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The Stokes System 
in Domains with Outlets 

of Bounded and Connected Cross-Sections 
A. Passerini and G. Thäter 

Abstract. The Stokes system with prescribed fluxes is investigated. By smoothness assump-
tions on the boundary and by the boundedness of the diameters of the outlets it is ensured 
that the divergence equation in each bounded subdomain is solvable, the Poincaré inequality 
is valid and the constants in all the corresponding estimates are bounded independently of the 
location. We derive existence, uniqueness and regularity results in two different frameworks: 
On one hand we use weighted function spaces generated by L9 -norms, 1 < q < 00, where the 
weight is of exponential type and apply a technique of Maz'ya and Plamenevskii. On the other 
hand we use local spaces, since in order to solve the problem with non-zero flux it seems to us 
that to formulate results in local spaces is more adequate and physical senseful. 
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1. Introduction 

An interesting task and fairly open field in the theory of hydrodynamics is the investi-
gation of flows in unbounded domains S1 with non-compact boundary ÔQ. In our paper 
we investigate the system 

r —iv(x) + VP(X) = f(x) (x E il) 
(S)	 divv(x) = 0	(x E Il) 

I.	 v(x)=0	(xEac). 

Here Q is a domain which has several outlets connected by a smooth bounded domain. 
Each outlet has a bounded and connected cross-section. Such domains are of special 
interest as model problems for practical applications. They reflect systems of channels 
or pipes. In addition to problem (S) we prescribe the fluxes for the outlets to determine 
the velocity field v(x) = (v i (x),. .. , v(x)) and the corresponding pressure p(x) uniquely 
(uniqueness means unique up to an additive constant in the pressure). 
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This problem was extensively studied in [6] by Ladyzhenskaya and Solonnikov in 
the Hilbert space setting. In this context it turned out that for such domains it is not 
senseful to restrict the considerations to vector fields with finite Dirichlet integral if the 
flux is different from zero (see also Amick [2, 3 1 for straight cylinders). 

In [15, 16] Pileckas derived solvability properties of problem (S) with prescribed 
fluxes or pressure drop in a whole class of unbounded domains in the framework of 
weighted Sobolev spaces generated by the Interesting for our purposes is 
the fact that he applied these general results to the special case of cylindrical outlets 
with circular cross-section. His paper motivated our attempt to generalize the results 
of [6] to Lspaces (1 < q < ) using techniques of Maz'ya and Plamenevskii [7] and 
Solonnikov [18]. 

We will formulate solvability properties of problem (S) with prescribed fluxes in 
two different frameworks: On one hand we will use weighted function spaces, where the 
weight is of exponential type. On the other hand we will use local spaces (for the exact 
definitions see Sections 2 and 5). 

In particular, the straight infinite cylinder as a domain with two cylindrical exits 
(having a common axis) is a special example for domains where our results are valid. 

The usage of weights of exponential type seems rather natural from the following 
observations (for details we refer to [10: Sections 2.2 and 3.11. 

Assume for the moment that we want to solve problem (S) with zero fluxes through 
all outlets. We will denote this problem by (S)0 . Moreover, we restrict ourselves to a 
straight infinite cylinder and the data are smooth and have compact support. Perform-
ing the complex Fourier transformation F 13 ... A with respect to the variable x3 along 
the cylindrical axis leads to a family of problems (SA) in the cross-section. Suppose for 
fi E R that the line R + if3 is free of eigenvalues of this family which means problem 
( S A) has a unique solution v A for each \ E R + z $ . Then the inverse Fourier transfor-
mation applied to the family v,, yields the solution v for the problem in the cylinder. 
Parseval's identity then provides fR c2 I v ( t )I 2 di = fn+i i(A)I 2 dA. This relation is the 
motivation to solve problem (S)o in spaces of functions with exponential weights in case 
of domains with cylindrical outlets. 

If we allow varying cross-sections we are not too far away from the situation of 
cylindrical outlets if we presume that the diameters are bounded from above and below 
and that the domain has the uniform C-regularity property as defined by Adams [1: 
IV.4.6]). The point is that these assumptions yield the solvability of the divergence 
equation in each bounded subdomain of Q with estimates where the constant is bounded 
independently of the location and the validity of Poincaré's inequality. 

Already in [6] it is stated that problem (S)0 has a unique solution decaying expo-
nentially to zero if the force does not increase too fast in direction of the axis (not faster 
than e13 for some specified constant c, see the end of Section 3 there). In [6] this is a 
kind of byproduct and the main point is, of course, to investigate the influence of the 
non-zero flux on the behaviour of the Dirichlet norm of the velocity field. 

Their result is one more motivation to consider forces which increase or decrease ex-
ponentially with a certain (bounded by some constant) rate. In this frame we prove that 
there exists a unique solution to problem (S)o such that it together with all derivatives 
increases or decreases with the same rate as the force (with the usual regularity shift).
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Comparing this setting with the results of Ladyzhenskaya and Solonnikov we generalize 
[6] not only allowing q 54 2 but also finding the precise relation between the asymptotic 
behaviour of the data and the solution and considering higher order regularity. 

For straight cylindrical exits one is used to think about the decay of the solution of 
problem (S) to the corresponding Poiseuille flows in the outlets (which are determined 
by the shape of the cross-section and the flux). For domains where the cross-section 
may vary it is not adequate to speak about an asymptotic decay in this sense. It is 
meaningless as long as there is no serious restriction 1) on the behaviour of the boundary. 

While studying spatial stability we use weighted spaces, whose topology is stronger 
than that induced by local spaces. Nevertheless, in order to solve the problem with 
non-zero flux, we have to choose 6 < 0 but then the topology becomes weaker and 
hence less suitable. For that it seems to us that to formulate results in local spaces is 
more adequate and physical senseful in this situation. 

This paper is structured as follows. In the next Section 2 we define the domain 
and state the precise assumptions on the shape of the domain which are necessary 

for our approach. Moreover, we define the weighted function spaces which we use. To 
prepare the derivation of existence and uniqueness results for problem (S) 0 in weighted 
spaces we provide two auxiliary lemmata. The first concerns the case q = 2 and force 
with compact support and the second is a local estimate of Cattabriga type. In Section 
3 we deal with problem (S). Theorem 1 characterizes the solvability properties in 
weighted spaces generated by the Lnor, 1 < q < oc. Sections 4 and 5 show how 
to derive L a -results for non-zero fluxes. Defining a flux carrier similar to that used in 
[17, 18] this question is answered from different points of view: in Section 4 in weighted 
spaces and in Section 5 in local spaces. 

