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Abstract. In differential geometry several differential equation systems are known which allow 
the determination of the Riemannian metric from the curvature tensor in normal coordinates. 
We consider two of such differential equation systems. The first system used by Gunther [8] 
yields a power series of the metric the coefficients of which depend on the covariant derivatives 
of the curvature tensor symmetrized in a certain manner. The second system, the so-called 
llcrglotz relations [9], leads to a power series of the metric depending on symmetrized partial 
derivatives of the curvature tensor. 

We determine a left ideal of the group ring C[81+4[ of the symmetric group Sr+4 which is 
associated with the partial derivatives 0' ) R of the curvature tensor H of order rand construct a 
decomposition of this left ideal into three minimal left ideals using Young symmetrizers and the 
Littlewood-Richardson rule. Exactly one of these minimal left ideals characterizes the so-called 
essential part of (9( ' ) R on which the metric really depends via the Herglotz relations. We give 
examples of metrics with and without a non-essential part of (') H. Applying our results to the 
covariant derivatives of the curvature tensor we can show that the algebra of tensor polynomials 
1?. generated by V ( , . . . Vi , ) R. 1 and the algebra 1' generated by V ( ,, . . . V, RIkIj,+1+2), 
fulfil R. = 
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Ilerqlotz relations, power series method, minimal left ideals, Young symrnetrizers, 
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1. Introduction 
Several investigations in differential geometry and general relativity theory make use 
of certain differential equation systeiris which allow to determine a pseudo-Riemannian 
metric from its Riemannian curvature tensor in normal coordinates. P. Gunther has 
established the following construction of a differential equation system of such a type 
in [8: Appendix I]. 

Let (M,g) be an n-diinciisional analytic pseudo-Riemannian manifold with metric 
g and Levi-Civita coiinectioii V, and let {U, x} be a normal coordinate system of (M, g) 
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around the centre P0 E U ç M, i.e. x(Po) = 0. If we choose an orthonormal basis 
{v1,... , v,, } c M 0 of the tangent space Mp0 of the manifold M in the point Po and 
carry out a parallel transport of this basis along every geodesic starting in P0 , we obtain 
n smooth vector fields {X 1 .....X,} on a suitable open neighbourhood U' c U of Po 
which form an n-frame in every point of U'. We denote by TA, ...A, := T(XA I ,. .. , XA,.) 
the coordinates of a covariant tensor field T of order r with respect to {X 1 ,.. . ,X,,} 
and by Ti , , = T(a1 .....Di ,) the coordinates of the same tensor field with respect to 
the basis vector fields O := O/Dx l of the normal coordinate system {U,x}. Then there 
hold true the relations

AB = o U3 gn	,	9AB = JA UjB9I )	 (1.1) 

with the transformation matrices' a := (at) and a := (ak) defined by 

U, = a'XA	,	XA = a4U, 

The coordinates 9AB in (1.1) fulfil

1 
gAB = const =	±1 if A=B

0 if A B	 (1.2) 

where the number of +1 and —1 in (1.2) is given by the signature of the metric g. 
P. Gunther has shown in [8: Appendix I} that the matrix a satisfies on an open 

neighbourhood of Pc, the relation2) 

XX(a) + X(a) + a Q = 0 .	 (1.3)

Here X denotes the vector field X := x 1 U, formed from the normal coordinates x'. 
Further, 9 is an analytic (n xn)- matrix- valued function with power series 9 =	Qa 
the summands Q of which are obtained by the equation 9(1) = a'(Po) . . a(Po) 
from analytic (n x n)-matrices R(j) which depend on the covariant derivatives of the 
Riemannian curvature tensor' ) R,kf according to 

R(2) := (Ra iz2b (PO ) TI1XI2)	 (1.4) 

R(l) :	 ( V,1 . . . V, 2 Ra1	,,b)( PO) x" .	x")
	 I > 3. (1.5)

Often, investigations in differential geometry use the algebra 

(g,. g '. R ijkl i V,, . . . 17 1 R,, r> 1)	 (1.6) 

1)The matrix (a) can he regarded as the matrix of the parallel transport along the family 
of geodesics, described above, with respect to the basis vector fields A. A vector field Z which 
is parallel along this family of geodesics fulfils Z = Z A XA = (zAa)D, with zA = const. 

2) Important results on relations of type (1.3) have been published by P. Gunther in [7). 
' We use the convention Rijk l = D,F2 k - U,F k + Fl I, - 13171k with the connection coef- 

k	1	Ii ficients F,, = g (U.g2 i + (9g,i - U1q,3).
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of all such tensor expressions which are complex linear combinations of expressions 
formed from the tensor coordinates in ( ... ) by arbitrary multiplications and index con-
tractions. Taking into account the so-called Ricci identities for the Riemannian curvature 
tensor

V(aVbJVi i . . . VirR)i ... j4 = -	rncV1, . . . Vm, . . . 

-	 . . . 

we see that the algebra 1?. is generated already from gjj,	, R 1,,, and the symmetrized
covariant derivatives of the curvature tensor, 

= (q3,g',R3k,; V (1 ...V ,) R kl ,r21) ,	(1.7)

because the Ricci identities yield 

• . .	 =
+ terms with covariant derivatives of R of order r' < r - 2 

(We denote by ( ... ) or [ ... ] the symmetrization or anti-symmetrization, respectively.) 
Considering (1.5) we find out that the analytic matrix function Q in (1.3) depends 

only on the stronger symmetrized covariant derivatives 

Vi,. 

of the curvature tensor which lie iii the algebra 

1?! := (gj,	V(, ... V R 1a	,+2)b, r > 0)	 (1.8) 

formed from the generating tensor coordinates by the same operations like R.. (The 
notation jal means that the index a is excluded from the symmetrization.) 

Obviously, 1?! is a subalgebra of 1. Now the question arises whether the algebra 
7Z is equal to the algebra 1. We show the equality of these two algebras by considering 
a more general situation. 

Besides (1.3), another differential equation system allowing the calculation of the 
Riemannian metric from the curvature tensor in normal coordinates is given by the 
so-called Herglotz relations 1 91 which we describe in Section 2. The Herglotz relations 
are non-linear differential equations and yield power series of the metric which are 
determined by the symmetrized partial derivatives of the curvature tensor 

D, R1c+,+2)6(P0) 

The partial derivatives of the curvature tensor O, . . . 5 , R.ijkl satisfy the same symmetry 
properties like V ( , . . . V	with the exception of the second Bianchi identity 

+ VI?J ,L kj + VR,1 ki = 0
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such that the situation given by the Herglotz relations is algebraically more general than 
the situation in the case of (1.3). 

