On the Mixed Problem for Quasilinear Partial Differential-Functional Equations of the First Order

T. Człapiński

Abstract

We consider the mixed problem for the quasilinear partial differential-functional equation of the first order $$
\begin{aligned} D_{x} z(x, y) & =\sum_{i=1}^{n} f_{i}\left(x, y, z_{(x, y)}\right) D_{y i} z(x, y)+G(x, y, z(x, y)) \\ z(x, y) & =\phi(x, y) \quad((x, y) \in[-\tau, a] \times[-b, b+h] \backslash(0, a] \times[-b, b)) \end{aligned}
$$ where $z_{(x, y)}:[-\tau, 0] \times[0, h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x, y)}(t, s)=z(x+t, y+s)$ for $(t, s) \in[-\tau, 0] \times[0, h]$. Using the method of characteristics and the fixed-point method we prove, under suitable assumptions, a theorem on the local existence and uniqueness of solutions of the problem.

Keywords: Partial differential-functional equations, classical solutions, local existence, bicharacteristics, fixed-point theorem
AMS subject classification: 35 F 30,35 L 60, 35 R 10

1. Introduction

If X, Y are any metric spaces, then we denote by $C(X ; Y)$ the class of all continuous functions from X to Y. Let $B=[-\tau, 0] \times[0, h]$, where $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}_{+}^{n}$ and $\tau \in \mathbb{R}_{+}$, with $\mathbb{R}_{+}=[0,+\infty)$. For a given function

$$
z:[-\tau, a] \times[-b, b+h] \rightarrow \mathbb{R}
$$

where $a>0$ and $b=\left(b_{1}, \ldots, b_{n}\right)$, with $b_{i}>0(i=1, \ldots, n)$, and a point $(x, y)=$ $\left(x, y_{1}, \ldots, y_{n}\right) \in[0, a] \times[-b, b]$, we define the function $z_{(x, y)}: B \rightarrow \mathbb{R}$ by the formula

$$
z_{(x, y)}(t, s)=z(x+t, y+s) \quad((t, s) \in B) .
$$

Define

$$
\begin{aligned}
\partial_{0} E_{\bar{a}} & =[0, \bar{a}] \times[-b ; b+h] \cdot \backslash[0, \bar{a}] \times[-b, b) \\
E_{\bar{a}} & =[0, \bar{a}] \times[-b, b] \\
E_{\bar{a}}^{*} & =[-\tau, \bar{a}] \times[-b, b+h]
\end{aligned}
$$

T. Człapiński: University of Gdańsk, Inst. Math., W. Stwosz str. 57, 80-952 Gdańsk, Poland
for any $\bar{a} \in[0, a]$.
For given functions

$$
\begin{aligned}
\phi: & E_{0}^{*} \cup \partial_{0} E_{a} \rightarrow \mathbb{R} \\
G: & E_{a} \times C(B ; \mathbb{R}) \rightarrow \mathbb{R} \\
f=\left(f_{1}, \ldots, f_{n}\right) & : E_{a} \times C(B ; \mathbb{R}) \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

we consider the following mixed problem:

$$
\begin{align*}
D_{x} z(x, y) & =\sum_{i=1}^{n} f_{i}\left(x, y, z_{(x, y)}\right) D_{y_{i}} z(x, y)+G\left(x, y, z_{(x, y)}\right) \tag{1}\\
z(x, y) & =\phi(x, y) \quad\left((x, y) \in E_{0}^{*} \cup \partial_{0} E_{a}\right) . \tag{2}
\end{align*}
$$

In this paper we consider classical solutions of problem (1),(2) local with respect to the first variable. In other words, a function $z \in C^{1}\left(E_{\bar{a}}^{*} ; \mathbb{R}\right)$ is said to be a solution of problem (1),(2) if it satisfies equation (1) on $E_{\bar{a}}$ and fulfils initial-boundary condition (2) on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$, for a certain $\bar{a} \in(0, a]$.

Note that in equation (1) the given functions f and G are functional operators on $C(B ; \mathbb{R})$ with respect to the last variable. This model of functional dependence contains as a particular case equations with a deviated argument, and if $\tau=h=0$ equations without any functional dependence. In non-functional setting generalized (in the "almost everywhere" sense) solutions of quasilinear systems with Cauchy and boundary conditions have been discussed in $[1,6,7]$, while continuous solutions (i.e. solutions satisfying integral systems arising from differential equations by integrating along characteristics) of mixed problems have been discussed in [1, 15].

As a particular case of (1) we may also obtain some differential-integral equations and equations with operators of the Volterra type (cf. [16]). Classical solutions of quasilinear systems with such operators were investigated in [8, 9]. From the literature concerning other problems for first order partial differential-functional equations where classical solutions are considered we refer here to the papers [12,13]. Differential-integral problems are often used as mathematical models of various problems in nonlinear optics $[4,5]$ and may be used to describe the growth of a population of cells [10]. Differential problems for equations with a deviated argument arise in the theory of the distribution of wealth [11].

In this paper we prove a theorem on the local existence and uniqueness of solutions of the mixed problem (1),(2). Our result is analogous to that of [14] for generalized solutions of weak-coupled systems in two independent variables. We use the well known method of bicharacteristics (cf. [2, 3, 8, 14]) and the Banach fixed point theorem.

2. Bicharacteristics

If $\|\cdot\|_{0}$ denotes the supremum norm in $C(X ; Y)$, where X is a domain in \mathbb{R}^{1+n} and Y is an Euclidean space, then the norm in $C^{1}(X ; Y)$ is defined by $\|w\|_{1}=\|w\|_{0}+\left\|D_{(x, y)} w\right\|_{0}$, where $D_{(x, y)} w$ denotes the Jacobi matrix of w. For any $w \in C(X ; Y)$ let

$$
\|w\|_{L}=\sup \left\{|w(x, y)-w(\bar{x}, \bar{y})| \cdot[|x-\bar{x}|+|y-\bar{y}|]^{-1}:(x, y),(\bar{x}, \bar{y}) \in X\right\} .
$$

If we put $\|w\|_{0, L}=\|w\|_{0}+\|w\|_{L}$ and $\|w\|_{1, L}=\|w\|_{1}+\left\|D_{(x, y)} w\right\|_{L}$, then we denote by $C^{i, L}(X ; Y)(i=0,1)$ the space of all functions $z \in C^{i}(X ; Y)$ such that $\|z\|_{i, L}<+\infty$ with the norm $\|\cdot\|_{i, L}$.

Assumption (H_{1}). Suppose that $\phi \in C^{1}\left(E_{0}^{*} \cup \partial_{0} E_{a} ; \mathbb{R}\right)$ and that
$\|\phi\|_{0} \leq \Lambda_{0}, \quad\left\|D_{x} \phi\right\|_{0} \leq \Lambda_{1}, \quad\left\|D_{y} \phi\right\|_{0} \leq \Lambda_{1}, \quad\left\|D_{x} \phi\right\|_{L} \leq \Lambda_{2}, \quad\left\|D_{y} \phi\right\|_{L} \leq \Lambda_{2}$, where $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}$ are given non-negative constants.

Supposed that Assumption (H_{1}) is satisfied and given non-negative Q_{0}, Q_{1}, Q_{2} such that $Q_{i} \geq \Lambda_{i}(i=0,1,2)$ we will denote by $C_{\bar{a}}^{1, L}(Q)$, where $\bar{a} \in(0, a]$, the set of all functions $z \in C\left(E_{\bar{a}} ; \mathbb{R}\right)$ such that
(i) $z(x, y)=\phi(x, y)$ on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$
(ii) $\|z\|_{0} \leq Q_{0},\left\|D_{x} z\right\|_{0} \leq Q_{1},\left\|D_{y} z\right\|_{0} \leq Q_{1},\left\|D_{x} z\right\|_{L} \leq Q_{2},\left\|D_{y} z\right\|_{L} \leq Q_{2}$.

