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Abstract. This paper deals with periodic pseudodifferential operators on the unit circle T' = 
R'/Z 1 . The main results are asymptotic expansions for adjoints and products of periodic 
pseudodifferential operators. 
Keywords: Periodic pseudodifferential operators, periodic integral operators, symbol analysts, 

asymptotic expansions 
AMS subject classification: Primary 47030, secondary 47010,58015 

1. Introduction 

Boundary integral operators on planar curves can he treated as periodic pseudodiffer-
ential operators, or as pseudodifferential operators on the unit circle T 1 = R'/Zt. 
On general n-dimensional manifolds one can locally apply the theory of the pseudo-
differential operators on Il° (see, e.g., [13, 15]). When the manifold is diffeomorphic to 
the torus T° = R'/Z' this approach is unnecessarily cumbersome; a more elementary, 
global treatment of periodic pseudodifferential operators is based on the Fourier series 
representation of functions. 

The historical account announcing periodic pseudodifferential operators can be 
found in [2), and it is further developed in [3]. What is essential, is that the global 
definitions of periodic pseudodifferential operators are equivalent to the local (differen-
tial geometric) approach treating T" as a manifold, and using the theory of pseudo-
differential operators on IRTI: this fundamental result is proved in [8] (see also [11] for 
an elementary special case on T'). 

Standard operations with pseudodifferential operators (adjoints, products, cornimu-
tators) can be characterized by their symbols. For pseudodifferential operators on 
the symbol analysis is well-known (see [13 - 15]). For pseudodifferential operators on 
T 1 the corresponding results have been developed by Elschner [6] in the special case of 
classical symbols. Symbols a(i,) in [6] are defined on T' x R, and the derivatives with 
respect to both arguments t and are involved in the symbol analysis. 
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In this paper we shall show that Elschner's formulae hold for any periodic pseudo-
differential symbol. Moreover, we give the corresponding formulae also when symbols 
a(t, n) are defined only on T' x Z. In this case differences are used instead of derivatives 
with respect to the second argument e and this causes further changes in the formulae. 
An early version of the proofs of these results was published in [16]. 

In our line of reasoning, we obtain some useful asymptotic expansions for periodic 
integral operators. The theory of periodic pseudodifferential operators has been suc-
cessfully applied in numerical analysis of boundary integral equations (see, e.g., [4, 5, 
7, 9, 10, 17]). 

2. Periodic Sobolev space H" 

Our working spaces will be the Sobolev spaces H' on the compact circle group = 
R' /V = {x + Z 1 I x E R' J, but the study can be extended on any torus T". The space 
of the test functions or the C'-smooth functions on T 1 is denoted by C°. The natural 
topology of C is induced by the seminorms that one gets by demanding the following 
convergence: u,, —* u if and only if, for all k E No = {0, 1,2,..	k) , (k) uniformly. 
This makes C?° a non-normable Fréchet space. 

An orthonormal basis of L2 (7 1 ) is given by the vectors el27tT (n E Z). Here the 
dot "." is a reminder of the dot product in higher dimensions. For u E L 2 (T') the 
Fourier coefficients are defined by ü(n) = f e' 2 ' t 'u(t)dt, and generally the Fourier 
coefficients of a linear map tt E L(C°, C) are given by ü(n) = u(e_ n ), where en(t) = 
eI27r.fl. 

Let us define the inner products (., .) (A E R) by 

(U, V),\ =	( l + IriI)22(n)(n). 
nEZ 

(Here (1 + n i) 2 " could be replaced by n' A where n = max{ 1, n 1) . ) With the norm 
H u lk = (u,u) we get a Hilbert space H" called the Sobolev space. It consists of 
periodic functions and distributions u, represented by the formal series 
of the finite norm ikz. Actually, it is known that, in the presented topology of test 
functions, UAERH" is the dual of C, that is £(C, C) UAEH''. 