Using the representation theory of the symmetric group Sr, we can clear up the 
connection between ô, . . . ORkl and .. . aR IaIj +i j 2 )b • The partial derivatives a

il • . . ô, Rijkl induce group ring elements which lie in the direct sum 

J(r) e 1(r) 

of three minimal left ideals of C [ S +41 and the transition to the symmetrized partial 
derivatives ô . . . ôj, R lOI +t j r+2 )b corresponds to a linear mapping 

J(r) eJ(r)e i(r) J(r) - e , ff	, eEC[Sr]

which maps J(r) (D j( ,) to 0. In the case of V (j , . . . V)Rkl and V (j1 .. . VirRIaIIr+i+2)b 
only the ideals J(r) arid J() e are associated with these covariant derivatives. The 
inverse mapping J(r) C * J(r) gives us a relation between V ( , . . . V ) R1k , and 

which yields 7 = 1Z'. 

2. The Herglotz relations 

In this section we give a short summary of the paper [9] in which G. Herglotz states his 
method of determination of a Riemannian metric from the coordinates of the Rieman-
nian curvature tensor in normal coordinates. 

Proposition 2.1. Let (M,g) be an n-dimensional pseudo-Riemannian manifold 
with metric g and Levi-Civita connection V, and let {U,x} be a system of normal 
coordinates on a normal neighbourhood U c M with centre Po E U, i.e. x(Po) 0. If 
we form the differential operator X := x'3 1 and the (n x n)-matrices 

C := (g 3 ) , K := ( R jklj x k x t )	,	Z row index , j coluriin index 
from the coordinates g , R1k1 of the metric g and the Riemannian curvature tensor R 
with respect to {U, x}, then on U there holds true the so-called Herglotz relation') 

XX(G) + X(G) - X(G) . C 1 . X(G) = —2K .	 (2.1) 

Now we assume the qj to be analytic functions on U and make use of the facts that 
O gk( Po) = 0 in normal coordinates { U, x} and that the metric coordinates g 1 (Po) in 
P0 may be transformed into 

G(P0 )	F := (Iiag(1.. .. ,1,-1...... —1)	 (2.2) 

by an allowed linear coordinate transformation. The numbers of 1 and -1 in the diagonal 
matrix F are determined by time signature of the metric g. Thus we can write C as a 
mniatrix-valued power series

C = F(E - F)	, F 
=

r 	 (2.3) 

The dot "" denotes time iiiatrix I)ro(it:t in (2.1).
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where E denotes the unit matrix and the Fk are matrix-valued homogeneous polynomials 
of order k. Equations (2.1) and (2.3) lead to 

xx(r)+x(r)+x(n(E-r)_1 .x(r) = 2F•K .	(2.4) 

If we use the formulas

X(Fk) = kFk
xx(rk) = k2 F,, 

the Frobenius series
cc 

-	

G' (E r) - 'F = (E+r')F 

the formula	 - -	-	-	- 

	

X(F) . (E - F) - ' . X(F) =	kI Fk (E F)' . F, 
k1=2 

cc 

	

=	 111k	I,	r1,, 
m4 2<k<[] ,++tk=m 

and the power series development of K 

K = F Kk	 (2.5) 

with matrix-valued homogeneous polynomials Kk of order k, then we obtain the recur-
sive relations 

rn = 2,3:	7 ñ(m + 1) Fm = 2 F Km	 (2.6) 

m>4: m(m+1)Fm = 2FKm 

In [9] G. Herglotz has proved the following facts about a metric g which is determined 
by (2.6). 

Theorem 2.1. Let {U,x} be a chart of an n-dimensional differentiable manifold 
M with x(Po) = 0 for P0 E U. Further let Kijkl be the coordinates of a covariant tensor 
field of order 4 which are analytic functions with respect to {U,x} and which possess the 
symmetry properties of the Riemannian curvature tensor, i.e. Kijkl satisfies 

	

Kijkl = Ijtkt =	Rkl	 (2.7) 

and the first Bianchi identity

	

Kijkl + 'Ik&j + Rilk = 0 .	 (2.8) 

If we consider the Herglotz-elatiori (2.1) with a- right-hand side K := (Kk1x 3 x) and 
search for a solution C by means of an ansatz (2.3), then there hold true:
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1. The equations (2.6) yield a uniquely determined formal power series solution 
(2.3) of (2-1). 

2. The convergence of this formal power series solution (2.3) follows from the con-
vergence of the power series K on a suitable open neighbourhood U' c U of Po 
by means of a comparison method. 

3. The Riemannian metric gjj given by the calculated solution of (2.1) fulfils 

(gj -	 = 0 

that means the coordinates x' are normal coordinates with respect to the con-
structed metric gj j if we restrict us to a star-shaped open neighbourhood U' 1 c U' 
of P0 . The centre of these normal coordinates is P0. 

If we calculate the Riemanniaii curvature tensor R11k1 of the metric gij which we 
have determined according to Theorem 2.1, then the Herglotz relations (2.1) hold true 
with Rijkl too such that

RijklxJxk = RljklxJxk	 (2.9) 

follows. But we will have R,1k, 7^ ' j kI in general. In the next sections we work out a 
characterization of the difference between R 3 kI and Kkj. 

3. The decomposition of the partial derivatives of the 
Riemannian curvature tensor 

Although a motive of our investigations arises from techniques of differential geometry 
which use normal coordinates, the considerations of this paper do not require normal 
coordinates. If a special coordinate system is riot explicitely defined, we assume always 
that our coordinates belong to allarbitrary chart {U, x} of a differentiable manifold M. 

In the following, we use statements about the connection between covariant tensors 
of order r and the group ring C[Sr] of the symmetric group Sr which we have given in 
[5].

Let T be a covariant complex-valued tensor on a vector space V on C and b := 
v ] , . . ,VI) C V an arbitrary subset of i vectors from V. Then  and b induce a 

complex-valued function Tb on the symmetric group Sr 

Tb : Sr	C	1	Tb :1)	.Tô(p)	T(v(l),... 

which we will identify with the group ring element 
pES Tb (p)p denoted by Tb too. If 

T is a differentiable tensor field on a differentiable manifold M, then we obtain a group 
ring element T,, for every subset b = ........ . v} C Alp of the tangent space Mp of any 
Poin t P E M. 