Everything is formulated for space dimension n = 3, but it is easy to see that the 
same arguments are applicable for ri = 2 if the embeddings are changed appropriately. 

We are grateful for financial support of the Deutsche Forschungsgemeinschaft re-
search group "Equations of Hydrodynamics" Paderborn and Bayreuth and to the Con-
siglio Nazionale delle Ricerche. They gave us the possibility to meet in Paderborn and 
Ferrara to work on this subject. Moreover, we thank Prof. K. Pileckas (Vilnius) for 
patience and time he spent for us.  

2. Definitions and auxiliary results 

The precise definition of the domain ci C R 3 needs some preparation. We suppose 
that the boundary ôci is a submanifold without boundary. To prove existence of weak 
solutions it is sufficient that ci has the uniform C'-property. For more regularity of 
the solution more regularity of the boundary is necessary. This is formulated precisely 
in Theorem 1. If we refer to the whole domain ci, then Cartesian coordinates x = 
(x 1 ,x2 ,x3 ) are used. Let J be the fixed number of outlets. Then 

cicl° u ci' u 

For example, if the cross-section varies periodically (see [9]).
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with Q j fl Qk = 0 if j 0 k and j, k 0. We assumethat there exists a number R E JR 
such that Q° C Q fl BR where BR is the ball with center 0 and radius R. Without loss 
of generality we set R = 1. For each outlet P we may find Cartesian coordinates x 
such that in these coordinates 

Qj = {x ER 3 : (x,x) E E i (x) and x > i} 

where E3 (x) c JR 2 is a bounded domain for all x > 1. We assume that the diameters 
of the outlets are bounded from above and below as follows: 

d<diamE'(x)<D	where 0<d<D<oo. 

The flux through the j1h outlet is denoted by .F'	 , f	v3 (xi) dx dxi. A neces- 
sary, condition for the solvability of problem (S) is Ej l .Fj = 0. This is clear from the 
physical meaning of the conditions div v = .O in Q and v = 0 on oft Moreover, under 
these conditions the fluxes are constant in each outlet. 

We consider problem (S) in a class of functions with exponential weights: 
Take /3 E Rand let p, be a smooth positive function on with p(x) = e4 on 

for j = 1,... , J. With the help of the usual Sobolev space WI() (1 E No U {-1}, 1 < 
q < ) we define for v E C0°°() the norm 

li v ; lV(l)ll	ilppv; W(Q)ll.	 (1) 

is the closure of C() and j7q (1) the closure of C000(Q) under . ; 
Note that W(l) C W(l) if fl ^! 16 and s 1. It is easy to see that 

W() = {v E W1 (): lv; W(1l)ll <o}
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using standard cut-off arguments. In the case I = 0 we write W(l) = L(fl). If no 
confusion may arise we will use the same notation for vector fields with components in 
these spaces. Analogously to the usual Sobolev spaces (see [1: Theorem 111.3.8]) for 
f E W

fl
	we dispose of the representation 

f=fo+(div fl , divf2 ,divf3 )	( f,EL(1l),i=O,...,3) 

f; W 1 'l)II 
=

II f ; L)II.
	 (2) 

The application of a functional f E W; 
1,q(p) is indicated by (f, •)c. 

Since the domain under consideration is uniformly of C'-type (if q = 2 even uni-
formly Lipschitz- condition is enough), -all outlets have bounded cross-sections and v is 
zero on the boundary, the Poinearé inequality holds: liv; L(l)	cpIiVv; 

As far as standard L -theory is concerned the following is well-known: Let f E 
W-1,2 (Q). Then there exists a uniquely determined V E W' 2 (cl), such that 

(WF){

I Vv: VWdx = (f,W)ç for all 'I' E W" 2 (1l) with div'F = 0 
Jci 
i vy ; L2(l)Ii < C I T4T_I2()ii 

We call v weak solution of problem (S). 
If f e W"2 (cz), then we expect a similar estimate in terms of L(Z) at least for 

a certain range of $ near $ = 0. But this cannot be shown simply using the Riesz 
representation theorem. This is due to the fact that if we endow W'2 (1) with a scalar 
product, then in this scalar product gradients and solenoidal functions are no longer 
perpendicular and (WF) cannot be generalized to this case. To overcome this difficulty 
we will first consider right-hand sides with compact support. The aim is to prove an 
auxiliary lemma for q = 2 and f with compact support which is in W; 1,2(Q) for some 
3 with 101 < /3 g . For such force a weak solution v E W"2() exists since due to 
its compact support f is also in W' 2 (cl). We consider portions of the outlets and 
investigate how the weighted norm of this solution depends on the distance between the 
part in which v is considered and the part where f has its support. It is shown that the 
influence of such force vanishes exponentially (see Lemma 1). 

To avoid unnecessary indices we will perform all proofs in Sections 2 and 3 for a 
domain with two exits Q 1 and ci2 . For the different kinds of bounded domains we set 
G0	= Qo and use the following abbreviations for k,m E N with in> k: 

GkE{XEQ' :k<x <k+1} 

G_k{xEl2 :kx <k+1} 

Gk-1 U Gk U Gk+I 

Qk	{xE: Ixi < k (	1,2)}Ucl°	
(3) 

Wk,m = U k Cs 

U)G5.
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Moreover, we introduce the cut-off function 0 <_ 77k = 77k(x') !^ 1, 17k E C000(cz), 

( 1 jfXEclk 
7k = 1 0 if  E \k+1.	

(4) 

Since I/ky is not solenoidal, as test function in (WF) we take 

Vk77kV+hk	 (5) 

where hk E 117 1,2( .Q) is the solution to the problem 

divhk = —div (17k v)	 (6) 

in Gk U G—k. This problem is indeed solvable (see [13, 14] and [15: Lemma 1.1]) since 
because of the zero flux condition and divv = 0 we know div(I/kV)dx = 0. 
There holds the estimate 

II Vh &; L 2 (Ck U G k)I[ . < M [Vv; L2 (Gk U G_k)I[	 (7) 

(because aQ is uniformly Lipschitz M can be chosen independently of k, see [6: p. 736]). 
A basic tool to prove Lemma 1 below is the following Proposition 1 which is proved in 
[18: Lemma 3.21: 

Proposition 1. Let p, A2 v >0, bk+l ^! bk, bk+I V'bk for k,l E No and 

P1 
Zk	/A1(Zk+1 - Zk) + /.L2bk	together with ii < 

1 +

P1 

(i) If zk ( i _) k - 0 for k -, cc, then for all k E No it holds zk < cp2bk. 