The Sobolev space H" is the dual space of H' via the Banach duality product 
(.,.) defined by

(u, v) =
nEZ 

where  E H' and  E H-". Note that (U, V) = f] u(t)v(t)dt when A = 0. Accordingly, 
the L 2 -inner (or H°-inner) product (u, v)o = j'' u(t)v(t) dt builds the Hilbert duality 
product between HA and HA. If A is a linear operator between two Sobolev spaces, 
we shall denote its Banach and Hilbert adjoints by A and	respectively.
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3. Periodic pseudo d iffere nt ial operators 

Every operator A e £(H", H) on Sobolev spaces is of the form 

u(t) i— Au(t) =	aA(i,n)ii(ri)ei27rtn = 019(CA)U( t )	 (1)
nEZ 

where aA(t,rL) = e `rt-n Aei27rt-n is called the symbol of A. Indeed, the Fourier series 
representation u(t) = En ft(n)e i2rt-n of u E H" converges in H A , and respectively the 
series Au(t) = En ii(n)Ae*2nth1 = En aA(t, n)ü(n)et2n converges in H. 

A function a: x 7L —i C is called a symbol of degree (or order) a, denoted a E E', 
if it is a C°°-smooth function in the first argument, and if it satisfies for every i E T' 
and n E Z

Vj,k EN0 Cj t ER:	Oa(t,r)I	C3 , ( 1 +	 (2) 
where by definition

at = 13 

the forward difference operator =A. is given by 

	

= ôtô and	=	A symbol a E E defines a periodic pseudodifferential 
operator Op(a) E Op(E°) by formula (1) on C. We denote	= fl jjE and

= flnE1OP(E). 

An operator Op(a) E Op(E) maps C10° into itself, and as it turns out to be bounded 
with respect to the norms of H" and H -' every A E R, and as C° is dense in every 
H", Op(a) can be extended to a linear map in £(H' , Hj'"). From now on we consider 
periodic pseudodifferential operators to be defined on the Sobolev spaces rather than 
on C" 

A formal integration of (n) = f e2rt1u(t)dt by parts (see (1)) suggests the 
notation

Op(a)u(t) = J u(s)	a(t, n)e127 t3)n ds.	 (3) 

This inspires a possible generalization of symbols. A function a : T 1 x T' x 7L —* C is 
by definition an amplitude of degree a, if it is C°°-smooth in the first two arguments, 
and if it satisfies for every t, s E T' and n E 7L 

Vj,k,l EN0 3Cjki ER:	I3aa(t,s,n)I	C, (1 + I nI)' .	(4) 

The family of amplitudes of degree a is denoted by	We also denote A	= fla€An.
An amplitude a E A defines a linear operator Op(a) E Op(An ) by 

Op(a)u(t) 
= 0 

u(s)	a(t, s, n)&2'_3) ds	 (5)
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where u E C?° . Again, this is to be interpreted as a result of a formal integration by 
parts, being an abbreviation for 

q 1I 1 
Op(a)u(t) 

= i	
(q)u()(s)	R) a(t, s, n)] 

0	°	no 

+ Jua(t,s,O)ds 

where the series
1 

	

[)	
a(t, .s, n)j (z2n)_ei2t_3) 

as 

converges uniformly with q > a + 1. This operator is called an amplitude operator 
of degree c. Just as in the case of periodic pseudodifferential operators, an ampli-
tude operator Op(a) E Op(A) has a unique extension by density and continuity in 
£(H A , H) (A ER). 

Often another definition for periodic pseudodifferential operators is used: a linear 
operator A is called a periodic pseudodzfferential operator, if there exists a function 
(prolongated symbol) a E C(7' x R) such that A = Op( a IT l xZ) and for every t E V 
and E R

	

Vj,k EN0 3cj k ER:	5 19 0'( t ,	. Cjk (1 + jI)Q_1c .	 ( 6) 

There is a standard linear interpolation procedure for prolorigating a symbol a(t, n) to 
a(t, ) so that (2) would imply (6); see [17j for details. We remark that all the relevant 
information is contained already in definition (2) of symbols on V x Z. In some sense, 
the prolongation is arbitrary, and it is definitely not unique. The prolongation process 
can also be modified for amplitudes to get a(t, s, ) ( E R) from a(t, s, in) (n E Z), 
with inequality 

	