Time action of a group ring element a = EPCS, a(p)p E C[Sr] on a tensor or a tensor 
field T is defined by 

a T •. aT	(aT),	:=	a(p)T, , (,) ... j,( 
JES.
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Further, we use the mapping 

* : C[Sr] _4 C[Sr]	,	a -	a(p)p -* a' :=	a(p)p1 
pES	 pES, 

Then there holds true the relation' ) (5] 

(aT) 6 = T6 a' .	 (3.1)

The power series 2)

Rijkl= . . . 5R,(P0 ) x" . . .	 (3.2) 

of the Riemannian curvature tensor R around P0 E U is determined by the partial 
derivatives

(5 0 R),	 : = ai5. . . 19 +4 R 1 12 1 3 24 ,	R	(3.3) 

of R in P E U. Since we will not make any coordinate transformation,' we can consider 
the ( 5( " ) R), 21314,5 ,, +4 as the coordinates of a 'covariant tensor field' of order r + 4 
on U with respect to the basis {O,. .. ,O,,} of the given chart {U,x}. Now we will 
investigate the left ideals of -the group ring C[Sr+4] in which the group ring elements 
(3( r)R) 6 lie which correspond to the &"n. 

Let r > 1. We consider the stability subgroups 

S4 := (Sr+ 4 ) 5 ,,.., r+4	I	 r : (Sr+4 ) 14	 (34)

of Sr+4 which fix the numbers 5,... , r + 4 or 1, ... , 4, respectively. We denote by 

	

the group ring elements ' E C[S]'	r E C[Sr] which are obtained from the Young
symmetrizers of the standard tableaux 3) 

13 
24	12...(r-1)r	 (3.5) 

Of S4 , Sr by means of the natural embeddings S4 . Sr+4 and Sr . Sr+4 

(1...4\	(1...45...r+4\ 
ii...i45...r+4) 

U
(1 ... r\	(1...4 5	...r+4 
I"	I	I

\1... 4j i '+4 ... jr+4 

	

'We use the convention (p o q)	i - (p o q)(i)	p(q(i)) for the multiplication of
permutations. 

2) In (3.2) we add up on the indices i i ,.. . , i r according to Einstein's summation convention. 
3) About Young symmetrizers and Young tableaux see, for instance, [2, 5, 6, 10, 11, 13, 14, 

15, 16, 17]. We use the definition 1" qEV, x(q ) p a q of a Young symmetrizer of a 
Young tableau t.' Here'flt, Vt are the groups of the horizontal and vertical permutations oft 
and (q) denotes the signature of the permutation q.
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Obviously, we have

=

	

(id +(13)) (id +(24)) (id —(1 2)) . (id -_(34))	(3.6) 

	

1:= 	0	 (3.7) 
ØES, 

where we have used the cyclic form of the permutations in (3.6). If r = 0, we consider 
only $ = S4. 

Proposition 3.1. Let {U,x} be a chart and r > 1. Then the group ring element 
(a( ' ) R) E C [Sr+4) is contained in the left ideal 

1(r) := C [S +4]	 (3.8) 

Of C ISr+41 for every set of vectors b = {v i ,. . . , Vr+4} C Mp , P E U. If r = 0, then 
every (5°R)b = Rb e C[S4 ] lies in 

1(0) := C[S4 ] .	.	 (3.9) 

Proof. Let r > 1. Obviously, the symmetry of (a(')R),234 1 5	+4	1 5 . . . 
and (3.7) yield

.(a(r)R) =	r(ô'R) = r! 3( r)R .	 (3.10) 

From equation (3.6) we obtain ,*(8( T) R) as a sum of 16 summands for r > 0. Then we 
find

= 12a'R	 (3.11)

by expressing all summands of (a( ' ) R) by the two terms 

	

(	)111213Z4,lS...$,.4.4 

using the identities (2.7) and (2.8). Thus there follows from (3.1), (3.10) and (3.11) for 
r>1

12r! (OR)b = (..(O(r)R)) = a(r)R) y Yr 

and for r = 0
12R,, = ('R)b = R6 ' U 

An other proof of (3.11) follows from [6: Theorem 2.1 and remark at page 1162] (see 
Section 6). 

Let be r > 1. We consider the representations 

$4 -* GL(C[S4] . )	(f)	f	 (3.12) 

jr	GL(C[r] r)	j)	i	 (3.13) 

S4	cL((04] )®(C[r] r)) ,-YP-0(j-j) := . Jj (3.14) 

	

/3:$r4 _*GL(C[Sr+4}'.!r) , 43,,(f):=p.f .	(3.15)
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Obviously, the subgroup H := S4 ^,. C Sr+ 4 is the direct product of the subgroups 
S4 , Sr c S,... The tensor product in (3.14) is realized by the group ring multiplication 
(11)	I J. This tensor product fulfils 

C[S4r]r=(C[S4]®C[SrDr=(CES4])ø(C[Sr]!r) 

The representation -y is the outer tensor product of the representations & , a (i.e. 

-y = &	a in the notation of [111) since there holds true 

f) = (p f) . (p 1) = a . (f) . a(f) 

Further, the representations &, d are irreducible because their representation spaces are 
left ideals generated by Young symmetrizers. Now the following lemma says that the 
representation 3 is induced by the representation -y (i.e. 3 = y I Sr+4). 

Lemma 3.-1. Let G be-a finite group, H c C a subgroup of C_and_a E C[H] an --
element of the group ring of H. If we consider the representations 

/3HG—GL(V) , 
a: H -* GL(W) , a,(w) := h . w 

with the representation spaces V := C[G] a , W := C[H] a, then the representation /3 
is induced by the representation a, i.e. 0 = a T G. 