Assumption (\mathbf{H}_{2}). Suppose the following:
$1^{\circ} f=\left(f_{1}, \ldots, f_{n}\right) \in C\left(E_{a} \times C(B ; \mathbb{R}) ; \mathbb{R}^{n}\right)$ is a function of the variables (x, y, w), and the derivatives $D_{y} f$ and $D_{w} f$ exist on $E_{a} \times C^{1}(B ; \mathbb{R})$.
2° There exist non-decreasing functions $L_{0}, L_{1}, L_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for all $(x, y),(\bar{x}, \bar{y}) \in E_{a}$ we have

$$
\begin{array}{ll}
|f(x, y, w)| \leq L_{0}(q) \quad\left(w \in C(B ; \mathbb{R}),\|w\|_{0} \leq q\right) \\
|f(x, y, w)-f(\bar{x}, y, w)| \leq L_{1}(q)|x-\bar{x}| & \left(w \in C^{0, L}(B ; \mathbb{R}),\|w\|_{0, L} \leq q\right) \\
\left|D_{y} f(x, y, w)\right|,\left\|D_{w} f(x, y, w)\right\| \leq L_{1}(q) & \left(w \in C^{1}(B ; \mathbb{R}),\|w\|_{1} \leq q\right)
\end{array}
$$

and

$$
\begin{aligned}
& \left|D_{y} f(x, y, w)-D_{y} f(\bar{x}, \bar{y}, \bar{w})\right| \leq L_{2}(q)\left[|x-\bar{x}|+|y-\bar{y}|+\|w-\bar{w}\|_{0}\right] \\
& \left\|D_{w} f(x, y, w)-D_{w} f(\bar{x}, \bar{y}, \bar{w})\right\| \leq L_{2}(q)\left[|x-\bar{x}|+|y-\bar{y}|+\|w-\bar{w}\|_{0}\right]
\end{aligned}
$$

where $w, \bar{w} \in C^{1, L}(B ; \mathbb{R})$ with $\|w\|_{1, L},\|\bar{w}\|_{1, L} \leq q$.
3° For every $q \in \mathbb{R}_{+}$there is $\delta(q)>0$ such that $f_{i}(x, y, w) \geq \delta(q) \quad(i=1, \ldots, n)$ for $(x, y, w) \in E_{a} \times C(B ; \mathbb{R})$ with $\|w\|_{0} \leq q$.

For a fixed $z \in C_{\bar{a}}^{1, L}(Q)$, where $\bar{a} \in(0, a]$, and for any $(x, y) \in E_{a}$, we consider the Cauchy problem

$$
\left.\begin{array}{rl}
\frac{d}{d t} \rho(t) & =-f\left(t, \rho(t), z_{(t, \rho(t))}\right) \tag{3}\\
\rho(x) & =y
\end{array}\right\}
$$

If Assumption $\left(\mathrm{H}_{2}\right)$ is satisfied, then there exists a unique solution of problem (3) which we denote by

$$
g[z](\cdot, x, y)=\left(g_{1}[z](\cdot, x, y), \ldots, g_{n}[z](\cdot, x, y)\right)
$$

Let $\lambda[z](x, y)$ be the left end of the maximal interval on which the solution $g[z](\cdot, x, y)$ is defined. Then

$$
(\lambda[z](x, y), g[z](\lambda[z](x, y), x, y)) \in\left(E_{0}^{*} \cup \partial_{0} E_{\bar{a}}\right) \cap E_{\bar{a}}
$$

because of condition 3° of Assumption (H_{2}) and we may define the following two sets:

$$
\begin{aligned}
& E_{\bar{a} 0}[z]=\left\{(x, y) \in E_{\bar{a}}: \lambda[z](x, y)=0\right\} \\
& E_{\bar{a} b}[z]=\left\{(x, y) \in E_{\bar{a}}: g_{i}[z](\lambda[z](x, y), x, y)=b_{i} \quad \text { for some } 1 \leq i \leq n\right\} .
\end{aligned}
$$

Furthermore, we define the constants

$$
\begin{aligned}
\Gamma_{\bar{a}} & =L_{1}^{*} \bar{a} \exp \left\{L_{1}^{*}\left[1+Q_{1}\right] \bar{a}\right\} \\
\Gamma_{1 \bar{a}} & =\left(1+L_{0}^{*}\right) \exp \left\{L_{1}^{*}\left[1+Q_{1}\right] \bar{a}\right\} \\
\Gamma_{\bar{a} \bar{a}} & =\left\{L_{1}^{*}\left[1+Q_{1}\right]\left(1+\Gamma_{1 \bar{a}}\right)+\left[L_{2}^{*}\left[1+Q_{1}\right]^{2}+L_{\overline{1}}^{*}\right] \Gamma_{1 \bar{a}}^{2} \bar{a}\right\} \exp \left\{L_{1}^{*}\left[1+Q_{1}\right] \bar{a}\right\}
\end{aligned}
$$

where $L_{i}^{*}=L_{i}\left(\sum_{j=0}^{i} Q_{j}\right)$, for $i=0,1,2$.
Lemma 1. Suppose that Assumption $\left(H_{2}\right)$ is satisfied, $z, \bar{z} \in C_{\bar{a}}^{1, L}(Q)$, and (x, y), $(\bar{x}, \bar{y}) \in E_{\hat{a}}$. If the intervals

$$
\begin{aligned}
K_{1} & =[\max \{\lambda[z](x, y), \lambda[z](\bar{x}, \bar{y})\}, \min \{x, \bar{x}\}] \\
K_{2} & =[\max \{\lambda[z](x, y), \lambda[\bar{z}](x, y)\}, x]
\end{aligned}
$$

are non-empty, then we have the estimates

$$
\begin{array}{ll}
\left|D_{x} g[z](t, x, y)\right| \leq \Gamma_{1 \bar{a}}, \quad\left|D_{y} g[z](t, x, y)\right| \leq \Gamma_{1 \bar{a}} & \text { if } t \in[\lambda[z](x, y), x] \\
\left|D_{x} g[z](t, x, y)-D_{x} g[z](t, \bar{x}, \bar{y})\right| \leq \Gamma_{2 \bar{a}}[|x-\bar{x}|+|y-\bar{y}|] & \text { if } t \in K_{1} \\
\left|D_{y} g[z](t, x, y)-D_{y} g[z](t, \bar{x}, \bar{y})\right| \leq \Gamma_{2 \bar{a}}[|x-\bar{x}|+|y-\bar{y}|] & \text { if } t \in K_{1} \\
|g[z](t, x, y)-g[\bar{z}](t, x, y)| \leq \Gamma_{\bar{a}}\|z-\bar{z}\|_{0} & \text { if } t \in K_{2} . \tag{7}
\end{array}
$$