(ii) If ZK cKbK for some K E N, them for all k < K it holds zk < c/l2 bk + CJ(. 

The constants c depend on P1 and ii. 

Lemma 1. Consider problem (S) 0 in ft Let aQ be uniformly Lipschitz, suppf C 
Gk for some k E Z and moreover f E W' 2 (cZ). Then there exist some E > 0 and 
f3 > 0 such that for 1 01 < 3* the weak solution v of problem (S) 0 fulfils 

Vv; L(Gm )II < ce_ c 0I I m i—I k i I [[f; W 1 ' 2 (Ck)I[.	 (8)



The Stokes System	621 

Proof. We proceed in three steps. First we will prove (9), an estimate for the 
norm of Vv in Qk. After that we consider Gk. In these investigations f need not have 
bounded support. Finally, in Step 3 we prove (8). We will mainly use the solvability 
theory for f E W"2() and Proposition 1 provided 1,61 is sufficiently small. 

Step I (see also [15: Theorem 2.3]): Let k E N, m E 7L, aQ be uniformly Lipschitz 
and f E W"2() fl W"2 (cl). Then 

{ 

c I f; W"2 (f)II	for 3 2 0	
(9) II Vv ; L2 (k)II ^	

ce(1) II f ; W
1,2
()II for /3 < 0. 

The case 0 2 0 is trivial. Let /3 <0 and zk	II Vv; L2(f2k)1l2. In (WF) we set 'I' = 
(vk defined in (5)) and collect all terms different from zk on the right-hand side. For 
the force term we obtain applying (2), Holder's, Young's and the Poincaré inequality 

I3 

	

fn^+i 

fVk dx'	f0 dxl +	I 	fVv dx 
I	i=1 

1 1 fil L2(k+1 )11 2 + ë(c + 3)flVv k ; L2(k+I )112 

for some (small) ë> 0. Since 1 < xj 
3 < k + 1 we see 

3
 2 II fL (

	

k+I )II	I f ; 'V'' 2	)hh2 (k+1  
1=0

= II fpflCofiY'; W''2(k+j)II2 

• e2 '' ) ii f ; W2(ck+j)II2 

• e2) i1 f; w1'2(c)II2 

Together with the estimates	1, IV77kI	c as well as (7) for hk we deduce (the
details are similar to the estimates (2.31) - (2.37) in [15]) 

	

zk <	ê (z	— Zk) + c I f ; W1,2(Z)1I2 

Here '-' 1 +c,, + M. Proposition 1/(i) for j =	chif; W 2 (cl)hI 2 , LI = 
bk = e _2(k+1) then yields (9) if the condition ii < !	is fulfilled. That zk(j.—)' _. 0 

for k —	is easy to see and the condition for u is true if /3 < /3' < ln(1 + ).
Step II (see also [15: Theorem 2.4)): Let now k E Z. Then 

	

hI V '; L2 (Gk)I1 2	ce2 Ih f ; V'''2(c?)h12	 (10) 

In this step 6 2 0 is the interesting case. Without loss of generality let k > 2, 1 E N0, 
1 < k. We use (WF) with 'F	vk,1 which has its support in c.k..j...I,k+I+2 and is equal
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to V in wk_I,k+i+i . Precisely, we define 

- 
k	

{ ( 1 - ilk_:_i)V - hk_j_i if x 
if x e Wk_l ,k+,+1

 

• 7?k+1+I V + hk+j+I	if x E Gk+,+l 
O	 elsewhere. 

Here 77k is defined in (4) and.h k is the solution to (6) in Gk. Analogously to zk in Step 
I we define zk,,	IVY; L2(wk_i,k+1+1 )1l 2 and deduce for the force term 

3	 1+1 
: Il fi; L2 (kk_I_1,k+I+2)II2 <	e'f; t4r_l2(ç)2€

j=O  

In a similar manner as in Step I we arrive at 

Zk j 5 Al (Zk 1+1 - Zkj) + c Cc 6k 11f; W'2(ul)II2e2' 

We apply Proposition 11(u) with respect to I choosing K = k - 2, yj as in Step I, 
= ce 2fdIIf; W 2 (1l)11 2 , v = e213 , b1 = e21 . Estimate (9) yields 

Zk,k_2	<C h f ; w -1 ' 2 (cl)II 2 = ce4e2 II f ; V2@I)hI2e2k_2) 

Therefore, especially for I = 0, we observe 

hl Vv ; L2 (Gk)1I 2 = ZkO < cie2hIf; I " 2 (c?)I I 2 e0 + c2 c2 hI f ; w'2(c)II2 

and this yields (10). Repeating word by word the same arguments for the other outlet 
we prove (10) fork <-2 and the cases k E {-1,0,1} are trivial. An easy consequence 
of (10) is

IVy; L (Gk )II 2 < c I f ; w
1

' 2 (c)II 2	 (11) 
where c does not depend on k. 

	

Step III (see also [15: Theorem 2.5]): Take 0 and -y with I/S I <,3* and	<,3*. We 
multiply ll Vv ; L(Gm )II by p-1 (p) -1 which means e2 . e212 if Gm lies in the th 

outlet. After that we use that in Gm it holds e' ' I m I since Iml < x 3 < Im+1I and r 

is a monotone function. Then we apply (11) keeping in mind that now If; 
W-12 

( l )hI = 
I f; W' 2 (Gk)II since suppf C Gk and repeat this procedure for I f; W' 2 (Gk)II once 
more making use of 1 = pp (pp)'. Precisely, 

IVY; Lp(Gm)hI2 = J IVvI 2 e2 e2Yx e_2-1z3 dx 

< ce2131"111 JG—IVvIe	dx 

' 2jm(fl—y). 1'''2(Gk)II2 

< ce2 I m I	e2_ 
hf; 

W-1,2 (Gk )112 

ce2(ImI_RI )($_ -1 )IIf; W 2 (Gk )II2.
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We choose
5/3—co iflkl>ImI 

/3+Eo if IkI<ImI• 

Here co is a certain possibly small number such that I-ri < /3' is fulfilled. This yields 
(8) and completes the proof of Lemma 1 I 

Up to now we considered weighted spaces generated by L2 . For the rest of this 
section we continue in treating bounded subdomains of 9 but we allow 1 < q < no. 
Then the weak formulation of problem (S) 0 becomes 

(WF) j Vv : V dx = (f, fln	for all	E	 (fl) with div' =0. 