Proof. Obviously, there holds true f3h(W) c W for all h E H. We choose a system 
of representatives 'R. of the left cosets p H of C relative to H. Let Wa := £{a} be the 
1-dimensional vector space on C spanned by a. Then we can write 

V=gWa=> 1phWa 1p.W=0p(W) 
gEG	pE1hEH	 pE1	pE1 

The last calculation step is correct because p W ç p C[H] = £{p . H} for all p e 
and since C[C]	pE1Z £{p . H} I 

Obviously, (3.14) and (3.15) satisfy the assumptions of Lemma 3.1 since 

r E ((C[ 4 1 )®(C[Sr1r))	C[ 4	r]r 

Thus we obtain 0 = -y I Sr+4 = (& # a) i Sr+4. Now we will determine a decompo-
sition of the left ideal 1( r) into a direct sum of minimal left ideals (or, equivalently, a 
decomposition of /3 into irreducible representations). 

Because the representations &, ci are irreducible we can determine the Young frames 
of the irreducible subrepresentations in the decomposition of 0 from the Young frames 
(3.5) of &, a by means of the Littlewood-Richardson rule (see [13: pp. 94], [11: Vol. 1, 
p. 841, [14: pp. 681 and [61). From (3.5) the Littlewood- Richardson rule yields exactly 
the three frames

r+1 
r-4-2	 --	-	 -' 

	

DO a a ... a	DO a a ... a 
DDaa ... a	

,	 ,	00 
o o	

a	 a a 

Thus we have
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Proposition 3.2. Let r 2. Then the representation 0 according to (3.15) can be 
decomposed in exactly three mutually inequivalent irreducible subrepresentations which 
are characterized by the partitions 

(r + 2 2) (r + 1 2 1), (r 2 2) F- r + 4 .	 (3.16) 

In the case r - 1 we have only two irreducible subrepresentations given by the partitions 

(3 2), (2 2 1) F- 5 .	 (3.17) 

Corollary 3.1. From Proposition 3.2 there follows: 

• For r > 2 the left ideal 1(r) can be decomposed into three mutually inequivalent 
minimal left ideals the equivalence classes of which are characterized by (3.16). 

• For r = 1 the left ideal 1(i) can be decomposed into two mutually inequivalent 
minimal left ideals the equivalence classes of which arc characterized by (3.17). 

• The left ideal 1(0) is minimal since it is generated by a Young symmetrizer. 

The minimal left subideal of 1(r) corresponding to the partition (r + 2 2) can be 
explicitly determined. 

Proposition 3.3. Let r > 0. Then the Young symmetrizer yj,. E C[Sr+41 of the 
standard tableau

1 3	 1 3 5 6 ... (r+4) 
2 4	it7.	

2 4	 r > 1	(3.18) 

generates that minimal left subideal J() of 1(r) which corresponds to the partition 
(r+2 2) ofr+4. 

Proof. A proof is necessary only for r > 1. We show that there is a c = const 54 0 
such that

- Ir = cy t , .	 (3.19) 

Then there follows from (3.19) that the minimal left ideal K(r) C[Sr+4] - y is a 
subideal of 1(r) . But because the decomposition of 1( r) into a direct sum of minimal 
left ideals contains exactly one minimal left ideal J(r) corresponding to the partition 
(r + 2 2), the ideal '(r) has to coincide with that ideal J(r)-

Let us prove (3.19). We denote by P1, .1k) the subgroup of S 4 consisting of all 
those permutations frorri Sr+ 4 which fix all numbers in { 1,.. . , r +41 \ { i 1 ,. .. , ik}. Now 
let 7-I, be the group of the horizontal permutations of the tableaux tr and let 7?. be a 
system of representatives of the left cosets of P{1,3,5,6 ,... r+4} relative to P{i, s } . Then we 
can write

=	s - (id + (13)) - (id + (24)) 
PEW,,	 sE1Z
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and

lit, =	s (id + (13)) . (id + (24)) . (id - (12)) . (id - (34)) 
sE1 

lit, =	 .	 ( 3.20) 
,sEIZ 

Since , . =	s with a constant i 0, we obtain from (3.20) 

lit,. YYr =	SY°1JYr = /1	 = IL l/i, !,r	(3.21) 
sE 7Z	 sE 

Now let 1 be a system of representatives of the left cosets of P{1,3,5,6.....r+4} relative to 
r+4} Then there holds 

P =	Yr (id + (24)) = (id + (24)). 
pE7-I,,	jE1 

Denoting the group of vertical permutations of tr by V1 , and taking into account that 
q =q r for aliqE V1 ,, we can write 

Yir =	ii	1 x( q ) p q = (id + (24)).	.	x( q ) .i q 

PEW,, qEV,, 

Then this relation and (3.21) yield 

lit,	Yr =	(id + (24)) .	x(q)S q Yr Yr 
iE jZ ?' 

= IL r! (id +(24)) . 12	x(q)qr 
iEt q E V, 

= ir!y 1, U 

4. The essential part of the partial derivatives of the 
Riemannian curvature tensor 

Since the right-hand side of the Herglotz relation is the matrix with elements Rjklx3xk, 
the Riemannian metric g does not depend on the partial derivatives ai , .. . 5,Rjkj(Po) 
of the Riemannian curvature tensor but on the symmetrized partial derivatives 

(a( r) R)	2&3t45.1,+4	:=	. . . O11+4 R11 1a2t3)z4	 (4.1) 

:= R 1 (I213)14	 (4.2) 

of the curvature tensor at the centre P0 of the normal neighbourhood U. 
Let now {U, x} be an arbitrary chart which do not have to be a normal coordinate 

system. In this section we investigate the left ideal of C[Sr+4] which contains the group 
ring elements (ô( r)R) b induced by 5(r)R and a vector set b= {VI,. . . Vr+4} C Mp, 
P e U.
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Lemma 4.1. Let be r > 0. We denote by C the subgroup of Sr+4 which fixes the 
numbers 1 and 4 and by e the sum of all elements of C, 

	

C := P{2,35 ..., r-4-4)	, E := r C.	 (4.3)
cEC 

Then the group ring element (ô (r) J1) induced by a(r)k and  set b = {v 1 ,... ,Vr+4} C 
Mp of vectors of the tangent space Mp lies in the left ideal 1 (r) 1(r) e of C[Sr+4] for 
every vector set b. 