Proof. Let $g=g[z]$ and $\bar{g}=g[\bar{z}]$. It follows from classical theorems on differentiation of solutions with respect to initial data that the derivatives $D_{x} g$ and $D_{y} g$ exist and fulfil the integral equations

$$
\begin{aligned}
D_{x} g(t, x, y)= & f(x, y, z(x, y) \\
& -\int_{x}^{t}\left[D_{y} f\left(P_{\tau}\right)+D_{w} f\left(P_{\tau}\right) \circ\left(D_{y} z\right)_{(\tau, g(\tau, x, y))}\right] D_{x} g(\tau, x, y) d \tau \\
D_{y} g(t, x, y)= & I-\int_{x}^{t}\left[D_{y} f\left(P_{\tau}\right)+D_{w} f\left(P_{\tau}\right) \circ\left(D_{y} z\right)_{(\tau, g(r, x, y))}\right] D_{y} g(\tau, x, y) d \tau
\end{aligned}
$$

for $t \in[\lambda[z](x, y), x]$ and $(x, y) \in E_{\bar{a}}$, where I denotes the identity matrix and $P_{\tau}=$ $\left(\tau, g(\tau, x, y), z_{(\tau, g(\tau, x, y))}\right)$. Hence, by Assumption $\left(\mathrm{H}_{2}\right)$, we have

$$
\begin{aligned}
& \left|D_{x} g(t, x, y)\right| \leq L_{0}^{*}+\left|\int_{x}^{t} L_{1}^{*}\left[1+Q_{1}\right]\right| D_{x} g(\tau, x, y)|d \tau| \\
& \left|D_{y} g(t, x, y)\right| \leq 1+\left|\int_{x}^{t} L_{1}^{*}\left[1+Q_{1}\right]\right| D_{y} g(\tau, x, y)|d \tau|
\end{aligned}
$$

from which (4) follows by the Gronwall lemma. Analogously, by Assumption (H_{2}) and (4), we get

$$
\begin{aligned}
&\left|D_{x} g(t, x, y)-D_{x} g(t, \bar{x}, \bar{y})\right| \\
& \leq L_{1}^{*}\left[1+Q_{1}\right][|x-\bar{x}|+|y-\bar{y}|]+\left|\int_{x}^{\bar{x}} L_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}} d \tau\right| \\
&+\left|\int_{x}^{t}\left\{L_{2}^{*}\left[1+Q_{1}\right]^{2}+L_{1}^{*}\right\} \Gamma_{1 \bar{a}}^{2}[|x-\bar{x}|+|y-\bar{y}|] d \tau\right| \\
&+\left|\int_{x}^{t} L_{1}^{*}\left[1+Q_{1}\right]\right| D_{x} g(\tau, x, y)-D_{x} g(\tau, \bar{x}, \bar{y})|d \tau|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|D_{y} g(t, x, y)-D_{y} g(t, \bar{x}, \bar{y})\right| \\
& \quad \leq\left|\int_{x}^{\bar{x}} L_{\overline{1}}^{*}\right| 1+Q_{1}\left|\Gamma_{1 \bar{a}} d \tau\right| \\
& \\
& \quad+\left|\int_{z}^{t}\left\{L_{2}^{*}\left[1+Q_{1}\right]^{2}+L_{\overline{1}}^{*}\right\} \Gamma_{1 \bar{a}}^{2}[|x-\bar{x}|+|y-\bar{y}|] d \tau\right| \\
& \\
& \quad+\left|\int_{x}^{t} L_{1}^{*}\left[1+Q_{1}\right]\right| D_{y} g(\tau, x, y)-D_{y} g(\tau, \bar{x}, \bar{y})|d \tau|
\end{aligned}
$$

for $t \in K_{1}$, from which (5) and (6) follow by the Gronwall lemma. In the same way we may get for $t \in K_{2}$ the estimate

$$
\begin{aligned}
& |g(t, x, y)-\bar{g}(t, x, y)| \\
& \quad \leq\left|\int_{x}^{t} L_{1}^{*}\|z-\bar{z}\|_{E_{a}} d \tau\right|+\left|\int_{x}^{t} L_{1}^{*}\left[1+Q_{1}\right]\right| g(\tau, x, y)-\bar{g}(\tau, x, y)|d \tau|
\end{aligned}
$$

from which using again the Gronwall lemma we get (7) which completes the proof of Lemma 1

Lemma 2. If Assumption $\left(H_{2}\right)$ is satisfied and $z \in C_{\bar{a}}^{1, L}(Q)$, then $\lambda[z]$ is piecewise of class C^{1} on $E_{\bar{a} b}[z]$ and

$$
\begin{equation*}
|\lambda[z](x, y)-\lambda[z](\bar{x}, \bar{y})| \leq \frac{1}{\delta^{*}} \Gamma_{1 \bar{a}}[|x-\bar{x}|+|y-\bar{y}|] \tag{8}
\end{equation*}
$$

for $(x, y) \in E_{\bar{a} b}[z]$, where $\delta^{*}=\delta\left(Q_{0}\right)$.
Proof. In the proof of this lemma, for simplicity, we will write λ and g instead of $\lambda[z]$ and $g[z]$, respectively. Note that λ is defined by the relation

$$
g_{i}(\lambda(x, y), x, y)=b_{i} \quad\left((x, y) \in E_{\bar{a} b}[z]\right)
$$

for some $1 \leq i \leq n$. Thus, since g_{i} is of class C^{1} and $\frac{d g_{i}}{d t} \neq 0$, we see by the theorem on implicit differentiation that λ is locally of class C^{1}, and its partial derivatives are given by the formulas

$$
\begin{align*}
D_{x} \lambda(x, y) & =\frac{D_{x} g_{i}(\lambda(x, y), x, y)}{f_{i}\left(\lambda(x, y), g(\lambda(x, y), x, y), \phi_{(\lambda(x, y), g(\lambda(x, y), x, y))}\right)} \tag{9}\\
D_{y} \lambda(x, y) & =\frac{D_{y} g_{i}(\lambda(x, y), x, y)}{f_{i}\left(\lambda(x, y), g(\lambda(x, y), x, y), \phi_{(\lambda(x, y), g(\lambda(x, y), x, y))}\right)} . \tag{10}
\end{align*}
$$

From the above relations we get

$$
\left|D_{x} \lambda(x, y)\right| \leq \frac{1}{\delta^{*}} \Gamma_{1 \bar{a}} \quad \text { and } \quad\left|D_{y} \lambda(x, y)\right| \leq \frac{1}{\delta^{*}} \Gamma_{1 \bar{a}}
$$

which gives (8)
Remark 1. Note that from the proof of Lemma 2 it follows that $\lambda[z]$ is of class C^{1} on each of the sets $\left\{(x, y) \in E_{\bar{a} b}[z]: g_{i}[z](\lambda[z](x, y), x, y)=b_{i}\right\} \quad(1 \leq i \leq n)$.

Lemma 3. If Assumption $\left(H_{2}\right)$ is satisfied and $z, \bar{z} \in C_{\bar{a}}^{1, L}(Q)$, then we have

$$
\begin{equation*}
|\lambda[z](x, y)-\lambda[\bar{z}](x, y)| \leq \frac{1}{\delta^{*}} \Gamma_{\bar{a}}\|z-\bar{z}\|_{0} \tag{11}
\end{equation*}
$$

on $E_{\bar{a}}$.
Proof. Since (11) is obviously satisfied if $(x, y) \in E_{\bar{a} 0}[z] \cap E_{\bar{a} 0}[\bar{z}]$, without loss of generality we may assume that $\lambda[\bar{z}](x, y) \leq \lambda[z](x, y)$ and $(x, y) \in E_{\bar{a} b}[z]$. Let $1 \leq i \leq n$ be such that $g_{i}[z](\lambda[z](x, y), x, y)=b_{i}$. Then we have

$$
\begin{aligned}
g_{i}[z](\lambda[z] & (x, y), x, y)-g_{i}[\bar{z}](\lambda[z](x, y), x, y) \\
& \geq g_{i}[\bar{z}](\lambda[\bar{z}](x, y), x, y)-g_{i}[\bar{z}](\lambda[z](x, y), x, y) \\
& =\int_{\lambda[\bar{z}](x, y)}^{\lambda[z](x, y)} f_{i}\left(\tau, g[\bar{z}](\tau, x, y), z_{(\tau, g[\bar{z}](\tau, x, y))}\right) d \tau \\
& \geq \delta^{*}[\lambda[z](x, y)-\lambda[\bar{z}](x, y)]
\end{aligned}
$$

The above estimate together with

$$
0 \leq g_{i}[z](\lambda[z](x, y), x, y)-g_{i}[\bar{z}](\lambda[z](x, y), x, y) \leq \Gamma_{\bar{a}}\|z-\bar{z}\|_{0}
$$

gives (11)

Remark 2. Note that condition 3° of Assumption $\left(H_{2}\right)$ is essential in the proof of Lemma 3. In Lemma 2 it suffices to assume that $f_{i}(x, y, w) \geq \delta(q)$ for $(x, y) \in E_{a}$ such that $y_{i}=b_{i}$ for some $1 \leq i \leq n$ and $f_{i}(x, y, w) \geq 0$ on $E_{a} \times C(B ; \mathrm{R})$ while in Lemma 1 only the latter condition is necessary.