Vj, k. I E No 3Cjki E R:	IaaDa(t, s,	<L3k((l +	 ( 7) 

Amplitudes can be considered as a generalization of. symbols, but it turns out that 
the family of amplitude operators coincides exactly with the family of periodic pseu-
dodifferential operators (see Theorem 4.2). Nevertheless, the concept of amplitudes is 
highly justified as a tool in symbol analysis. Moreover, amplitudes literally manifest 
themselves in certain integral operators. In many applications, a(t is given from the 
very beginning on T' x R, and then it is natural to operate with prolongated symbols. 
Therefore we will present two versions of the symbol expansions - for symbols defined 
on T' x ZZ and on T' x R.
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4. Formulation of main results 

In this section we show the equivalence of notions of amplitude operators and periodic 
pseudodifferential operators, and we construct asymptotic expansions for the symbols of 
adjoints and products. Most of the proofs are stated in Section 5 after the presentation 
of the main results. 

Let us first introduce some equivalence relations. We say that amplitudes a and a' 
are 7-equivalent (-y E R), i.e. a Z a', if a - a' E A7 ; they are asymptotically equivalent, 

7 i.e. a ' - a', if a - a E A-'. For the related operators we write Op(a)	Op(a) and
Op(a) ' Op(a'), respectively. 

Theorem 4.1 is a prelude to asymptotic expansions, which are the main tools in the 
symbol analysis of periodic pseudodifferential operators. The proof is omitted, since the 
result is well-known. 

Theorem 4.1. Let (cij )	C R be a sequence such that c, > a,..i - -oo as 
j - oo, and aj E E' (j E N0 ). Then there exists a symbol o r E E0 such that, for all 
NE N, a 

Here the formal series	a3 is called an asymptotic expansion of the symbol 
a E E' 0 , and we denote a	a3 (cf. a '.. a' above; a different but related mean- 
ing). Respectively,	Op(a3) is an asymptotic expansion of the operator Op(c) e
Op(E0) , denoted Op(a) Eo Op(a3). 

As there are two alternative definitions for the symbols, given by inequalities (2) 
and (6), we present asymptotic expansions for both cases. In the former case the shift in 
the difference operator has to be compensated. This is done with the aid of operators 
5(k) (k > 0) defined by 

5(0)1 

5(k)fJ(3i)	(k>1;ot=-_ at) . 

This definition is closely related to the Stirling numbers, which are introduced in Section 
5. The proof of the following lemma is also given there. 

Lemma 4.1. Assume that a E E satisfies (6). Then 

-	() 5'a(t,e).	 (8) 
j=0	 j=0 

Next we present an elementary result stating that amplitude operators are merely 
periodic pseudodifferential operators, and we provide an effective way to calculate the 
symbol modulo E°° from an.ariiplitude: this theorem has a fundamental status in the 
symbol analysis. Its proof is in Section 5. For a pseudodifferential analogue on R i', see 
[13J.
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Theorem 4.2. For every amplitude a E A there exists a unique symbol a E E 
of the same degree a satisfying Op(a) = Op(a), and a has the asymptotic expansions 

(t, n)	
1 

a 
	
1 fl 3 ô() a(t, s,	 (9)j  

i=o 
CO 1 /Ô\' 

	

a(t,e) '-j	;- () 5a(t,s,)It.	 (10)
j=o 

Example (Integral operators that are periodic pseudodifferential operators). As an 
example of the symbol analysis techniques developed so far, we study periodic integral 
operators. This subject is studied more thoroughly, e.g., by Kelle and Vainikko in [7]. 
Let A be a linear operator defined on C' by 

Au(t) = / u(s)a(t,$),c(t - s)ds	 (11) 

where a is a C°°-smooth 1-biperiodic function, and , is a 1-periodic distribution. As 
usual, A is extended to appropriate Sobolev spaces. 