We call v € 97 1 9(l) generalized weak solution of problem (S) 0 . Here and in what 
follows 1 + 11 = 1. As long as we consider the problem in G'm the pressure p E L(G) 
exists due to [15: Lemma 1.21 (see also [13, 14]): 

Proposition 2. Let G be a bounded domain with Lipschitz boundary. Then any 
bounded linear functional f(u) defined on vectors in C'°(G)' 

,L (G)II 
and vanishing on 

all divergence free functions can be represented in the form 1(u) = fG .s divu dx where 
SE L'(G) and f sdx = 0. 

We need estimates of Cattabriga type which are proved in [15: Theorems 3.1 and 
3.2]:

Lemma 2. Let Q have uniform C' + '- regularity, 1 E N0 , m € Z. 

(i) If 1	0, f € W(1) fl W 1 ' 2 (1), q ^! 2, then the weak solution of problem€
(S)0 satisfies

Vv . L (G iI m,ii < - c (h f ;	 + 11 Vv; L(G')hI) .	 (12) 16

'(ii) If f € W/l(c), 1 < q < cc and I € N, then each solution to problem (5) 
satisfies

liv;	 + iI Vp; W_"(Gm)ii
(13) 

c ( h f ;	 + ii Vv ; L(G)hl)
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3. The Stokes problem with zero flux 

In this section we prove that the Stokes system with zero flux through all outlets has 
a unique solution which is as regular as the data and the smoothness of the boundary 
allow. The proof of Theorem 1 is carried out in two main steps. 

Step I considers j 2 2. In this step first it is shown that there exists a generalized 
weak solution v to problem (S) 0 if f E W'() (Substep 1.1). This is 
technical and lengthy. We need two partial steps: Initially we assume that f has compact 
support and prove the existence of a generalized weak solution in this case. The two 
inequalities (12) and (8) (shown in Lemmas 1 and 2) then help to go over from q = 2 
to 2 q < oo. With this result for f with a compact support we may treat arbitrary 
f E Wl(Il) in a second partial step using a partition of unity. After existence the 
uniqueness of this solution is shown in Substep I.H. We may show more regularity for v 
if f e	1 E No (see Substep 1.111). Finally, Step II considering 1 < q < 2 is carried
out by duality and density arguments. 

Remark. The Poincaré inequality applied to p fl v yields 

Ilpv; L(l)	cpll V ( p fl v ); L1(Q)II	cp(Il( Vp )v ; L'(cl)Il + lips(Vv); L(cl)). 

The special form of pq in each outlet induces Vp fi = (0, 0, /3p) and we see 

(1 _q I A c,3) 11 v; 	< cVv; 

Since Li < /3 < 2c9+2+2M <	we are sure that 1 > q1/C/3 and from the bound-
edness of ll V '; L(Q)ii we may infer theboundedness of li v ; L ()Il and li v ; W(Q)ll. 

Theorem 1. Consider problem (S) 0 in Q with uniform C'-regularity. If f E 
where LBi < 9 (this constant is fixed in Lemma 1), then there is a unique 

solution and
liv; 'V''()ll < c f; W''()11.	 (14) 

If moreover f E W(l) (1 E N) and Q has the uniform C 1+1 -property, then 

li v ; W(1)ll + VP;	< c f;	 (15) 

Proof. Step I: The case q 2 2. Substep 1.1: Existence of solutions if f E 
Part 1.1.1: The case suppf C G (compare also [15: Theorem 4.1]). In this 

part we assume f has compact support, i.e. f E	 Therefore f E W1,2(Q) 
and there is a unique weak solution v E W"2() with divv = 0 (in the weak sense). 
We want to deduce from estimate (12) in Lemma 2 that for this solution in addition 

iI V '; L(f)Ii	c If; Wl(cl)j	(q 2 2). 

holds. In (12) the term iVv; L(G)ii is disturbing. With the help of inequality (8) in 
Lemma 1 we may conclude that 

iVy ; L(G)ii 5 ce°' Imi—Iki 1 11f; W 1 ' 2 (G)iI = ce°' Iml—IkI I I I f; T4T1'2(Gk)hh.
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Since Gk is bounded and q > 2, moreover I f ; W ' 2 (Gk)II c I f;	 and 

ll Vv ; L(G)II < c e° 1 I m i-I k i I hf; 
Together with this estimate (12) becomes

=0 if m{k—I,k,k+1} 

IVy ; L" (G.)II <c (e 0 I mi—Iki h f ; W"(Ck)ll + jjf; W^"(G^)Ij). 

Summing over m (k is fixed) we obtain since co > 0 

	

Vv; L(f)hI < c i f ;	 = elf;	 (16)

Moreover, using the same arguments as in the proof of Lemma 1 but starting with (16) 
we may deduce that (8) holds also for q ^! 2 and with the Remark before Theorem 1 we 
conclude

liv; < ce° 1 ImI-IkI h f ;	 (17) 
Part 1.1.11: The case supp f arbitrary (compare also [15: Theorem 4.3]). We choose 

a partition of unity {xk} 0_ such that suppXk = G and define fk Xkf. Let vk 
be the solution to problem (S) 0 with right-hand side fk . From Part 1.1.1 it is clear that 
Vk E W(Q) and divv k 0 in the weak sense. We define 

k=-N 

Obviously, this is the solution of problem (S) 0 to the right-hand side f" EN
 fk. 

By definition fN - f as N - co. To prove that yN - v we must show that 
hI v ''; W'(Q)hi is bounded independently of N. For v" = >m X,.' we calculate 

	

llv N ; W'(l)	
C	

hivN; 
M=_00 

<Cm
 CL

q 
N 

lI vk; W(G)hl) 

To the right-hand side of this inequality we will apply inequality (17). This is possible 
since fk has compact support. We obtain writing hhfkli instead of llfk; W(G)1 

N	 N	 _ 
ih vk; W 	c	e°' mi-Iki lifkll <

C-
	e°' 

-1- k I 
k-N	 k,-N 

After that we use the following arguments for a k = e 0 I 1 TTh IH k I I and bk = Ihfkhl: 

ak bk =	(a / b) . a1'	
(	

/Q 
q I/q 

(>  k	 k	 k	
bk)	

k	)
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hence

	

q	 q/q'	 q-1 

	

(akbk)	 (yak) = akb (yak) 

As usual q'	We obtain taking up the above series of estimates 

c for any fixed m 

00	00	 00	 \' 

1v N ; wi(c1)11 < c	 e°' I m i—I k i Ilfkllq	 e° m i — I k i I) 
rn=—oo k=—oo	 (=—oo 

00	Co 

>	mi—kit 

cf; 

Therefore we see v i"	v in	and it holds 

liv; 1V(1) < c if; 1 19 ()11 .	 (18) 

Substep 1.11: Uniqueness for f E W; I,q(Q). We will prove that v 0 is the only 
solution to the homogeneous problem, i.e. for f = 0. Then from Substep I.1 it is clear 
that v E W 

1,q (Q). We take V k from (5) and estimate (7) leads to 

IIVhk; L" (Gk U G_) :c C ivy ; L(Gk U G_k)ii.	 (19)

We calculate 

—z(ii kv + hk) + V(17kp) = — (iik)v - 2VlJk . Vv - /2hk + pVTlk. 