3. The main result

Now we prove a theorem on existence and uniqueness of solutions of the mixed problem (1),(2).

Assumption (H_{3}). Suppose the following:
$1^{\circ} G \in C\left(E_{a} \times C(B ; \mathbb{R}) ; \mathbb{R}\right)$ is a function of the variables (x, y, w), and the derivatives $D_{y} G$ and $D_{w} G$ exist on $E_{a} \times C^{1}(B ; \mathbb{R})$.
2° There exist non-decreasing functions $M_{0}, M_{1}, M_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that G fulfils conditions analogous to those given in 2° of Assumption $\left(\mathrm{H}_{2}\right)$, with L_{i} replaced by M_{i}, respectively.
3° The consistency condition

$$
\begin{equation*}
D_{x} \phi(x, y)-\sum_{i=1}^{n} f_{i}\left(x, y, \phi_{(x, y)}\right) D_{y} \phi(x, y)=G\left(x, y, \phi_{(x, y)}\right) \tag{12}
\end{equation*}
$$

holds true on $\left(E_{0}^{*} \cup \partial_{0} E_{a}\right) \cap E_{a}$.
We define the operator W on $C_{\bar{a}}^{1, L}(Q)$ by the formula

$$
\begin{align*}
& (W z)(x, y)= \\
& \begin{cases}\phi(\lambda[z](x, y), g[z](\lambda[z](x, y), x, y)) & \text { for }(x, y) \in E_{\bar{a}} \\
+\int_{\lambda[z](x, y)}^{x} G(t, g[z](t, x, y), z(t, g[z](t, x, y)) d t \\
\phi(x, y) & \text { for }(x, y) \in E_{0}^{*} \cup \partial_{0} E_{\bar{a}}\end{cases} \tag{13}
\end{align*}
$$

Remark 3. The right-hand side of (13) arises in the following way. We consider (1) along bicharacteristics

$$
\begin{aligned}
D_{x} z(t, g[z](t, x, y)) & -\sum_{i=1}^{n} f_{i}\left(t, g[z](t, x, y), z_{(t, g[z](t, x, y))}\right) D_{y_{i}} z(t, g[z](t, x, y)) \\
& =G\left(t, g[z](t, x, y), z_{(t, g[z](t, x, y))}\right)
\end{aligned}
$$

from which by (3) we get

$$
\frac{d}{d t} z(t, g[z](t, x, y))=G\left(t, g[z](t, x, y), z_{(t, g[z](t, x, y))}\right)
$$

Integrating this equation with respect to t on the interval $[\lambda[z](x, y), x]$ we get the righ-hand side of (13).

Assumption (\mathbf{H}_{4}). Suppose that
$Q_{0}>\Lambda_{0}$

$$
\begin{aligned}
Q_{1}> & \Lambda_{1}\left(1+L_{0}^{*}\right)+M_{0}^{*} \\
Q_{2}> & \Lambda_{2}\left[\frac{1}{\delta^{*}}\left(1+L_{0}^{*}\right)+1\right]\left(1+L_{0}\right)^{2}+\Lambda_{1}\left[\frac{1}{\delta^{*}} L_{1}^{*}\left(1+L_{0}\right)^{2}+L_{1}^{*}\left[1+Q_{1}\right]\left(2+L_{0}^{*}\right)\right] \\
& +M_{1}^{*}\left[1+Q_{1}\right]+\left[1+\frac{1}{\delta^{*}}\left(1+L_{0}\right)\right] M_{1}^{*}\left[1+Q_{1}\right]\left(1+L_{0}\right)
\end{aligned}
$$

where $M_{i}^{*}=M_{i}\left(\sum_{j=0}^{i} Q_{i}\right)$, for $i=0,1,2$.
Define the constants

$$
\begin{aligned}
S_{0 \bar{a}}= & \Lambda_{0}^{*}+\bar{a} M_{0}^{*} \\
S_{1 \bar{a}}= & \Lambda_{1} \Gamma_{1 \bar{a}}+M_{0}^{*}+\bar{a} M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}} \\
S_{2 \bar{a}}= & \Lambda_{2}\left[\frac{1}{\delta^{*}}\left(1+L_{0}^{*}\right)+1\right] \Gamma_{1 \bar{a}}^{2}+\Lambda_{1}\left[\frac{1}{\delta^{*}} L_{1}^{*} \Gamma_{1 \bar{a}}^{2}+\Gamma_{2 \bar{a}}\right] \\
& +M_{1}^{*}\left[1+Q_{1}\right]+\left[1+\frac{1}{\delta^{*}} \Gamma_{1 \bar{a}}\right] M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}} \\
& +\bar{a}\left[M_{2}^{*}\left(1+Q_{1}\right)^{2} \Gamma_{1 \bar{a}}^{2}+M_{\overline{1}}^{*} Q_{2} \Gamma_{1 \bar{a}}+M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{2 \bar{a}}\right] .
\end{aligned}
$$

Remark 4. Note that since

$$
\lim _{\bar{a} \rightarrow 0^{+}} \Gamma_{1 \bar{a}}=1+L_{0}^{*} \quad \text { and } \quad \lim _{\bar{a} \rightarrow 0^{+}} \Gamma_{2 \bar{a}}=L_{1}^{*}\left[1+Q_{1}\right]\left(2+L_{0}^{*}\right)
$$

we may by Assumption (H_{4}) choose $\bar{a} \in(0, a]$ sufficiently small in order that $S_{\bar{i} \bar{a}} \leq Q_{i}$, for $i=0,1,2$.

Theorem 1. If Assumptions $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied, then for $\bar{a} \in(0, a]$ sufficiently small the operator W defined by (13) maps $C_{\bar{a}}^{1, L}(Q)$ into itself.

Proof. Let $z \in C_{\bar{a}}^{1, L}(Q)$. As in the proof of Lemma 2, for simplicity, we will write λ and g instead of $\lambda[z]$ and $g[z]$, respectively. From (13) it follows that

$$
\begin{align*}
D_{x}(W z)(x, y)= & D_{y} \phi(0, g(0, x, y)) D_{x} g(0, x, y)+G\left(x, y, z_{(x, y)}\right) \\
& +\int_{0}^{x}\left[D_{y} G\left(P_{t}\right)+D_{w} G\left(P_{t}\right) \circ D_{y} z\right] D_{x} g(t, x, y) d t \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
D_{y}(W z)(x, y)= & D_{y} \phi(0, g(0, x, y)) D_{y} g(0, x, y) \\
& +\int_{0}^{x}\left[D_{y} G\left(P_{t}\right)+D_{w} G\left(P_{t}\right) \circ D_{y} z\right] D_{y} g(t, x, y) d t \tag{15}
\end{align*}
$$

on $E_{\bar{a} 0}[z]$, where $P_{t}=\left(t, g(t, x, y), z_{(t, g(t, x, y))}\right)$. Suppose that $(x, y) \in E_{\bar{a} b}[z]$, which means that $g_{j}(\lambda(x, y), x, y)=b_{j}$ for some $1 \leq j \leq n$. From (13) and (3) we have then

$$
\begin{aligned}
D_{x}(W z)(x, y)= & D_{x} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) D_{z} \lambda(x, y) \\
& +\sum_{i=1, i \neq j}^{n} D_{y_{i}} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) \\
& \times\left[-f_{i}\left(P_{\lambda(x, y)}\right) D_{x} \lambda(x, y)+D_{x} g_{i}(\lambda(x, y), x, y)\right] \\
& +G\left(x, y, z_{(x, y)}\right)-G\left(P_{\lambda(x, y)}\right) D_{x} \lambda(x, y) \\
& +\int_{\lambda(x, y)}^{x}\left[D_{y} G\left(P_{t}\right)+D_{w} G\left(P_{t}\right) \circ\left(D_{y} z\right)_{(t, g(t, x, y))}\right] D_{x} g(t, x, y) d t .
\end{aligned}
$$