Theorem 4.3. The periodic integral operator A defined by (11) is a periodic pseu-
dodzfferential operator of degree a if and only if the Fourier coefficients of the distribution 
K satisfy

Vk E N0 Ck E R Vn e Z:	Lk(n) <Ck(1 + IIY. 
Thereby the symbol of A has the asymptotic expansion 

aA(t,n)  
00 1

 (12) 
i=o 

Let k(n) be prolonged to function k() ( E R) satisfying (6), i.e.	k()I < ck(1 +
IeIY_ k . Then the prolongated symbol aA(t,e) has the asymptotic expansion 

aA(t,)	-.j	 (13) 

Proof. An amplitude of A is right in the front of our eyes: 

Au(t) = J u(s)a(t, s)ic(t - s) ds 

= / u(s)a(t, s)	(n)e22hI(t3)T ds 

Op(a)u(t) 

where a(t, s, n) = a(t, s)k(n). Certainly, Pc satisfies the presented inequality if and only 
if a is an amplitude of degree a. Accordingly, a yields asymptotic expansions (12) and 
(13) on the basis of (9) and (10)1
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We are ready to give the main results of the paper. The proofs of the following 
theorems are given in Section 5. These results are analogous to the general pseudo-
differential theory on R 0 , as presented in [13 - 15]. 

Theorem 4.4. Let A be a periodic pseudodifferential operator of degree ce with its 
symbol prolongated to aA( t , ( E IR), and let a(t, .s, ii) be an amplitude of A. Then the 
Banach adjoint A* is in Op(E a ) with an amplitude a* (t, s, ri) = a(s, t, —ii). Moreover, 
the symbol of A has the asymptotic expansions 

Co 

	

aA . ( t , n ) -  1 - j /O7A( t 7 —n )	 ( 14) 
j=o

	

(&)3aA(t,_	
(15) 

Accordingly, the Hilbert adjoint A*() has an amplitude a*(H)(t,s,n) = a(.s,t,n), 
and asymptotic expansions for its symbol are given by 

00 

A . n)( t , n)	L' J n	WA ( t , n)	 (16) t 

j=o 

00

() Oi'aA(t,).	 (17) 

Hence by (14) and (16), aA(t, —n) and 0 A (t, n) are the principal symbols of the Banach 
and Hilbert adjoints, respectively. 

Theorem 4.5. The product BA of B E Op(E) and A E Op(E) is in Op(E'), 
and its symbol has the asymptotic expansions 

7 BA( t , fl )	 [a(t,n)] ô ' 7 A( t , n )	 (18) 

BA( t ,)	
i

IB(t,	 (19) 

Without proofs asymptotic expansions (14),(15) and (18),(19) were announced in 
[17]. For classical periodic pseudodifferential operators, formulae of type (15), (17) 
and (19) were established by Elschner [6]. Elschner's proofs make use of the special 
structure of classical symbols. According to (18), aBo4 is the principal symbol of both 
BA and AB, so that the commutator AB - BA E Op(') when A € Op(E) 
and B € Op(). This result is familiar from the general theory of pseudodifferential 
operators.



16	V. Turunen and G. Vainikko 

5. Proofs of main results 

The rest of this paper is devoted to the proofs of the results stated in Section 4. 

Lemma 5.1. Assume that a E E and & 23 its Fourier transform with respect to 
the first argument. Then

Crk (1+ ImI)- r (1 +	 (20) 

for every k,r E N0 . Respectively, for a E	we have 

I oa( l , m , )I <Cqrk (1 + l)-( 1 + ImI)-r(1 +	 (21)

for every k,q,r E N0. 

Proof. We use the defining inequality (6). Clearly, Ia&(o,)I S Cok (1 + eI)a_c 
Now assume that m 0 and integrate by parts: 

= 5 J ez2t'a(t, ) dt 
0 

= rn_ r
J 

e_l2tmôôa(t, ) dt 
0 

H Crk (1+ II) 

Collecting these results we deduce inequality (20). The proof for amplitudes is similar I 

Working with pseudodifferential operators, some form of the elementary inequality 
of Peetre is needed. Namely, the version of the Sobolev norm in this paper suggests the 
Peetre inequality 

	

V\ E R V^, 77 E R :	(1 + I + 171)A < 2(1 + eI)( 1 + 171)A.	 (22) 

The proof is easy and thus it is omitted. 