Proof. Because there holds true 3( ' )J = e(5(r)R)/(r + 2)! and	= e we obtain
the assertion from 

(a(r) f?) —	I	((a(')R)) -	1	(ô(r)R) . f U 

We consider the decomposition of 1(r) into minimal left ideals 

	

1(r) = J(r)	J(r)	(r)	 (4.4) 

according to Corollary 3.1. Let the correspondence between the minimal left ideals and 
their characterizing partitions be

(r)	(r+2 2), 

J(r)	(r+1 21), 

J( r)	( r 2 2) 

If r	1, then 3(r) does not occur in (4.4). 
From (4.4) there follows a decomposition of 1(r) 

	

1(r) = ( J(r) . e)	(3(r) C ) ED (3(r) . e)	 (4.5) 

which is certainly a direct sum since the minimal left ideals are mutually inequivalent. 
Now the question arises whether one of the ideals ( 1(r) . C ), ( J(r) €) , P(r) C) vanishes. 

Theorem 4.1. For r > 0 there holds true 

	

1(r) = J(r) C	C (Sr+41 Yt. C 

that means all other minimal left ideals in (4.4) are mapped to 0 by f '— f. 

	

Proof. Step 1 : First we show that lit.	0. We use the notations tr, 'h, , Vt, of 
Section 3. Denoting C' P{1,3} if r = 0, C' P{13,5 r+4} if r > 1 and taking into 
account C' = ( 12) . C (12) we can write for the sum of the horizontal permutations of 
the tableaux ir (3.18) 

p = E s + E s . (24) = (12).e.(12).(id+(24)) 
pEl(,,	sEC'	sEC
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Because (12) is a vertical permutation of t,., there follows on the other hand 

ye,. -(12)	:i: >1	(q ) p q (12) = x(( l 2)) :i: :i: x(q ) p q = 

	

qEV pE7-I	 .	qEVt. p0., 

Thus we obtain

• y t , =	 x(q) yt, p q 

qEVt PEW,, 

= y .(12).e.(12) (id +(24))
qEV, 

= —yj c . (12) . (id+(24))	x(q)q	 (4.6) 
-	 qEV,. 

But this yields y	e 54 0 since y	y t, 54 0. Consequently, the ideal J(r)	has to occur
in the decomposition (4.5). 

If r = 0, Theorem 4.1 follows from 1( 0) = J( 0). Thus we can assume r > 1 in the 
following. 

Step 2: Using the hook length formula (see [11: Vol I, p. 811, [1: pp. 101] and [6]) 
we can calculate the dimensions of the left ideals J(r), J(r), J(r) from the Young frames 
of these ideals or, equivalently, from the partitions (3.16). The results are 

(r + 4)(r + 1) (4.7) r >0	=	dr	dimJ(r) =	2 

r 2 1	=	dr := dimf(r) = 
(r+4)(r+2)r
 3	

,	 (4.8)

(r + 4)(r + 3)r(r — 1) 
T 2 2	dr	dimf(r) =	 12	

.	(4.9) 

Furthermore, the left ideal L(r) : C[Sr+4] e has the dimension 

	

lr := dim L(r) = (r + 4)(r + 3) .	 (4.10)

Consider a system of representatives R of the left cosets of Sr+4 relative to C. Then 
B	{p	I p E 1?.} is a system of generating vectors of L(r). But on the other hand B
is a system of linearly independent vectors since the vectors p e lie in pairwise distinct 
cosets. Thus B has  basis of JR1 = (r + 4)(r + 3) vectors. 

The left ideal 1(r) is a subideal of L(r) such that dim 1(r) dim L ( ,) . Further, the 
-linear mapping I '- 1 c maps a minimal left ideal either onto 0 or onto an equi-
valent minimal left ideal. In Table 1 we have listed the first values of the dimensions 
dr, dr, dr, 1r• Since these dimensions are monotonically increasing functions of r and 
1(r) has a subideal of dimension dr for all r 2 1, we read from Table 1 that for r> 4 
subideals of dimensions dr, dr can not occur in 1(r) Moreover, for r = 3 a subideal of 

1( r) of dimension d3 = 35 is impossible. 
Step 5: We handle the remaining cases of the left ideals J, J(2) , 3(2), 3(3) by a
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Table 1. The dimensions dr, dr, 'Ir, 1, for low r. 

r	d,.	d,.	1r	lr 

1	5 5 / 20 
2	9 16 5 30 
3	14 35 21 42 
4	20 64 56 56 
5	27 105 120 72

computer calculation applying our Mathematica package PERMS [4]. To determine gen-
erating idempotents of these left ideals we consider the Young standard tableaux 

13	136	13	137 
2 4 	2 4	,	2 4	,	2 4	.	 (4.11) 
5	5	56	56 

Let y run through the set of the four Young symmetrizers of the tableaux (4.11). Then 
we find by means of PERMS 

YYYr O and YlIYrY54O 

for all those four Young symmetrizers y. There follows from the second of these relations 
that y . is an essentially idempotent element generating a minimal left subideal 
of 1(r) of the equivalence class of y. But since 1(r) has at most one subideal from the 
equivalence class of y, these essentially ideinpotent elements are generating elements of 
the left ideals J( i ), J(2) , J(2) , J(3) . Now another calculation with PERMS yields 

YYYT C = 0 

for all y. Thus the ideals (J(i) .	(J 2 . e), (/(2) €), (J	. €) vanish g 

Definition 4.1. Let yt. be the Young symmetrizer of the standard tableau (3.18). 
We call y((9( ' R) the essential part of 9(r) R and a(r) R - y(ô(T)R) the non-essential 
part of a(r) R 

Obviously, the mapping I	f e is an isomorphism of the minimal left ideals J(r)
and (J(r) . c), describing the equivalence of these ideals. From this fact there follows 

a( r)Jl = const f(y(3(r)R)) , const 54 0 .	 (4.12)

We finish this section with a formula for the inverse of this mapping. 
Proposition 4.1. Let r > 0 and denote ye,. the Young symmetrizer of the Young 

tableau (3.18) and e the group ring element according to (4.3). Let further be 2) 

(12) (id +(24)) . ( id —(12)) . ( Id —(34)) .	 (4.13) 

' This situation is a special case of Proposition 3.1 in [5]. 
2) In the cyclic form of a permutation we write the image of a number left from the inverse 

image.
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Then there holds true 

	

• C 17 =	 with	hr := 2(r + 3)(r + 2)r!	(4.14) 

such that the mapping J(r)	• J(r), h .. _(1/pr)h . is the inverse of the mapping 
J(r)	1( r) C. f	f	: From (4.13) , (4.14) there follows 