Using consistency condition (12) and (9) we may transform the above relation into the form

$$
\begin{align*}
D_{x}(W z) & (x, y) \\
= & D_{y_{j} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) f_{j}\left(P_{\lambda(x, y)}\right) D_{x} \lambda(x, y)} \\
& +\sum_{i=1, i \neq j}^{n} D_{y_{i}} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) D_{x} g_{i}(\lambda(x, y), x, y) \\
& +G(x, y, z(x, y)) \tag{16}\\
& +\int_{\lambda(x, y)}^{x}\left[D_{y} G\left(P_{t}\right)+D_{w} G\left(P_{t}\right) \circ\left(D_{y} z\right)_{(t, g(t, x, y))}\right] D_{x} g(t, x, y) d t \\
= & D_{y} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) D_{x} g(\lambda(x, y), x, y)+G(x, y, z(x, y)) \\
& +\int_{\lambda(x, y)}^{x}\left[D_{y} G\left(P_{t}\right)+D_{w} G\left(P_{t}\right) \circ\left(D_{y} z\right)_{(t, g(t, x, y))}\right] D_{x} g(t, x, y) d t .
\end{align*}
$$

Analogously, by consistency condition (12) and (10), we get

$$
\begin{align*}
D_{y}(W z) & (x, y) \\
= & D_{y} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) D_{y} g(\lambda(x, y), x, y) \tag{17}\\
& +\int_{\lambda(x, y)}^{x}\left[D_{y} G\left(P_{t}\right)+D_{y} G\left(P_{t}\right) \circ\left(D_{y} z\right)_{(t, g(t, x, y))}\right] D_{y} g(t, x, y) d t .
\end{align*}
$$

Note that the right-hand sides of (16) and (17) do not depend on $1 \leq j \leq n$, which means that $W z$ is of class C^{1} on $E_{\bar{a} b}[z]$.

It is obvious that $W z$ is continuous on $E_{\vec{a}}^{*}$ and that

$$
D_{y}(W z)(0, y)=D_{y} \phi(0,0, y)=D_{y} \phi(0, y)
$$

for $y \in[-b, b]$. Morcover, the relation

$$
D_{x}(W z)(0, y)=D_{y} \phi(0, y) D_{x} g(0,0, y)+G\left(0, y, \phi_{(0, y)}\right)=D_{x} \phi(0, y)
$$

for $y \in[-b, b]$ follows from (14) and from the consistency condition (12). Analogously, (16) and (17) give

$$
D_{y}(W z)(x, y)=D_{y} \phi(x, y) D_{y} g(x, x, y)=D_{y} \phi(x, y)
$$

and

$$
D_{x}(W z)(x, y)=D_{y} \phi(x, y) D_{x} g(x, x, y)+G\left(x, y, \phi_{(x, y)}\right)=D_{x} \phi(x, y)
$$

for $(x, y) \in E_{\bar{a}}$ such that $y_{i}=b_{i}$ for some $1 \leq i \leq n$. In order to get $W z \in C^{1}\left(E_{\bar{a}}^{*} ; \mathbb{R}\right)$ it remains to prove that formulas (14),(15) and (16),(17) define the same values for $(x, y) \in E_{\bar{a} 0}[z] \cap E_{\bar{a} b}[z]$, but this is obvious since $\lambda(x, y)=0$ in this case.

Now we prove that

$$
\begin{equation*}
|(W z)(x, y)| \leq Q_{0}, \quad\left|D_{x}(W z)(x, y)\right| \leq Q_{1}, \quad\left|D_{y}(W z)(x, y)\right| \leq Q_{1} \tag{18}
\end{equation*}
$$

on $E_{\bar{a}}^{*}$. From (13), (16) and (17) we have

$$
\begin{aligned}
|(W z)(x, y)| & \leq \Lambda_{0}+\int_{\lambda(x, y)}^{x} M_{0}^{*} d t \leq S_{0 \bar{a}} \\
\left|D_{x}(W z)(x, y)\right| & \leq \Lambda_{1} \Gamma_{1 \bar{a}}+M_{0}^{*}+\int_{\lambda(x, y)}^{x} M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}} d t \leq S_{1 \bar{a}} \\
\left|D_{y}(W z)(x, y)\right| & \leq \Lambda_{1} \Gamma_{1 \bar{a}}+\int_{\lambda(x, y)}^{x} M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}} d t \leq S_{1 \bar{a}}
\end{aligned}
$$

on $E_{\bar{a} b}[z]$. Note that since the integral $\int_{\lambda(x, y)}^{x}$ is estimated by $\int_{0}^{\bar{a}}$ the above estimates will still be valid on $E_{\bar{a} 0}[z]$. Taking \bar{a} sufficiently small in order that $S_{0 \bar{a}} \leq Q_{0}$ and $S_{1 \bar{a}} \leq Q_{1}$ we get (18) for all $(x, y) \in E_{\bar{a}}$. Since $\Lambda_{0}<Q_{0}$ and $\Lambda_{1}<Q_{1}$ we see that (18) hold true for all $(x, y) \in E_{\bar{a}}^{*}$.

Finally, we prove that

$$
\begin{align*}
& \left|D_{x}(W z)(x, y)-D_{x}(W z)(\bar{x}, \bar{y})\right| \leq Q_{2}[|x-\bar{x}|+|y-\bar{y}|] \tag{19}\\
& \left|D_{y}(W z)(x, y)-D_{y}(W z)(\bar{x}, \bar{y})\right| \leq Q_{2}[|x-\bar{x}|+|y-\bar{y}|]
\end{align*}
$$

on $E_{\bar{a}}^{*}$. For $(x, y),(\bar{x}, \bar{y}) \in E_{\bar{a} b}[z]$ we have

$$
\begin{aligned}
&\left|D_{x}(W z)(x, y)-D_{x}(W z)(\bar{x}, \bar{y})\right| \\
& \leq \mid D_{y} \phi(\lambda(x, y), g(\lambda(x, y), x, y)) D_{x} g(\lambda(x, y), x, y) \\
&-D_{y} \phi(\lambda(\bar{x}, \bar{y}), g(\lambda(\bar{x}, \bar{y}), \bar{x}, \bar{y})) D_{x} g(\lambda(\bar{x}, \bar{y}), \bar{x}, \bar{y}) \mid \\
&+\left|G\left(x, y, z_{(x, y)}\right)-G\left(\bar{x}, \bar{y}, z_{(\bar{x}, \bar{y})}\right)\right| \\
&+\left|\int_{x}^{\bar{x}}\left[D_{y} G\left(\bar{P}_{t}\right)+D_{w} G\left(\bar{P}_{t}\right) \circ D_{y} z(t, g(t, \bar{x}, \bar{y}))\right] D_{x} g(t, \bar{x}, \bar{y}) d t\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\left|\int_{\lambda(x, y)}^{\lambda(\bar{x}, \bar{y})}\left[D_{y} G\left(\bar{P}_{t}\right)+D_{w} G\left(\bar{P}_{t}\right) \circ D_{y} z(t, g(t, \bar{x}, \bar{y}))\right] D_{x} g(t, \bar{x}, \bar{y}) d t\right| \\
& +\mid \int_{\lambda(x, y)}^{x}\left\{\left[D_{y} G\left(\bar{P}_{t}\right)+D_{w} G\left(\bar{P}_{t}\right) \circ D_{y} z(t, g(t, \bar{x}, \bar{y}))\right] D_{g}(t, \bar{x}, \bar{y})\right. \\
& \left.-\left[D_{y} G\left(\bar{P}_{t}\right)+D_{w} G\left(\bar{P}_{t}\right) \circ D_{y} z(t, g(t, \bar{x}, \bar{y}))\right] D_{g}(t, \bar{x}, \bar{y})\right\} d t \mid \\
\leq & \left\{\Lambda_{2}\left[\frac{1}{\delta^{*}}\left(1+L_{0}^{*}\right)+1\right] \Gamma_{1 \bar{a}}^{2}+\Lambda_{1}\left[\frac{1}{\delta^{*}} L_{1} \Gamma_{1 \bar{a}}^{2}+\Gamma_{2 \bar{a}}\right]\right. \\
& +M_{1}^{*}\left[1+Q_{1}\right]+\left[1+\frac{1}{\delta^{*}} \Gamma_{1 \bar{a}}\right] M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}} \\
& \left.+\int_{0}^{x}\left[M_{2}^{*}\left[1+Q_{1}\right]^{2} \Gamma_{1 \bar{a}}^{2}+M_{1}^{*} Q_{2} \Gamma_{1 \bar{a}}+M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{2 \bar{a}}\right] d t\right\}[|x-\bar{x}|+|y-\bar{y}|]
\end{aligned}
$$