Stirling numbers of the first kind	are defined for 0 <j < k (k ^ 1) by 

= H(x - i) = 

where x E R. It is natural ' to extend this definition by	= o0) = 1 and	= 0 
when j < 0 or j > k. Stirling numbers of the second kind )3(k) (0	k) are a sort
of dual for the first kind:

=
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Again, we set	= 0 for j <0 and j > k. One notices that 

aY = 1-( d 
J	

and	(k) = 
'	j!	dx	I=	 3	

3. 

From these equalities recursion formulae for the Stirling numbers can be obtained by 
applying the Leibniz formulae, but for the second kind there is also a closed form (see 
11]). Some other definitions and properties of the Stirling numbers can be found in [1). 
For instance, (Q')7k-.0 and ( / (k) ) 7k	are inverse matrices of each other. 

We have presented two alternative definitions for periodic pseudodifferential oper-
ators. To build a bridge between the asymptotic expansions of these approaches (by 
Lemma 4. 1), we have know how to approximate differencë by derivatives: A finest 
account is by Steffensen in [12] where Markoff's formulae are presented (but there the 
Stirling numbers were not used). 

Proposition 5.1. For every e C(IR), E R, N E No and 1 < J < N there 
exist 77,n, E [0, j] and 77d E [0, N - 1] such that the equalities 

N—i 

-	
1 (k)(k)(e) = lfl(N)(N)( + 

ij)	 (23) J	N! i	' 
k=j 

N—I 1 (k)	 1	(N) -	
.	 = ._.__	

+ d)	 (24) 

k=j 

hold.

Proof of Lemma 4.1. We apply Proposition 5.1 in order to translate differences 
into derivatives, and use the definition of the Stirling numbers of the second kind: 

N—I	N—I 
a—N	

[	
) () j 

(k) 

k=0	 k=0 

= 

?II ^ 00)a( k )t0] 
a(te)

 2_ =
T ()  

Since there is no upper bound for N, we have completed the proof I 
Proof of Theorem 4.2. As a bounded linear operator in Sobolev spaces, Oka) 

possesses the unique symbol	but at the moment we do not yet know whether
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a E E. The symbol is computed from 

a(t,n) = e 2lrtn Op(a) (e12'") 

= e 2tn f e' 2	a(i, s, m)c12t_5) m ds 
mZ 

= f .-i2w(t-s)-na(t, a, m)e2t_3)m ds. 

0	 ,nEZ 

Note that here n E Z, but we can use a C°°-smooth prolongation for amplitude a with 
respect to its third argument n. Now, according to the definition of amplitude operators, 
we may change the order of integration and summation, so that the Taylor formula can 
be applied as follows: 

	

a(t, n) =	J a(t, s, m)et2t_(m_ ds 
mEZ o 

=E à2(t,m - n,rn)eI27Ti(m_I 
mEZ 

	

1:=	a2(t, m, n + rfl)&2Tim 
mEZ 
N-I 

	

=
	(0)J

	
ä2(t,m,n)m3eI2m +	RN(t,m,n,m)e2tm 

j=0	 rnEZ	 mEZ 

where RN(t, ni, n, p) is the error term of the Taylor series representation of & 2 (t, m, n+p). 
Here à2(t,rn,n) = f0' e_ z27r3m a(t , s , ri ) ds . Notice that RN is a C'-smooth function in 
the third argument n, a property that will be used soon. Let us define 

EN(t,ri) =	RN(t,nl,n,rh)et21rtm 

Notice that

a, n) =	&2 (t , ni, ri )et27m =	&2 (t, m, ri)m2e121r3'm, 
mEZ	 ynEZ 

which yields
N-I 

a(t,n) =	
4j (b—) 

ôa(t,s,n)I	+ EN( i ,n) .	 ( 25) 

All we need is that EN E E'', and for this we have to study the remainder RN. Using 
the Lagrange form of remainder term, (a close variant of) inequality (20), and Peetre
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inequality (22), we get 

Oi"ô,'RN(t,rn,n,rn) 

'I - rn N I (2w)"'max 3i7'3N+k'à2(t,m,n+9m) 
- N!  