So we may interprete the situation such that V k solves problem (S)0 in the weak sense 
for the right-hand side Fk defined for 'P € C00°(cl) as 

(Fk,'P)n	V?lk(V'P •v — Vv• 'P)dx+f(P—)V7)k . Wdx_j Vh k •V'Pdx. 

Here again	GkuGki fG,,,G-, pdx. Obviously, suppFk c Gk u G —k . Moreover,
from the equations above we may conclude with the help of Holder's inequality that 

ilFk; W(G U G_,)	cliv; TV(G U G_,)	 (20) 

since for hk we apply (19),, '1' and Vik are bounded and we may estimate the pressure 
term as in Lemma 2. From (18) and (20) we may infer 

ll vk; < c liFk; 

= c IlFk; Wl(G U G_,)j 

^ C li v ; W(Gk U G_).
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Since v E W"() the right-hand side of this inequality tends to zero for k -	. 
Moreover, because of (19) we know that	iiVhk; L" ( G A; U G_) = 0 and we 
conclude 0 = limk_,, il Tlk v	= li v ; W''(c)ll and thus v E 0. 

Substep 1.111: Regularity for f e W'(?), I E No (see also [15: Theorem 4.4]). 
Until now we considered weak solutions of problem (S) 0 assuming f E Wl(1). Now 
we take a more regular right-hand side. The local estimates of Lemma '2 are independent 
of the location due to the uniform CI+2property. 

Indeed, if f E W(Q) (I E No), then in particular f E L() and L(Q) C 
W; " 9 (Q). Hence, there exists a unique solution v e W(1) and it holds because of 
(18) and the embedding L(Q) C W(1l) 

	

V;Wl,q 5 ef; W 1 '(cl)ii < c h f ; L(l)ii < cf; W ( cl )hl .	(21)

Summing the local estimates (13) over m we obtain 

iv;

	

	+ Ii Vp; W,()ii !^ C ( h f; W ()hI + li v ; L(l)ii)

( h f ; W ()ii + ii; W(1)ii) 
(II
	+ if; W(c)li) 

and the last inequality follows from (21). 
Step II: The case q < 2 (see also [15: Theorem 4.5]). We will show that also for 

1 < q < 2 it holds li v ; W'(c)ii	c hf; W(Q)11, and if I E N0 , moreover, 

	

liv; W,2(1)p + ii vp;	e hf; W()ii 

For this, in a certain sense we proceed similar to Step I: Initially we derive the estimate 
for weak solutions and prove then more regularity for more regular right-hand sides. 

We exploit the following two main ideas: 
Approximation off E W'(cl) by functions in W	(ci)flW2(c) fore > 0 and 

duality between W() and	(1). Precisely, we consider first f E Wl(cl) n!
W . 2 (Q). In this case on one hand we may use the L 2 -result and on the other hand 
derive results for a certain g E WJ' (Il) because q' > 2 and Step I can be applied. By 
duality arguments these results may be transferred to f. Then we show that each f E 

-Iq	 .	 .	
. W; 

1, q Wfi (l) can be approximated by functions in W	() fl -12(s)). The procedure
is similar to Part I.I.H. Regularity then follows with the same arguments as in Substep 
1.111. At the end we show uniqueness also for the so constructed solutions. 

Substep 11.1: The case f E W,"(1) fl W 2 (l). Because of Step I for such I 
there exists a unique solution v E Wie(l) to problem (S)o. This v fulfils (WF) for 
'P E 

-,6	

p) with div 'I' = 0 in the weak sense: 

fVv . VWdx=(f,'P) t .	 (22)
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Let g E W'(l). Because q' > 2 Step I applies and there is a unique solution 
w E W.. ' to problem (S) 0 with right-hand side g, satisfying for	€	with
div c1 = 0 in the weak sense 

fn 
Vw . V dx = (g,	11w; W(l)Il	c lI g ; Wi'(l)II.	(23) 

With the generalized Holder inequality one can easily prove that for q < 2, c > 0 
w 12

( 1 ) C W"'(l)	and	W"'(l) C W_(cl).-16
Therefore we may take 'I' = w in (22) and 1P = v in (23). This yields 

in- Vv - Vwdx = (f,w)ci	and	
in 

Vw Vvdx (g,v)t-. 

We deduce that (f,w) fl = (g,v)c. Now we take g divg where Q pflVv2Vv. 
Here p is the weight function from (1). Relation (23) and direct calculation yield 

	

11 w ; W"'(1)iI	c g; W ' ' (flhI = c IIVv; L(1l)_i.	 (24) 
Moreover, for this g we observe 

= (g,v)cl = (f,w)Q 

	

h f ;	 11w; 1T'(l)Il 

	

< cf;	IIV';
This means 

ivy ; L(l)lI < c f;	 and	Iv; W(Q < )	c hf; 
W(c^). 

q E Using word by word the arguments of Substep 1.111 for f € W (cl), 1 E No, we conclude 

IV; W2(Q) + IIVp; < c If; 
Substep 11.11: The case f € W(1l) arbitrary. We will show that it is possible 

O 

	

Eq	 Eq $ (Q)in the norm of this space by functions f E W$ to approximate each f € W	 (S) fl 
W2 A. 

By definition functions in WflE q (l) are approximated by functions f € C000 (a), 
i.e. for f € W(cl) it holds f = f, and lim_,, 11 f ; W ( cl )hh = hIt; W(l)11. 