where $\bar{P}_{t}=\left(t, g(t, \bar{x}, \bar{y}), z_{(t, g(t, \bar{x}, \bar{y}))}\right)$. Analogously we get the estimate

$$
\begin{aligned}
&\left|D_{y}(W z)(x, y)-D_{y}(W z)(\bar{x}, \bar{y})\right| \\
& \leq\left\{\Lambda_{2}\left[\frac{1}{\delta^{*}}\left(1+L_{0}^{*}\right)+1\right] \Gamma_{1 \bar{a}}^{2}+\Lambda_{1}\left[\frac{1}{\delta^{*}} L_{1} \Gamma_{1 \bar{a}}^{2}+\Gamma_{2 \bar{a}}\right] \frac{1}{\delta^{*}} \Gamma_{1 \bar{a}} M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{1 \bar{a}}\right. \\
&\left.+\int_{0}^{x}\left[M_{2}^{*}\left[1+Q_{1}\right]^{2} \Gamma_{1 \bar{a}}^{2}+M_{1}^{*} Q_{2} \Gamma_{1 \bar{a}}+M_{1}^{*}\left[1+Q_{1}\right] \Gamma_{2 \bar{a}}\right] d t\right\}[|x-\bar{x}|+|y-\bar{y}|]
\end{aligned}
$$

The above estimates hold true also in the case $(x, y),(\bar{x}, \bar{y}) \in E_{\bar{a} 0}[z]$, or $(x, y) \in E_{\bar{a} 0}[z]$ and $(\bar{x}, \bar{y}) \in E_{\bar{a} b}[z]$. Taking \bar{a} sufficiently small in order that $S_{2 \bar{a}} \leq Q_{2}$ and making use of the relation $\Lambda_{2}<Q_{2}$ we get (19), which completes the proof of Theorem 1 -

Theorem 2. If Assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ are satisfied, then for sufficiently small $\bar{a} \in(0, a]$ the problem (1), (2) has a unique solution on $E_{\bar{a}}$ in the class $C_{\bar{a}}^{1, L}(Q)$.

Proof. We prove that for sufficiently small $\bar{a} \in(0, a]$ the operator $W: C_{\bar{a}}^{1, L}(Q) \rightarrow$ $C_{\bar{\alpha}}^{1, L}(Q)$ is a contraction. Indeed, if $z, \bar{z} \in C_{\bar{a}}^{1, L}(Q), g=g[z], \bar{g}=g[\bar{z}], \lambda=\lambda[z]$ and $\bar{\lambda}=\lambda[\bar{z}]$, then we have

$$
\begin{aligned}
&|W z(x, y)-W \bar{z}(x, y)| \\
& \leq|\phi(\lambda(x, y), g(\lambda(x, y), x, y))-\phi(\bar{\lambda}(x, y), \bar{g}(\bar{\lambda}(x, y), x, y))| \\
&+\left|\int_{\lambda(x, y)}^{\bar{\lambda}(x, y)} G\left(t, \bar{g}(t, x, y), \bar{z}_{(t, \bar{g}(t, x, y))}\right) d t\right| \\
&+\int_{\lambda(x, y)}^{x}\left|G\left(t, g(t, x, y), z_{(t, g(t, x, y))}\right)-G\left(t, g(t, x, y), \bar{z}_{(t, g(t, x, y))}\right)\right| d t \\
& \leq \Lambda_{1}\left[\left(1+L_{0}^{*}\right)|\lambda(x, y)-\bar{\lambda}(x, y)|+|g(\lambda(x, y), x, y)-\bar{g}(\lambda(x, y), x, y)|\right] \\
& \quad+M_{0}^{*}|\lambda(x, y)-\bar{\lambda}(x, y)| \\
&+\int_{0}^{x} M_{1}^{*}\left\{\left[1+Q_{1}\right]|g(t, x, y)-\bar{g}(t, x, y)|+\left\|z_{(t, g(t, x, y))}-\bar{z}_{(t, g(t, x, y))}\right\|_{0}\right\} d t
\end{aligned}
$$

from which by (7), (11) and the obvious relation $(W z)(x, y)=(W \bar{z})(x, y)$ on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$ we obtain

$$
\|W z-W \bar{z}\|_{0} \leq S_{\bar{a}}\|z-\bar{z}\|_{0}
$$

where

$$
S_{\bar{a}}=\Lambda_{1}\left[\frac{1}{\delta^{*}}\left(1+L_{0}^{*}\right)+1\right] \Gamma_{\bar{a}}+M_{0}^{*} \frac{1}{\delta^{*}} \Gamma_{\bar{a}}+\bar{a} M_{1}^{*}\left\{\Gamma_{\bar{a}}\left[1+Q_{1}\right]+1\right\} .
$$

Since $\lim _{\bar{a} \rightarrow 0^{+}} S_{\bar{a}}=0$ we may choose $\bar{a} \in(0, a]$ sufficiently small in order that $S_{\bar{a}}<1$. Consequently W is a contraction, and by the Banach theorem there exists a unique fixed-point of W. Denoting this fixed point by z^{*} we prove that it is a solution of equation (1).

For any $(x, y) \in E_{\bar{a} 0}\left[z^{*}\right]$ we have

$$
\begin{equation*}
z^{*}(x, y)=\phi(0, g(0, x, y))+\int_{0}^{x} G\left(t, g(t, x, y), z_{(t, g(t, x, y))}^{*}\right) d t \tag{20}
\end{equation*}
$$

For a fixed x we consider the transformation $y \mapsto g(0, x, y)=\xi$. Using this transformation and the group property (20) takes the form

$$
z^{*}(x, g(x, 0, \xi))=\phi(0, \xi)+\int_{0}^{x} G\left(t, g(t, 0, \xi), z_{(t, g(t, 0, \xi))}^{*}\right) d t
$$

Diffcrentiating this cquation with respect to x we get

$$
\begin{gathered}
D_{x} z^{*}(x, g(x, 0, \xi))+\sum_{i=1}^{n} D_{y_{i}} z^{*}(x, g(x, 0, \xi)) \frac{d g_{i}}{d t}(x, 0, \xi) \\
=G\left(x, g(x, 0, \xi), z_{(x, g(x, 0, \xi))}^{*}\right) .
\end{gathered}
$$

Making use of the inverse transformation $\xi \mapsto g(x, 0, \xi)=y$ and (3), we get (1).
For any $(x, y) \in E_{\bar{a} b}\left[z^{*}\right]$ we have

$$
\begin{equation*}
z^{*}(x, y)=\phi(\lambda(x, y), g(\lambda(x, y), x, y))+\int_{\lambda(x, y)}^{x} G\left(t, g(t, x, y), z_{(t, g(t, x, y))}^{*}\right) d t \tag{21}
\end{equation*}
$$