(r+2)! (Y (3(r)
	

'+4 = 

+(O(r) f0ili2i3i4i5. .+4 - 0(r)	 - (3(r))1 2
2 4 I 3 I 5 ... 1r+4 (4.15) 

+(3(r)i),2O,4,3,,	t	1I4tl3t2I5 ... l,4 

	

(0(r)).	+ 

Proof. Equation (4.14) follows from (4.6), defi nition (4.13), equation (4.7) and 

YirYi, = hr Ytr	with	hr	(r +4)! . dr := dim J(r) .	(4.16)
dr 

The formula for hr in (4.16) is given, e.g., in [1: p. 103]. 
We denote by c, ê, i) the generating idempotents of J(r), J(r), 1(r) corresponding to 

the decomposition (4.4) of 1( r). These iclempotents fulfil 

Furthermore, we can write for every vector set b = {v i , .... V	} C MP of the tangent
Space Mp

	

(3(') R)b = (0(r) R.)b	+ (0(r) R)b . ë + (0 R)	.	.	(4.17) 

Then using equation (4.14). (4.17) and e (0( 7 R) = (r + 2)! 0'	we obtain 

= (OR)b .	= _(0(r) R) b . C C 17 = 
_(a(r) R) E. . 

=	(((0(r)R))1l = _(T+2)!(0(r))b.17 

= —(' + 2)! (11(0(r) ))b 

and coil seqiieiitly	
(0(r) fl) = -( i + 2)! .(5(r) 

This together with 

= _!(/+(12)+(34)_(14)_(12)(34)+(124)+(143)(1243) 

yields (4.1) 0
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5. The occurrence of the non-essential part of the partial 
derivatives of the Riemannian curvature tensor 

In this section we discuss the question whether examples of metrics can be found for 
which the (ô'R)b of the partial derivatives of the curvature tensor possesses non-
vanishing parts lying at least in one of the left ideals J(r) or J(r) . First we give a case 
for which he (O( r)R) 6 are contained exclusively in J(r). 

Proposition 5.1. We assume that the Riemannian metric g is decomposable into 
a sum of 2-dimensional metrics (!) , z = 1,... i m, that means around every point P0 of 
the underlying manifold M a chart {U,x} can be found such that the metric takes the 
form

ds2 = g dadfl =	 (5.1) 

	

a, fl E {1,. . . , 2m}	 E {2z - 1.2z} 

Then there holds true with respect to {U,x} 

(8(r)R) E	= C [Sr]	 (5.2) 

for r 2 1 and every h = ( Vt,. .. ,	} C Mp P E U. In particular, a 2-dimensional 
Riemannian manifold fulfils (5.2). 

Proof. If we calculate the Christoffel symbols and the coordinates of the curvature 
tensor and its partial derivatives for a decomposable metric (5.1), we obtain that at 
most those coordinates 

I,(x) ,	RA,(x) , ôaR,c A , t,(X) ,	 , 

do not vanish, the indices of which lie in one of the sets {2i - 1,2i}, i.e. 

ti C {2i - 1, 2z} ,	i = 1.. . . rn 

As in the proof of Proposition 4.1 we denote by e, ë, ê the generating idempotents of 
J(r), J(r), J(r) corresponding to the decomposition (4.4) of 1( r ) . The left ideal J(r ) belongs 
to the equivalence class of minimal left ideals of the partition A = ( r + 1 2 1). The left 
ideal

	

'A :=	C[Sr] yt	 (5.3) 
tEST, 

contains all minimal left ideals of the class of A (see, e.g., [1: p.58 and p.102]). In (5.3) 
ST,. denotes the set of all standard tableaux of the partition A and yt is the Young 
symmetrizer of the standard tableau t. Since ë E 'A, we can write 

=	-, - Y	 (5.4) 
t C ST,,
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with certain group ring elements Xj E C(Sr]. 
Now, equation (5.4) yields

= :i: y(x(O'R)) 
I ES TA 

r(ô ( ' ) R) is a linear combination of certain coordinates of I9( ' ) R with permuted indices. 
The application of y to X; (a(r) R) brings an anti-symmetrization of three indices about 
every summand of x(5( r)R) because every standard tableaux t E STA has three rows. 
But a non-vanishing coordinate of 0R can not have more than two values among its 
indices, so y(x(5(T)fl)) = 0 for all t E S7. Consequently, there follows ê(ô ( 'R) = 0 
and (O(r) R) b . ë = 0 for all vector sets b = {v i ,... ,Vr+4} C MP-

	

 

By the same arguments we can show that (a'R)b . é = 0 for all b = {v i , . . . ,	} C 
M1 . Taking into account (4.17), we obtain (a'R)b = (5( r)R) b C E J(r) 

An example of a metric such that (a( T)R) 6 have a part in the ideal J(r) ED J(r) can 
be found in the class of Riemannian manifolds for which the RlJk ,xJx k are polynomials 
in normal coordinates x'. 

Proposition 5.2. Let {U, x} be a chart of a 3-dimensional analytic manifold with 
x(Po) = 0 for a point P0 E U. Consider the Herglotz relations (2.1) with a right-hand 
side

(ic3ia:xk) with	It ukl := 5ii 6 jk - ik j l , 6IJ := {
	

( 5.5) 

If we determine the formal power series solution G of (2.1) to a positive definite metric 
g from (2.6) and choose" an open neighbourhood U' c U of Po E U such that the series 
of G converqes on U' and the chart {U', :c} is a normal coordinate system of the metric 
g, then the Riemannian curvature tensor R of the calculated metric g fulfils 

V r > 1. Vh= {v i . .... vr+ 4 ) C Mp :	(5(r)R)b E J(r) e J(r) .	(5.6) 

Furthermore, there holds (3R),, 0 0 at least for r = 2,4,6 and for suitable chosen 
vector sets 1) = 1 0 1, . . . ,	} c  

Proof. Obviously, the matrix K from (5.5) satisfies 

K . K = • 2 K with I. := + ( x 2 )2 + ( x 3 ) 2 .	 ( 5.7) 

Taking into mnccoliiit (5.7) and F = E = ( 6 j ), K2 = K, Km = 0 for m > 3 we obtain 
froni (2.6)

"2w-fl = 

I,	 K	 m = 1,2.... ..	(5.8) 
C111 = const	,  

I) lbs is 1 ,ossihle on the basis of 'l'heoi'etn 2.1.
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This yields