Taking the partition of unity {xk}°=_ of Part 1.1.11 we define, for j E No, f7 
_Nxkf,. These f7 have compact support and therefore it holds ff €W, (l) fl 

W;+1 ,2 (Q). 	 N (Il). Hence, f € W (cl) is approximated as f =	m llN...cx, f . Thus, by 
density the estimate proved in Substep II.! is valid for all f € 

Let us finally show uniqueness. For this we consider the solution u € W(1l) of the 
homogeneous problem. It holds for all cf € ' W (cl) with div = 0, in the weak sense 
fo Vu . ' V -(D dx = 0. Take F € Wi () and let v € 1iT.. ' (Il) be the corresponding 
solution to problem (S)0 with right-hand side F. It holds fn Vv V'P dx = (F, W)c for 
all 'F €W!'l) with div 'F = 0, in the weak sense. Taking c1 = v and 'I! = u yields 
(u, F) i = 0 for all F € (cl) and consequently u 0 since F and u are from dual 
spaces. This finishes the proof of Theorem 11
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4. The Stokes system with prescribed fluxes. Setting in 
weighted spaces 

To investigate problem (S) with prescribed fluxes different from zero we look for solutions 

V = U + a. 

Here a is constructed as a solenoidal vector field which carries the flux, i.e. 

diva=O in 
a=O onl 

fFJ ( X ) a3 dx I dx 2 = 

and u is found as solution of problem (S) 0 with right-hand side f + La. In view 
of Theorem 1 the solvability of problem (S) 0 for this right-hand side is apparent if 
f + Aa E W"(fl) for some 1 ,31 < /3'. More regularity of the solution follows if 
f + La E W'(Z) (1 e N0 ) provided aQ is regular enough. Thus, the main job to be 
done in this section is the choice of an adequate flux carrier and the discussion of its 
regularity and decay properties in the frame ofW(1l)-spaces. 

The crucial point in this investigation is that our flux carrier does not explicitly 
depend on x. We will see that al together with the moduli of all derivatives in (x) 
is bounded by a constant independent of x 3 which leads to the knowledge that a belongs 
to all W()-spaces for /3 < 0. This agrees with the results known for similar domains: 
Problems with non-zero flux cannot have solutions which belong to usual Sobolev spaces 
(i.e. /9 = 0), especially they do not have a finite Dirichlet integral (see [6, 151 and the 
literature quoted there). 

We set a = where a s , l + l carries a unit flux from outlet number i 
to the next one. To fulfil the prescribed flux conditions in the outlets it is evident 
that a i To construct ai,i+l consider a flow from outlet number i to outlet 
number j. We define (see also [18: (2.29)] 

a 3 curl ((' 3 b') =	x 0,	 (25) 

where bR) shall carry the flux, curl b' = 0 and (- is a monotonic smooth cut-off function 
which ensures that = 0 on the boundary and in ,a neighbourhood of the singularity 
of the field b". By construction as curl we know that div a' 3 = 0. We choose 

btJ(x)E_1 kj	 xdl 4ir 	lx - 

knowing that this describes a magnetic field which generates passing through the.path 
an electric flow of unit density. In our frame this is fixed such that the distance 

between 3l and this line shall be greater than some number d0 < 4 (remember, d is
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the lower bound for the diameters of the outlets). From the physical interpretation of 
b" it is clear that curl b" = 0 in \y13 and 

	

Jr
	ds = fo ±1 if I' encircles -y"

Jr 	if r does not encircle 713 

The sign corresponds to the right-hand rule. The cut-off function is fixed as 

(Z3—cT2(lfl	d1	\ 
kii 

where 

(d1 E R is such that 0 <d1 <d0 
k 3 (x) is the regularized distance between x and -y'' 

is a smooth function such that 1(t) = 0 if t <0, 1(t) = lift > 1. 

This definition is such that 

i if k . ' >di (I) =	 and suppV(' 3 C {x :o - d1 <k <d0 - d - 
0 if k,, <d0 d1	 e 

ou •..

OS1U
outletj 

With Stoke's law one checks that fJ(J) a dxdxb ds = 1 (see also [18: Formula 
(2.22)]. Besides that, 

J a3 dx'dx' =J	ds = -	= 
i=1 

Lemma 3. Let 1 < q < cx and 1 E N 0 . Then a' (1 i,j < J) defined in (25) is
 in W"(1l) for all fl < 0. 

Proof. From [18: Formula (2.32)] we conclude 

I—ai
I	 +...+ I - (d0 - k)frI+'k1	k,7(d0 - k,,)	

(26)
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The support of	is such that d0 — d 1 < k < do - 4 . Therefore all summands in
(26) can be bounded from above by

C 

min { i -,do —d1}2 

and thus,
oII

(cx,d). 

Moreover, we see that

00 
31o1 

3—&u
I q
 dx' = Je9fl'4	 dx' 

axo 	k(Z)Iax0 
00 

< 

	

< u rn	— 
-00 q/3	q13 

This limit exists for /9 < 0. Summation over j leads to the result of the lemma U 

	

Remark. In the case n = 2 one takes (see [18: p. 267] a 23	——(", 
Obviously, div a l) = 0, a 3 = 0 on O and 

k 
/	a3 dx 

= - 	
—("dx = — 2 ("	= 1. 

JE'(r) 2 (z Ox j	2 

The estimates in Lemma 3 change to 

OII ij	1 

	

(d0 - k)l+I0I	d)	(l a l ^ 0). 

Theorem 2. In ci cnsider problem (S) with prescribed fluxes T E IR (j = 
J	 1 1,... , J) under the condition	F' = 0. Assume ci has the uniform C -property. 

if  E 
Wfi

	where —0 <
.
# < Q (3* is fixed in Lemma 1), then there is a unique 

solution, V E	1 , q (Q) and 

li v ; <c (h f; W ? (cl)hl + >.''_. F'l) .	 (27) 

If moreover f E W01— " q (Q) (1 E N) and Q has the uniform C'+ '-property, then 

li v ; W,(cl)ll + hl Vp; W"(ci)II !^ c (hf;	 + E ) = 	.	(28)
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Proof. From Lemma 3 we infer 

	

= IVa;L(^)II = v (a i a i+ i) ;L'(cl)	cII 

This means that

	

II + za; Wl(cl)
	

(ii;wii 
+	

IF)) 

and analogously one obtains (28)1 

Remark. It is worth to mention an important special case: For straight cylindrical 
outlets we may take the so-called Poi3euille flow as a flux carrier. This is a special 
solu.tion for problem (S) with zero force and unit flux in the infinite cylinder >L x R: 

—4 
,	Pp	K(E) 

=	xn + C, 

where v, is the solution of the problem 

—LVp=2 in 
vp =O on ô2 

	

ic(E)	fEIPIdnIdXZ. 