8E(0,1] 
1 

< —(1 + I m I) N ( 2 ) N max [Cr,j,N+k' (1 + Iml)_ r (l + In + OmI)_N_k'] 
- N!	 oct011 

<CrjkN (1 + n1)-'V-k'(1 + 

where r may be taken arbitrarily large. Therefore 

ô/ ' RN(i,rn,n,m)I CjkN(l + I fl Da_N_k' (1 + ImDN+_N__r 

This results to

Cik,N (1 + 

and hence EN is a symbol of degree a - N. Consequently, a belongs to E by equation 
(25), and Theorem 4.1 provides asymptotic expansion (10). Lemma 4.1 applied on (10) 
yields then (9) I 

Proof of Theorem 4.4. Assume that u,v E C°. We make use of the integral 
representation of the duality product and the definition of amplitude operators: 

t*tt = (A'u,v) I  
= (u,Av) 

= fu(s)Av(s)ds 

= J u(s) { f v(t)	a(s, t, n)e23_On dt } ds 
0	0	nEZ 

= J v(t) { f u(s)	a(s, t, n)e123n ds I dt. 
0	0	nEZ 

Thus A* = Op(a) with a*(t,s,n) = a(s,t,—n). Especially, A(s,—n) is an amplitude 
of A, so that by (9) asymptotic expansion (14) follows. To get expansion (15) we apply 
(8) on (14) 1
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Proof of Theorem 4.5. Of course, by going through the procedure 

	

U BA( t , n) =	[BA(eI?in)j 

= e 27Tth1 B(aA (t , n)eI27tI) 

	

= e 27Tt1 B	&A(m,n)ct(m+I) 
m EZ 

JB( t , m + n)&i(m,n)eI27tm 
mEZ 

one gets the exact symbol of the composition of the periodic pseudodifferential operators. 
Although this representation cannot be used effectively to approximate BA, it yields an 
asymptotic expansion. As in the proof of Theorem 4.2, the Taylor formula is applied. 

	

aBA( t , n ) =	o(t,m+ri)&A(ra,n)e27rtm 
m EZ

[N-I	 1 1	 Y j (QB(tn)m2+RN(tnm)j aA(m,n)ez2m 
mEZ [jo 
N-I	r 1 

	

=	(_) 
aB(tn)j	aA(m,n)me'2' m 

j=O	L	 ynEZ 

+ .	RN(t,n,m)&A(rn,n)el27Im 
mEZ . 

N-i	I 

	

=	L()
2t,] OA(t,fl)+E1V(t,fl) 

an 

where
EN(t,n) = E RN(t,n,m)ô(rn,n)e2m 

M 

The pointwise product of symbols of degree a and 0 is a symbol of degree a +,3, so 
that the first term of the expansion, aH(t,n)aA(t,n), is in We only need to prove 
that the error term EN(t,n) is well-behaved, which means that EN E Ea+13_N or 

=	RN(t,n,rn)&A(m,n)eI2lnim 
mEZ 

<CjkN (1 + 

Indeed, by inequality (20) we have with any r E R 

3A1kA&A(mn)et27rt.m <Ck	(1 + ImI)JAr (1 + In
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The error terrn of the Taylor series, inequality (2) for 0B, and Peetre inequality (22) 
give

I(YRa 	n,	c3,,, m1' max 3JRON+kRJ (t n + Om) 
9 E [0 1] 

m max [c Nk5) (1 + I n + 
)R NOE[0,1] 

C ,kN (1 + ImI)	_NkJd(l.+ InI)Ic,

and consequently 

5 5 I R RN(t,n,m)	 + ImI) N + _N_kd(l + lriN_ 

Take in + j'	j and kA + kR = k. By the discrete Leibniz formula 

'Lk [u(n)(n)j =
	( 	

[ 3 u(n)]	'v(n + j) 

it holds that 

I
'ô'AEN(t,n)

	

	Cjr (1 + j) a	Nk	(1 + ImI)21+3+k_r 
t 

m EZ 

<CjkN (1 + 

if r is chosen large enough. Hence EN e E,+,3—N, and thus formula (19) is valid. 
Formula (18) is obtained by applying (8) on (19)1 
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