uZ(UQ,vz,hg) = bu, + (ko + 1% h) * Rl'(ul)
+ (koz +1 % h2) * (R1(v1) — Ri(uz2)) + F

Vi(ur,vi, k) = Vo(uz,v2,h2) = by + (ko + 1+ h) x Ra(uy, v)
+ (ko2 + 1 % hp) * (R2(uyr,v1) — Ra(uz,v2))
+C(l * h]) +C2(1 * h) + ckoy + c2ko + Fo

in Qr, where '
ko = ko] - ko'), F= F] - FQ, cC=c¢C —Ca. (528)
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Hence (cf. (4.15) - (4.18))

(U (u1,v1, k1) = Uz (uz,v2, b2))(-,0) = F(-,0) )
(Vl(ul,vl,h ) = Va(uz, vz, ha))( ,0) = korc(-) + koca(: ) + F¢(+,0)
(Us(ur,v1, k1) = Up(ug,va, ha)),

= (ko + h*)Ry (1) + (ko2 + ha*)(Ry(us) = Ry(uz)) + Fy s (5.29)
(Vi(ur,v1, hy) = Va(uz, vz, h2)),

= (ko + h0)Ry(uy, 1)

+ (ko2 + hz*)(Rz(ul,vl) — Ra(uz,v2)) + Chl + Czh + Fu

7

Recalling (3.22) - (3.23), and (2.1), (2.3), (2.5), (5.14), (5.15) and (5.28), standard

computations lead to the estimate

“(Rl(ul) - Rl(uZ))(')t)Hco([o’L]) + ||(R?(ulavl) - Rz(u27v2))('7t)“co([o,”)

) (5.30)
< Ao(Cr, Co, T) {Iu(- D)l c2qo,yy + IVE Dl er oy }

for any t € [0, T]. Moreover, from (5.5) - (5.6), owing to (2.4) and (2.23), we infer .

llelicoqo, Ly + IF ellwris o, 70010,y , (5.31)
< All(cl,T){“uo“C’([o,L]) + Ifeell L0, 7c0q0,2)) + ”f'("o)”‘?”["'“)}' .

Thanks to estimates (5.22), (5.25) and (5 30) (5.31), on account of (5 29) it is not hard
to prove that (cf. also (5.28)) -

@i (w01, h1) = uz("%vz’h?))t“L_l(o,:;c%[o,u))
+ ”(vl(ul;vl)hl) - VQ.(UQ,‘U')., hz))‘”L‘(O,t;Con([O,L])
+ ”(ul (ul’vhhl) —UQ(UQ,UZ, h2))(')0)"00([0’,4])

+ ”(vl(u.l;vl'»hl) - V2(U2,U2,hz))(',o)llco([o,”)
o : 5.32
< Al?(p'1 Cla CQ,T){”f"“L‘(O T,C°([o, L])) (o )

+ ||f,( Oflcoo,Lny + I1EC O)lleoqgo, 1)
+ llwollcz o,z + ”ul"C‘([O,L]) +1g'(0) + lg"ll 1o, 1)

t
_ y+/ (”u”C°([0,r];C’([0,L])) + ||V||C°.([0-r];C’({0,L])))dT}
0
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for any t € [0, T]. Hence inequalities (5.27) and (5.32) yield
lullcaq,) + Ivlicaa.)
< 13, o, Co, T){ Buallago,rn

+1Ivollex o,y + llurller o,y + IViller (fo, 2y
+ Wfeell 2o, mic0(0,21) + e Ollcoqo,zpy + (-, 0)ll oo, 2y
+[1a®wrago, + 1IBD w10, + 18'(0)] + 18" |21 (0.1

¢ : ‘
+/0 (Iallceqo.caqo.un + IIV||c°<(o,r1;c=<[o.L1)>)dT}
for all ¢ € [0, T] and the Gronwall lemma entails -

lallc2gry + Ivlic2ar)
< Ava(p, €1, Ca, T){ s,z
+lIvolleao,p + llurller o,y + iviller o,y ‘ (5.33)
+ fell 2o, 7icoqto,ey + e, 0)llcoo, iy + I, O)llcoqo, Ly
+1a® w0,y + Ilb(3)||w1-l(o,T) +1g'(0)] + ||g"||u(o,T)}'

Finally, taking (2.4), (2.20) - (2.21), (2.23), (3.5), (3.14) - (3.15), (5.17) - (5.20) and
(5.22) into account, inequality (2.27) follows from (5.25) and (5.33).
6. Proof of Lemma 3.1

Assume for the moment that p = ¢ = 0. Suppose that w € C?(Q7) solves (3.33) - (3.35)
and formulate an equivalent problem for a first-order system. Let us set

(wz + \/sz)
(wt - \/sz)

wl =
in Qr. o ) (61)

w2=

BN = DN =

Then it is straightforward to check that (w',w?) solves the system

w)! = few! = %[e +Mw! - w?)]