For each outlet we can take the Poiseuille solution corresponding to the cylinder E j x IR, 
say v) , and cut them off near Q0 with the help of a smooth cut-off function Xj which 
is 1 in i\2 and 0 in çO To make the result solenoidal we must add some function h 
which is the solution to

divh = —divI'v	in 12\l0 

and with zero boundary value. Then a = h + 
For u we have to solve problem (S) 0 with the right-hand side La. Since in the 

outlets v i fulfils the homogeneous Stokes system it differs only on Q2 from zero. This 
fact leads to a different decay estimate for u = v - a than in the general case: Due 
to the compact support of za, u decays exponentially. (But this is not valid for v 
since IIII	l u ll + h a ll and the norm of v, enters the estimate of h a il . This leads to a 
solution in	for 6 < 0 with the same arguments as in the general case, since v, 
is constant with respect to the x,-direction.)
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5. The Stokes system with prescribed fluxes. A setting in 
local Spaces 

It is always useful to emphasize how much different settings are physically suitable 
depending on the geometry and forces. 

As we noticed in the last remark, the famous problem of Leray concerning the spatial 
stability of the Poiseuille flow in a cylindrical outlet can be approached in a very natural 
way by means of weighted spaces. They are helpful tools because 11° can be regarded 
as a region of torsion of a channel and this is equivalent to a bounded support force 
on the right-hand side of problem (S) (therefore belonging to any W"(cl)). Then, by 
choosing 3 > 0 it is easy to prove (see, for example, [6]) that the perturbation u to the 
Poiseuille flow tends to zero in the direction of any exit. 

If one considers a more general domain, with exits which are neither cylindrical nor 
periodic, the choice of weighted spaces is less natural. Any weight is specifically related, 
at least in the present formulation, to the choice of the origin of the x-axes. In contrast 
to Leray's problem where the origin is in since breaks the symmetry for any more 
general domain all locations are equivalent. 

Since the Stokes problem is linear, we can always find the solution as follows: v = 
U 1 + u 2 + a where u1 and u 2 solve problem (S)0 with right-hand sides f and isa, 
respectively, and a is again the flux carrier introduced in the preceding section. In the 
following we investigate u 2 calling it u, for simplicity. 

Now, instead of minding that a e W() with 3 < 0, we notice that a e C() 
has no global summability property but belongs to any This leads to the 
definition of Banach spaces which we introduced in [11). For the moment let the index 
k in the definition of Gk and 1k be free to be a continuous variable z € R. For 1 E N 
and l<q< oo we set 2) 

{v € Wt.	11v; liv; W(G 1 )Il c (z E R) for some c o}.

We will call these spaces local spaces and endow them with the norm 

li v ; W'(cl)il	inf {c E R U {0}: liv;	 )11 <c for all z E R}. 

Locally applying Sobolev embedding theorems one deduces that a function like the flux 
carrier a is in Wl(l) and bounded even without global summability properties: 

li v ; C m (c)ii =sup li v ; C m (Gt)iI	sup(c(k)liv; WI(G)) < C. 
kEZ	 kEZ 

This holds for all m € [0,1 - ) (note that the sequence c(k) is uniformly bounded 
because Q enjoys the uniform C'-regularity property). Thus, Cm (Q) D M(l). 

2) One could also consider other spaces with adequate properties, for example liv; Wl(G) 
< c 1 z+c2 for all z € R. But -this different choice would imply that the space is not homogeneous 
with respect to z, which is not physically senseful in the present case. In this respect see also 
the local spaces defined by Solonnikov in [18].
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Before justifying that local spaces fit in well with our problem, we want to show the 
relation between the two settings: weighted and local spaces. For /9 ^! 0 we see 

V. wo ( c )11	q$II 
IG, 

vdx	f yqeqr3	
liv; L)11 

 JG, 

while

v;
< k= -00

g$IkI	I V Iq 	< liv; Wo(cl)fl 
k-oo 

qIkI 

for 16 < 0. Therefore, we can conclude 

	

W(l) C WI(1)	for /3 ^! 0 

	

C W.(cl)	for /9 < 0. 

Hence, the setting in Wt(1l) is weaker when dealing with forces having some decay 
(/3 ^! 0). But it is stronger and therefore more suitable when considering the problem 
with non-zero flux (/3 < 0). 

Let now q = 2. The spaces W' 2 (1l) can be endowed with a Hilbert space structure 
by defining the scalar product for v,w E W"2 (1l) as 

(v, w)7	sup(v, w)I,G, 
zEll 

where (., .)j,, denotes the usual scalar product in W1,2 (G . ). Unfortunately, this struc-
ture cannot be used to prove existence by means of Riesz' representation theorem, 
because of the difficulties related to the pressure term. However, we can prove the 
following 

Theorem 3. Consider problem (S) 0 for the right-hand side La (this is the flux 
carrier defined in (25)). Let Q have the uniform C'-property. Then there is a unique 
solution, say u, which is in W 1,2 (Q) and 

	

11 u; )'V' 2 (cl)Ii	C	ha; l'v''2(cl)11. 

If Il has the uniform C''-regularity property (1 € N) in the sense of Adams [ 1: IV.4.6], 
then (u,Vp) e (W'"2 (fl) fl ''(l)) x W'. 2 (1) and 

lu; 'V'' 2 (cl)hi + hi Vp ; Y' 1 ' 2 (Ohi < c ha; vv'1'2(c)11. 

The constants depend on Q and 1. 

Proof. Again, let z E l be the continuous counterpart to k E N and we consider 
the domains Q.. Then, it is well-known (see, for example, [6, 12]) that a weak solution 
U E W1'0'(1Z) exists and it obeys the estimate 

U; W' 2 (c)ii 2 < c ha; 'V''2()hh2(z + 1)	 (29)
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for all z E W. The constant c in (29) can be bounded depending on the supremum of 
the constants in the estimate for the divergence equation in the domains G k (k E Z). 
This supremum exists because of the assumptions on the domain Q (for details see 
[11]). Along the same lines as in (11] we can prove that this solution actually belongs 
to W"2(cl): 

For the moment let us consider one channel with two exits. As in Section 4 we use 
an orientated path 712 in place of a common x-axis like [6]. Let z be the curvilinear 
coordinate along -y 12 in our setting. This name stands also for a fixed point z on 712 

as no confusion may arise. Next, we notice that we could have constructed a different 
solution by choosing a different origin for z on 712. In particular, the new construction 
is characterized by a different (shifted) family of domains cz which invade the whole 
domain for growing z' and the new solution verifies (29) by replacing z with the new 
variable z'. Also the constant in (29) is the same by the hypothesis on the domain. 
Then we can prove the result by a uniqueness argument, as follows. 