	

G = E +f(r ) K	 (5.9)

with a convergent power series f(r) for wich a more precise calculation ! ) gives 
6 f(r) = - +	+ th r4 +	- 43 0 r + ...	 (5.10) 

The metric g 3 defined by (5.9) is centrally symmetric and turns into 

ds 2 = dr2 + h(r) {d62 + sin 2 dth 2 } , h(r) := r 2 + r 4 f(r)	(5.11)

if we introduce spherical coordinates 

x'=r cos è sin 8 , x 2 =r sin o sin O	x3=r cos 9 

The non-vanishing Christoffel symbols of a metric (5.11) are 

rr	-	I c'i	 r9	- h'(r)	 - h'(r) 199 - -	r)	 r9 - 25(r)	 rô - 
= —)j h'(r)sin2 8	= —sin9 cos9 ,	= cot  . 00

The only non-vanishing coordinates of the curvature tensor of (5.11) read2) 

h"(r) - h'(7.)2 h'(r)2 Rrre =	 Rroro = Rr 9 r O Sin 20 .	= (	- h(r)) sin28 2	4h(r) 

Now we calculate from (5.1 .0) and (5.11) 

h'(r)2	
+	-	- h(r) = —I.

	

1 8	 +	 (5.12) 4 

Since the coordinate transformation 

Reg,, = aex1ax3a9xIba0xl R 3 k,	i1j,k,1 E {1,2.3} 

produces a multiplication of the coordinates R 3 k, relating to {U',x} by a factor 0, 
we see from (5.12) that the power series of the coordinates R1 3 k, contain homogeneous 
polynomials of orders 2 4 and 6 in the coordinates x 1 ,x 2 ,x3 . From this there follows 
ô( m )R	0 form = 2.4.6. 

But because R Jk ,x3x k is a quadratic polynomial in the coordinates x' we have 
= 0 for m 2 1. Then (4.15) yields y(D(m)R)Ip = 0 and consequently 

(o(m)R)8 E J(m) J(m) for all b = {v. ...,vm+ 4 } C Mp0 and rn 2 1. Furthermore, 
there exist non-vanishing group ring elements (o( m )R) 8 for at least m = 2,4.6 since 
8( m )RI p. -̂ 4 0 for these rn-values 1 

We have done the calculations of (5.9) and (5.12) by means of Mathematica [18]. 
2) The F, and the R A , have been calculated by means of the Mathematica package 

MathTensor ]3].
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Remark 5.1. The metric (5.11), (5.10) possesses a non-constant scalar curvature 
r. Using Mathematica and MathTensor one obtains 

1k,	— 4 h(r) - h'(r) 2 + 4h(r) W'(r) 
r	g g R3k1	 2h(r)2 

and the replacement of h by its power series development, determined from (5.11) and 
(5.10), leads to

5 2	58 4	1213 6 T = —6- 1 r —r — 1--r +0(r7) 35
Consequently, the metric (5.11) is not contained in several classes of Riemannian spaces 
which require a constant scalar curvature r. Obviously, (5.11) is not an Einstein space 
or a space of constant curvature. Furthermore, (5.11) is not a D'Atri space (see [12: p. 
250)); thus the properties of local symmetry and local isotropy are also excluded (see 
[12: p. 251]). Finally, metric (5.11) can not be locally homogeneous, too. 

Remark 5.2. For all dimensions dirnM > 3 there exist also examples (M,g) of 
Riemannian manifolds such that the (OR) b have a part in the ideal J(r) ED For 
instance, such an example is given by a product manifold (M, g) = (M', g') x (M",g") 
which is formed from a 3-dimensional Riemannian manifold (M', g') according to Propo-
sition 5.2 and a flat Riemannian manifold (M", g"). Let us assume that {M', x' } is a nor-
mal coordinate system according to Proposition 5.2 with centre P' E M'. Then we can 
determine a product chart x = x' xx" of M' x M" around any point (P', P") E M' x M" 
which is a normal coordinate system with respect to g. At most the coordinates 

a', 1', j', k', 1' = 1,2,3 
of the curvature tensor do not vanish with respect to x. We see from the proof of 
Proposition 5.2 that the R'k',' contain homogeneous polynomials of orders 2, 4 and 
6 in x1 7 x 2 x 3 such that there holds O(TL)RI(p,p,,) 54 0 for rn = 2,4,6. On the other 
hand, the expressions R j , kj x3x k = R,,,k,j,x1'xk' are quadratic polynomials in the 
coordinates x 1 , x 2 , x 3 , and the expressions R 13t1xjx k vanish if z > 3 or I > 3. Thus we 
obtain 0(ITl)j(,,) = 0 form > 1. But then the same arguments which we used in the 
proof of Proposition 5.2 tell us that (ô( m )R) b E J(m) ED .1(m) for all b = {v j , ..., Vm+4 } C 
(M' x M") ( pp ) and m > 1, and that non-vanishing (5(m)n)8 exist for at least m = 
2,4,6. 

6. The equality of the tensor algebras R. and 

Now we return to the question whether the tensor algebra R (1.6) is equal to the tensor 
algebra R. (1.8). To answer this question, we use the following proposition which follows 
easily from results of [6]. 

Proposition 6.1. Let V > R denote the syininetrized covariant derivative of order 
r of the Riemannian curvature tensor with coordinates V (1 . . . V j r+i ) fl l i .... Further, 

we put VR := R. Then there holds true for r > 0 

=	,. VR,.	= 2 (r + 3) (r + 2)r!	 . ( 6.1)

if y, , is the Young .S7ImmetrZZe r of the standard tableau tr (3.18).
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Proof. We will carry out here those steps of the proof which are not given ex-
plicitely in [6]. 

In the case r = 0 the assertion follows from Proposition 3.1, (3.9). Thus we can 
assume r	1 iii the following. 

Definition 6.1. We denote by T,.V the vector space of complex-valued covariant 
tensors T of order r + 4 on a vector space V over C which have the following properties: 

1. Every T E TV possesses the symmetry properties of the Riemannian curva-
ture tensor relating to the indices 1 1 , . . . , z., i.e. 

=	T12113g4 51+4 =	2l2l4!3I...,.+4 = 

2. Every T E T,. 5 V satisfies the first Bianchi identity relating to the indices i 2 , i 3 . i4 
and the second Bianchi identity relating to the indices i 3 , i 4 , i 5 , i.e. 