For simplicity of notation suppose that $g_{i}(\lambda(x, y), x, y)=b_{i}$ for $i=n$, and write

$$
\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n-1}\right) \quad \text { and } \quad g^{\prime}=\left(g_{1}, \ldots, g_{n-1}\right)
$$

Fixing x and using the transformation

$$
y \mapsto\left(g^{\prime}(\lambda(x, y), x, y), \lambda(x, y)\right)=\left(\xi^{\prime}, \eta\right)
$$

we see that (21) takes the form

$$
z^{*}\left(x, g\left(x, \eta, \xi^{\prime}, b_{n}\right)\right)=\phi\left(\eta, \xi^{\prime}, b_{n}\right)+\int_{\eta}^{x} G\left(t, g\left(t, \eta, \xi^{\prime}, b_{n}\right), z_{\left(t, g\left(t, \eta, \xi^{\prime}, b_{n}\right)\right)}^{*}\right) d t
$$

Differentiating the above equation with respect to x we get

$$
\begin{gathered}
D_{x} z^{*}\left(x, g\left(x, \eta, \xi^{\prime}, b_{n}\right)\right)+\sum_{i=1}^{n} D_{y_{i}} z^{*}\left(x, g\left(x, \eta, \xi^{\prime}, b_{n}\right)\right) \frac{d g_{i}}{d t}\left(x, \eta, \xi^{\prime}, b_{n}\right) \\
=G\left(x, g\left(x, \eta, \xi^{\prime}, b_{n}\right), z_{\left(x, g\left(x, \eta, \xi^{\prime}, b_{n}\right)\right)}^{*}\right)
\end{gathered}
$$

Making use of the inverse transformation $\left(\xi^{\prime}, \eta\right) \mapsto g\left(x, \eta, \xi^{\prime}, b_{n}\right)=y$ and (3) we get (1). Since $z^{*} \in C_{a}^{1, L}(Q)$ obviously fulfils the mixed condition (2) this completes the proof of Theorem 2

4. Some noteworthy particular cases

Given $\hat{f}_{i}, \hat{G}: E_{a} \times \mathbb{R} \rightarrow \mathbb{R}(i=1, \ldots, n)$ let us consider the differential-integral equation with deviated argument

$$
\begin{align*}
D_{x} z(x, y)= & \sum_{i=1}^{n} \hat{f}_{i}(x, y, z(x, y), z(\alpha(x, y), \beta(x, y))) D_{y_{i}} z(x, y) \tag{22}\\
& +\hat{G}(x, y, z(x, y), z(\alpha(x, y), \beta(x, y)))
\end{align*}
$$

where $\alpha: E_{\bar{a}} \rightarrow \mathbb{R}$ and $\beta: E_{\bar{a}} \rightarrow \mathbb{R}^{n}$. We give sufficient conditions for the existence and uniqueness of solutions of the problem (22),(2).

Assumption (\mathbf{H}_{5}). Suppose the following:
$1^{\circ} \hat{f}=\left(\hat{f}_{1}, \ldots, \hat{f}_{n}\right) \in C\left(E_{a} \times \mathbb{R} \times \mathbb{R} ; \mathbb{R}^{n}\right)$ and $\hat{G} \in C\left(E_{a} \times \mathbb{R} \times \mathbb{R} ; \mathbb{R}\right)$ are functions of the variables (x, y, z, p), and the derivatives $D_{y} \hat{f}, D_{z} \hat{f}, D_{p} \hat{f}, D_{y} \hat{G}, D_{z} \hat{G}$ and $D_{p} \hat{G}$ exist on $E_{a} \times \mathbb{R} \times \mathbb{R}$.
$\mathbf{2}^{\circ}$ There exist non-decreasing functions $\hat{L}_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}(i=0,1,2)$ such that

$$
\begin{aligned}
& |\hat{f}(x, y, z, p)| \leq \hat{L}_{0}(q), \quad|\hat{f}(x, y, z, p)-\hat{f}(\bar{x}, y, z, p)| \leq \hat{L}_{1}(q)|x-\bar{x}| \\
& \left|D_{y} \hat{f}(x, y, z, p)\right| \leq \hat{L}_{1}(q), \quad\left|D_{z} \hat{f}(x, y, z, p)\right| \leq \hat{L}_{1}(q), \quad\left|D_{p} \hat{f}(x, y, z, p)\right| \leq \hat{L}_{1}(q)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|D_{y} \hat{f}(x, y, z, p)-D_{y} \hat{f}(\bar{x}, \bar{y}, \bar{z}, \bar{p})\right| \leq \hat{L}_{2}(q)[|x-\bar{x}|+|y-\bar{y}|+|z-\bar{z}|+|p-\bar{p}|] \\
& \left|D_{z} \hat{f}(x, y, z, p)-D_{z} \hat{f}(\bar{x}, \bar{y}, \bar{z}, \bar{p})\right| \leq \hat{L}_{2}(q)[|x-\bar{x}|+|y-\bar{y}|+|z-\bar{z}|+|p-\bar{p}|] \\
& \left|D_{p} \hat{f}(x, y, z, p)-D_{p} \hat{f}(\bar{x}, \bar{y}, \bar{z}, \bar{p})\right| \leq \hat{L}_{2}(q)[|x-\bar{x}|+|y-\bar{y}|+|z-\bar{z}|+|p-\bar{p}|]
\end{aligned}
$$

for $(x, y),(\bar{x}, y),(\bar{x}, \bar{y}) \in E_{a}$ and $z, \bar{z}, p, \bar{p} \in \mathbb{R}$ with $|z|,|\bar{z}|,|p|,|\bar{p}| \leq q$.
$\mathbf{3}^{\circ}$ There exist non-decreasing functions $\hat{M}_{\mathbf{i}}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}(i=0,1,2)$ such that \hat{G} fulfils conditions analogous to those given in 2°, with $\hat{L}_{\mathbf{i}}$ replaced by $\hat{M}_{\mathbf{i}}$, respectively.
4° For every $q \in \mathbb{R}_{+}$there is $\delta(q)>0$ such that $f_{i}(x, y, z, p) \geq \delta(q) \quad(i=1, \ldots, n)$ for $(x, y, z, p) \in E_{a} \times \mathbb{R} \times \mathbb{R}$ with $|z|,|p| \leq q$.
5° The consistency condition

$$
\begin{gathered}
D_{x} \phi(x, y)-\sum_{i=1}^{n} \hat{f}_{i}(x, y, \phi(x, y), \phi(\alpha(x, y), \beta(x, y))) D_{y_{i}} \phi(x, y) \\
\quad=\hat{G}(x, y, \phi(x, y), \phi(\alpha(x, y), \beta(x, y)))
\end{gathered}
$$

holds true on $\left(E_{0}^{*} \cup \partial_{0} E_{a}\right) \cap E_{a}$.
Assumption (\mathbf{H}_{6}). Suppose the following:
$1^{\circ} \alpha \in C\left(E_{a} ; \mathbb{R}\right)$ and $\beta \in C\left(E_{a} ; \mathbb{R}^{n}\right)$ are functions of the variables (x, y) such that $(\alpha(x, y)-x$, beta $(x, y)-y) \in B$ for $(x, y) \in E_{a}$.
2° The derivatives $D_{y} \alpha$ and $D_{y} \beta$ exist on E_{a}, and there are constants $\hat{N}_{i}, \hat{P}_{i} \in$ $\mathbb{R}_{+}(i=1,2)$ such that

$$
|\alpha(x, y)-\alpha(\bar{x}, y)| \leq \hat{N}_{1}|x-\bar{x}| \quad \text { and } \quad|\beta(x, y)-\beta(\bar{x}, y)| \leq \hat{P}_{1}|x-\bar{x}|
$$

on E_{a} and

$$
\left\|D_{y} \alpha\right\|_{0} \leq \hat{N}_{1}, \quad\left\|D_{y} \beta\right\|_{0} \leq \hat{P}_{1}, \quad\left\|D_{y} \alpha\right\|_{L} \leq \hat{N}_{2}, \quad\left\|D_{y} \beta\right\|_{L} \leq \hat{P}_{2}
$$

Theorem 3. If Assumptions $\left(H_{1}\right),\left(H_{5}\right)$ and $\left(H_{6}\right)$ are satisfied, then there are $Q_{i} \in \mathbb{R}_{+}$with $Q_{i}>\Lambda_{i} \quad(i=0,1,2)$ such that for sufficiently small $\bar{a} \in(0, a]$ the problem (22), (2) has a unique solution on $E_{\bar{a}}$ in the class $C_{\bar{a}}^{1, L}(Q)$.