Let us assume that we have uniqueness in the class of solutions verifying (29) for 
some choice of the origin. Since Q, = Go one can change continuously the origin of the 
reference frame and each time put z = 1 in (29). The result can be written in a unique 
reference frame, which can be fixed once for all, so yielding 

Il u ; W
1 ' 2 (G)II	(2c)'I2a; w 1 ' 2 (c)II	for all z E R. 

Thus, by definition u belongs to W12(Z). 
Now, to prove uniqueness, we consider the difference uo between two solutions and 

notice that c> 0 exists such that 

	

II u0; W1,2 (cl :)11 2 < c(z + 1)	for all z 

This means that the possible growth cannot be more than linear. On the other hand, 
we can directly write the equation for the difference, multiply it by U, integrate by 
parts in Q, and then integrate again on z E (s - 1, s). Since div uo = 0 in Q and uo = 0 
on ÔQ, the result is 

JII Vu0 ; L2 ( 1Z )Il 2dz + JG, (OUO3P 	
-	

dx - IG, (003 - 4) dx = 0.
 az

By means of Schwarz' and Poincaré's inequalities one immediately finds that 

JG , _ ^uGi _	
dx <cli Vu0; L2 (G 5 _ 1 U G 1 _4 2	

J II Vuo; L2()II2dz. 
 Z	 S - 

	

At this point, we notice that the problem	 0 

div'I'=u03 inG3 _ 1	 - 
'P=O on W,
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allows a solution which satisfies 

II V '1'; L2(G3_1 )II 5 C 11 u03 L2 ( G 5 - 1)II (30) 

where the constant does not depend on s. In fact, since u 0 has zero flux the compatibility 
condition fG., UO3 dx = 0 is fulfilled. 

We follow the ideas of [6] in estimating the integrals containing the pressure and 
insert (30) after the last term of the following chain of equalities 

	

JG-1 
J)()03 dx 

=	
podiv 'F dx = -

	
Vp0 'F dx 

=	
Vu0 VT dx,€

where the equation of motion written in the weak form in G 8 _ 1 has been used. Hence, 

' 
fG .

pouo3 dxl +	 pouo3dx	cliVu0; L2(G3_1 U Gi_3)lI2
_,	I	Ijct_. 

Finally, we obtain the differential inequality 

	

S	 S 
' J ll VUo; L2 ()II 2dz	C 

d 
— 	[vU0; L2(z)li2dz.ds j 

	

5-1	 s—I 

Setting p(s)	f1 II Vuo; L2 (Q)ll 2 dz, that differential inequality implies 

p(s) > 

for 0	s where s0 and s are arbitrary. Since 

II Vuo; L2 (1 3 )[l 2	and	(8) ^! Vuo; L2(fZ50_1) 

the exponential growth is in contradiction with the linear one unless (so) = 0 for any 
so ^! 0. This implies uo = 0. 

It remains to prove the regularity. We start by recalling (13) in the case = 0, and 
z in place of rn (where now it is essential that z may be arbitrary). We insert on the 
right-hand side the estimate 

	

Il Vu; L 2 (G)iI 5 31Iu; I'V'' 2 (cl)II	3c la; v12(cl)[i, 

we replace f with La, and the proof is completed since z is arbitrary I 
Remark. We have already pointed out that due to its regularity a belongs to all 

local spaces 

Since the spaces here considered are local it is immediate how to extend the results 
of Theorem 3 to local spaces with q > 2. In fact, it is sufficient to insert the first
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estimate of Theorem 3 on the right-hand side of (12), evaluated for /3 = 0, and f = 
Then, we use the inequality 

Ia; 1'V'' 2 (f)II	sup IG z IIIa; W', " (Q) ll 
ZER 

where IGI is the Lebesgue measure of G. The so found estimate can be used to increase 
the right-hand side of (13) for 0 0 and f = La, as 

Ilvu; Wo(l) < cia; 1Vl?()II. 
Notice that the constants depend on q, Q and 1. 

From the result for q' > 2 we can now deduce the result for q < 2 by means of usual 
duality arguments. However, those arguments have to be applied to the solution Ut of 
the "approximating" problem 

-Au k + Vpt = Aa in Qk I 
divu k =0	iflk	 (31) 

Uk0	onô^1k. 
In fact, the solution u =	 Uk (in the weak sense) cannot be used as test
function since it has no bounded support while Uk is zero on the boundary. Since 

a E W'2 (T) fl W_ 1 '(1) the analogous of (22) is 

in 
VUk : V'P dx = (ta, 'I')	 (32) 

for all '4' E W1 ' 2 (1 k) such that div 'I' = 0. On the other hand (32) certainly holds true 
for any 'I' E WI'(cl) C W"2 (t) for q' > 2. Such 'I' could be the solution of the 
analogous of (23)

JVw, : V ID  = (gk, 4 )0	 (33) 

where ci? is any function in W"(Q) such that div i? = 0 and g	div Qt is defined by 

For instance, one can choose i? = Uk in (33), because Uk belongs necessarily to W' 
Going on in the same way as for weighted spaces one proves 

hut; W l () ' )ll	c(q, Q)lla; WI(1Z)11(k' + 1), 
for any k, k' E N. By fixing k' and varying k, one starts constructing a uniformly 
bounded sequence converging in By varying k', one has the series of "invading" 
domains. Finally, the weak limit u' will verify the analogous of (29): 

Il u';	 c(q, )hI a ; 3'V' (c)(z + 1)	 (34)
for all z E R+. Moreover, it is obvious that u = U': By compactness we may conclude 

Il uk — u;W"(1)ll < sup Al 	hut — u;W 1,2 ()lI —* 0 ask —* 00. 
ZER+ 

Since the strong limit coincides with the weak one, and since the limit is unique, then 
u = u'. Therefore from (34) it follows 

lu; 1V''()fl 5 (2c(q, c))'/ ha; 
In order to prove more regularity, it is sufficient to insert this last result in (13), with 
q < 2,3 = 0, f = La and arbitrary z E R+ in place of m. Thus, we proved the following



638	A. Passerini and G. Thater 

Theorem 4. Consider problem (S) 0 for the right-hand side La (this is the flux 
carrier defined in (25)). Let Q have the uniform C'-property and 1 < q < 00. Then 
there is a unique solution, say u, which is in WI (1) and 

U; W','(Q)ll< c [a; Vl()[[. 

If  has the uniform C''-regularity property (1 E N) in the sense of Adams [1: IV.4.61, 
then (u,Vp) E	 n	x W1_1(1Z) and 

lu; 3vt+l(c)[ + llVp; w1_1(c)11 < C ha; 4+1,q()1[ 

The constants depend on ), 1 and q. 
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