. " (62)
wf +‘ \/sz = E[E'f' /‘\(u)1 _ wZ)]
in @Qr and fulfils the initial conditions
wh(2,0) = 3 (wi(@) + V(@) wh(z))
1 : (z € [0, L)) - (6.3)
w?(z,0) = §(w1(:1:) - Ve(z) wy(z)) .
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and boundary conditions

w'(0,t) + w?(0,t) =0

W (L) + wi(L, 1) =0} (t €[0,T7). (6.4)

where A = 21= in [0, L}. Let us introduce the change of variable
4\/¢ ?

z

= [ %,
y =((z) J \/E(_f) (z €10,L])

and define . . X
'(y) =w'((T'()  (velo,l];i=1,2) (6.5)
where L = ¢(L). Then the Cauchy-Dirichlet problem (6.2) - (6.4) can be rewritten as

1 .. .
W) — by = 5[e+ Aw! - w?))]
1. . in Rp (6.6)
w? + 9] = §[e+ A - 9?)]
with initial conditions
- _ 1, . .
w'(y,0) = @y = E(wn(y) + Wo(y)) 3
2 (v € [0, L) (6.7)
w?(y,0) = @ = E(u"n(y) - y(y))
and boundary condition
' @'(0,) +w2(0,¢) = 0 4
20045 (0,0 (t € [0,T]) (6.8)
W (L,t) +w*(L,t) =0

where Rt = (0, L) x (0,T) and

Uyt =€¢T'Wh) My) = M¢T' @) (6.9)
wo(y) = wo(¢ ™ (y)) w1 (y) = wi(¢™' (y)) '

for y € [0, L] and t € [0,T). We now define the metric space
W(T) = {(z",2*) € (C'(Rr)?| #'(3,0) = (4, 0) = @} in [0, L]}

endowed with the metric induced by the norm

2 .
Iz 2 Mwery = max {lI2} lcr(ary 12 o ey }-

Of course, W(T) is complete.
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Let (3',2%) € W(T) be given. Thanks to [7: Theorem 2.2], we can find a unique
(2',2%) € W(T) which solves the system

1, -
7 —z, 5[e+,\(2‘—22)]

1.. .
z?+z§= 5[@—{- AE - 7))

in Rt and satisfies the initial and boundary conditions (6.7) - (6.8). Moreover, owing
to [7: Formulas (2.15) - (2.16)), there exists a positive constant C,4, only depending on
||’\"c°([o.i,])a such that

||(Zl,22_)||W(¢)

S C]«t{(l + t) [”et"Ll(o";CO([o'L])) + ”e(’o)"C"(lO.Ll)] (610)
¢ .
+llollcago, iy + @1l o,y + (1 + t)/o ||(51,32)||w(r)d7}

for all t € [0,T]. Consider the mapping W : W(T) — W(T) defined by W(3!,3?) =
(2',2%). Taking advantage of estimate (6.10), we obtain

WG 22) = WE, )]l < Crall +1) / 125,58 - (&, BDlwindr (611)

for any t € [0,T] and any (2}, 2%),(%},%2) € W(T). From here we deduce that W" is
a contraction of W(T') into itself for some n € N. Thus the generalized Contraction
Principle yields that W has a unique fixed point in W(T'), that is, there exists a unique
solution (!, w?) € C'(Rr) to the Cauchy-Dirichlet problem (6.6) - (6.8). This is clearly
equivalent to say that problem (3.33) - (3.35) admits a unique solution w € C*(Qr)
with p = ¢ = 0, by virtue of (6.1) and (6.5). Also, from (6.10) and the Gronwall lemma
we derive the bound ‘

16", D)leray < Crs{ (1 + Ol Lo 0000,z + 1Dl gogio, ) 6.12)
+ lolleaqo,zp + 1l o,z §

for all t € [0,T], where C)s is a positive constant only depending on T and ”:\”00([0,2,])'
On account of (6.1), (6.5) and (6.9), from (6.12) we infer (3.36) with p = ¢ = 0.

For non-homogeneous boundary data we can arguing exactly as in [7: Theorem 2.4],
taking the compatibility conditions (3.29) - (3.32) into account.
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