Proof. If we define the function $f=\left(f_{1}, \ldots, f_{n}\right)$ by

$$
f(x, y, w)=\hat{f}(x, y, w(0,0), w(\alpha(x, y)-x, \beta(x, y)-y))
$$

for $(x, y, w) \in E_{\bar{a}} \times C(B ; \mathbb{R})$, then the relations

$$
\begin{aligned}
D_{y} f(x, y, w)= & D_{y} \hat{f}(x, y, w(0,0), w(\alpha(x, y)-x, \beta(x, y)-y)) \\
& +D_{p} \hat{f}(x, y, w(0,0), w(\alpha(x, y)-x, \beta(x, y)-y)) \\
& \times\left[D_{x} w(\alpha(x, y)-x, \beta(x, y)-y) D_{y} \alpha(x, y)\right. \\
& \left.+D_{y} w(\alpha(x, y)-x, \beta(x, y)-y)\left(D_{y} \beta(x, y)-1\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
D_{w} f(x, y, w) \circ h= & D_{z} \hat{f}(x, y, w(0,0), w(\alpha(x, y)-x, \beta(x, y)-y)) h(0,0) \\
& +D_{p} \hat{f}(x, y, w(0,0), w(\alpha(x, y)-x, \beta(x, y)-y)) \\
& \times h(\alpha(x, y)-x, \beta(x, y)-y)
\end{aligned}
$$

where $(x, y, w) \in E_{\bar{a}} \times C^{1}(B ; \mathbb{R})$ and $h \in C^{1}(B ; \mathbb{R})$, imply that f fulfils Assumption (H_{2}) with the functions

$$
\begin{aligned}
L_{0}(q)= & \hat{L}_{0}(q) \\
L_{1}(q)= & \hat{L}_{1}(q)\left[2+q\left(\hat{N}_{1}+\hat{P}_{1}+1\right)\right] \\
L_{2}(q)= & \hat{L}_{2}(q)\left\{1+\left[1+q\left(\hat{N}_{1}+\hat{P}_{1}+1\right)\right]^{2}\right\} \\
& +\hat{L}_{1}(q)\left[q\left(1+\hat{N}_{1}+\hat{P}_{1}\right)+q\left(1+\hat{N}_{2}+\hat{P}_{2}\right)\right] .
\end{aligned}
$$

Analogously, the function G defined by

$$
G(x, y, w)=\hat{G}(x, y, w(0,0), w(\alpha(x, y)-x, \beta(x, y)-y))
$$

for $(x, y, w) \in E_{\bar{a}} \times C(B ; \mathbb{R})$ fulfils Assumption $\left(H_{3}\right)$ with the functions

$$
\begin{aligned}
M_{0}(q)= & \hat{M}_{0}(q) \\
M_{1}(q)= & \hat{M}_{1}(q)\left[2+q\left(\hat{N}_{1}+\hat{P}_{1}+1\right)\right] \\
M_{2}(q)= & \hat{M}_{2}(q)\left\{1+\left[1+q\left(\hat{N}_{1}+\hat{P}_{1}+1\right)\right]^{2}\right\} \\
& +\hat{M}_{1}(q)\left[q\left(1+\hat{N}_{1}+\hat{P}_{1}\right)+q\left(1+\hat{N}_{2}+\hat{P}_{2}\right)\right] .
\end{aligned}
$$

Then we choose $Q_{i}>\Lambda_{i}(i=0,1,2)$ such that Assumption $\left(H_{4}\right)$ holds true, and our claim follows by Theorem 2

Remark 5. The equation with a deviated argument considered by Eichorn and Gleissner [11] is a special case of (22).

Remark 6. With \hat{f} and \hat{G} as in equation (22) consider the differential-integral equation

$$
\begin{align*}
D_{x} z(x, y)= & \sum_{i=1}^{n} \hat{f}_{i}\left(x, y, z(x, y), \int_{B} z(x+t, y+s) d t d s\right) D_{y_{i}} z(x, y) \\
& +\hat{G}\left(x, y, z(x, y), \int_{B} z(x+t, y+s) d t d s\right) \tag{23}
\end{align*}
$$

If we define the functions f and G by

$$
\begin{aligned}
f(x, y, w) & =\hat{f}\left(x, y, w(0,0), \int_{B} w(t, s) d t d s\right) \\
G(x, y, w) & =\hat{G}\left(x, y, w(0,0), \int_{B} w(t, s) d t d s\right)
\end{aligned}
$$

for $(x, y, w) \in E_{\bar{a}} \times C(B ; \mathbb{R})$, then it is also easy to formulate assumptions on \hat{f} and \hat{G} in order to get an existence and uniqueness theorem for problem (23),(2) as a particular case of problem (1),(2).

References

[1] Abolina, V. E. and A. D. Myshkis: Mixed problems for semilinear hyperbolic system on a plane (in Russian). Mat. Sbornik 50 (1960), 423-442.
[2] Bassanini, P.: On a boundary value problem for a class of quasilinear hyperbolic systems in two independent variables. Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 343-372.
[3] Bassanini, P.: Su una recente dimostrazione cirza il problema di Cauchy per sistemi quasi lineari iperbolici. Boll Un. Mat. Ital. (5) 13-B (1976), 322 - 335.
[4] Bassanini, P. and M. C. Salvatori: Problemi ai limiti per sistemi iperbolici quasilineari e generazione di armoniche ottiche. Riv. Mat. Univ. Parma 4 (1979), 55-76.
[5] Bassanini, P. and M. C. Salvatori: Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico. Boll. Un. Mat. Ital. (5) 18-B (1981), 785-798.
[6] Cesari, L.: A boundary value problem for quasilinear hyperbolic systems. Riv. Mat. Univ. Parma 3 (1974), 107 - 131.
[7] Cesari, L.: A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Ann. Scuola Norm. Sup. Pisa 4 (1974), 311-358.
[8] Człapiński, T.: On the Cauchy problem for quasilinear hyperbolic differential-funcyional systems in the Schauder canonic form. Disc. Math. 10 (1990), 47-68.
[9] Czlapiński, T.: A boundary value problem for quasilinear hyperbolic differential-functional systems. Atti Sem. Mat. Fis. Univ. Modena 38 (1990), $39-58$.
[10] Czyżewska-Ważewska, M., Lasota, A. and M. C. Mackey: Maximizing chances of survival. J. Math. Biol. 13 (1981), 149 - 158.
[11] Eichorn, W. and W. Gleissner: On a functional differential equation arising in the theory of the distribution of wealth. Aequat. Mat. 28 (1985), 190-198.
[12] Jaruszewska-Walczak, D.: Existence of solutions of first order partial differential-functional equations. Boll. Un. Mat. Ital. (7) 4•B (1990), $57-82$.
[13] Kamont, Z.: Existence of solutions of first order partial differential-functional equations. Comment. Math. 25 (1985), 249-263.
[14] Kamont, Z. and K. Topolski: Mixed problems for quasilinear hyperbolic differential-functional systems. Math. Balk. 6 (1992), 313-324.
[15] Myshkis, A. D. and A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables (in Russian). Diff. Urav. 17 (1981), 488-500.
[16] Turo, J.: Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables. Ann. Polon. Math. 49 (1989), 256 - 278.

Received 22.07.1996; in revised form 14.01.1997