= 0 

and
T111223 1 4 1 5-- 1 ,+4 + T ' 2j45 i 3 ... j,.+4 +	 = 0 

3. Every T E 7T,. 8 V is symmetric in z 5 ,. . . , 

Furthermore, we assume that there is given an order relation < in the set of the r + 4 
index names of a T E 7V. Let a < b < c < d < e be the 5 smallest index names. 
Then there is proved in [6: p. 11541: 

Proposition 6.2. Every coordinate T1+4 of a tensor T E TrV with an arbi-
trary arrangement of its index names can be expressed as a linear combination of the 
following types of coordinates:

Ta bcd 

Tabczd	with d < 
Tarbd. 

Tacbid	with d < i 
Tabj c	with c < i < 

The dots represent the ordered sequence of the remaining index names. The number of 
these special coordinates is 

1 + r + 1 + r 
+ 1. 0' +1) = (r + l)(r + 4)	 (6.2) 

Another result. of [6: i. 11621 reads: 

Proposition 6.3. If T is an arbitrary covariant tensor of order r + 4 on V, then 
yT lies iii.
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Let Q C S1+4 be the set of all permutations which transform the ordered sequence of 
the r +4 index names of a covariant tensor T of order r + 4 into the index arrangements 
given in Proposition 6.2. Then there follows from Proposition 6.2 that every T E TV 
satisfies

Vp E Sr+4 : pT =	a1 qT , a, E C	 (6.3) 
qEQ 

with coefficients apq which are independent on T. Taking into account the relation 

Vb= {v1,...,v,-+4} C V , Vp,s E Sr+ 4 : (ST) b (p) = Tb(pos) 

which is a consequence of 

	

(ST)b = Tb•S = >	Tb(p')p'os' =	T(pos)p 

	

p'ES 4	 PESr.f4 

we obtain from (6.3) 

Tb =	E (ST)b(id) s =	 (qT)b(id) .s =	T6(q) Uq	(6.4) 

3ESr 4 4	 sESr+4 gEQ	 qEQ 

where Uq	SESr+4 Usq S. 
Now, let W8(V) := £{T5 I T E Tr, B V , b = {vi,... ,vr+4} C V} be the vector 

subspace of C[Sr+4] generated by all T,, of the tensors T E TBV . Then equation (6.4) 
yields W8 (V) c £{u I q E Q} and dim W8 (V) 5 IQI = (r + 4)(r + 1)/2. 

Proposition 6.3 means that (yT)b E W8 (V) for all subsets b = {vm,.. . ,Vr+4} C 
V. In the following we assume dim V > r + 4. Then there exists a vector set b0 = 

. Vr } C V such that C[Sr+41 is generated by the Tb 0 of all covariant tensors T 
of order r + 4 (see [5: Lemma 2.1]) and consequently the left ideal J(r) = C[Sr+4] 
is spanned by the Tb 0 yt, = (y , T) b0 of all covariant tensors T of order r + 4. Titus 
we obtain J(r) g W6(V). But since dim J(r) = (r + 4)(r + 1)/2 because, of (4.7), there 
follows J(r) = W8(V). 
- In the case m := dim V < r + 4 we introduce an (r + 4)-dimensional vector space 
V which we map linearly onto V by means of a linear mapping : V —* V defined on 
given bases {u1,. . . , u 7,,} of V and {u 1 ,. . . , Ü r+ 4 } of V by the rule 

f ui if 

	

0	if i=rn+1,...,r+4 

Then the pull hack. (T)( 1 ,. . . , 3r) := 	. . ,	r+4) ,	e V, of every
tensor T E Tr,V lies in T,.V. Every vector set b = 17)1,... , Vr+41 C V corresponds 
to a uniquely determined vector set S = f ij 	.	} C £{Üi,. .. ,Ü m } via vi 
Thus there holds true Tb = (T) E W(V) = J(r) for every T E T 0 V , S C V. 

Let now V = M, he a tangent space of our differentiable manifold M in a point 
P E M. Then there is VR E	This leads to (VR)b E .1(r) = C[Sr+ 4 ] Yt 

that means (VR)b = x y , with some I E C[Sr+4]. Now taking into account (4.16) 
and (4.14) we obtain

	

( y VJ)t	I y , 'y t , = ILr (VR)b 

for every vector set. S = { v , . . . ,	} C M,, by which Proposition 6.1 is I)1'ov((l U
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Now the version of Proposition 3.1 for V (r) R reads 

Corollary 6.1. Let r	0. Then the group ring element (VR)b E C[Sr+4] i
s 

contained in the left ideal

J(r) = C [Sr+4] Yi 

Of C[Sr+4] for every set of vectors b= {v i ,... ,v+4} C MP, P EM. 
Since J(r) is minimal, the problem of decomposition of '(r) does not arise. 

Theorem 6.1. We denote by V ( ' ) R the 'stronger' symmetrized covariant deriva-
tive of the Riemannian curvature tensor of order r the coordinates of which have the 
form

(V(r)	
12131415. ..l,+4	:= . . . V 1 4 R1, I23)4 

(r7(0) i V	11.)	 ,	 ij(12i3)i4 

Then there holds true for r 0 

2(V (r) Th	 - 
r+I	U	•)I1IZ•l4Z5 ... l . .f4 - 

	

+(V(T))1, I2l3l41+4 - (V	)Il l 3 l 4 Z 5 ... l+4 - (V(r)) 1214O'5r+4	(6.5) 

+ (V(r))1412131, 
751r+4 + v)121, l46I5...I+4 -	 1312 .....'r+4 

+	 '^ ) i 3 tli4i2i5 -- i ,+4
 

As a consequence of (6.5), we obtain R. = 

Proof. For every subset b	{vi,.. . , v	} C Mp of the tangent space in an 
arbitrary point P E M there holds true 

(y(Vfi))b = /Lr(VR)b and (V(r))b = (r+2)! ((1?))b 

Then using (4.14) we can write 

ii(V fl) 6 = (y (v; fl)) 6 = (vçR)6	= - (v; R) 6 .	. . 

; (vR))6 
= — (r + 2)! (rj(V'R))6 

Now equation (6.5) can be proved by the sane arguments which we applied to show 
(4.15)u 
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