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On the Mixed Problem for 
Quasilinear Partial Differential-Functional Equations 

of the First Order 
T. Cz}apiñski 

Abstract. We consider the mixed problem for the quasilinear partial differential-functional 
equation of the first order 

Dz(x,y) =	f(x, y, z(5) )Dy1 z(x, y) + G(x, y, 

z(x,y) = 4(r,y)	((x,y) E [-r,aj x [-b,b + hi \ (O,aI x (-b,b)) 

where Z(r,y) (-r,O1 x [O,h] ̂  IR is a function defined by z( , 5) (t,$) = z(x + t,y + s) for 
(t,$) e [-r,O) x [O,h]. Using the method of characteristics and the fixed-point method we 
prove, under suitable assumptions, a theorem on the local existence and uniqueness of solutions 
of the problem. 
Keywords: Partial differential-functional equations, classical solutions, local existence, bichar-

acteristics, fixed-point theorem 
AMS subject classification: 35F30, 35L60, 35R10 

1. Introduction 
If X, Y are any metric spaces, then we denote by C(X; Y) the class of all continuous 
functions from X to V. Let B = [-T, 01 x [0, h], where h = (h 1 ,.. ,h) E R n and 
T E R+, with R+ = [0, +). For a given function 

z: [-T, a] x [-b,b+ h] .-+ IR 

where a > 0 and b = (b 1 ,.. . ,b,), with b > 0 (i = 1,... ,n), and a point (x, y) 
(x, y',. . . , yr,) E [0, al x [-b, b], we define the function Z(zy) : B - IR by the formula 

Z( 1, )(t, s) = z(x + t, y + s)	((t, s) E B). 

Define
90E = [0,ã] x [-b,b+hI.\[0,a] x [-b,b) 

E5 = [0, a] x [-b, b] 

= [-r,ä] X [-b,b+h] 
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for any a e [0, a]. 

For given functions

: E U ôoEa .' R 

G: E0xC(B;IR)—'R 

f=(fi,...,f): EaxC(B;R)-4R'1 

we consider the following mixed problem: 

n 
Dz(x, y) = > f1 (x, y, z(1,) )D z(x, y) + G(x, !/ Z())	 (1)

i= 1 
z(x,y) =cb(x,y)	((X, Y) E EUôoEa).	 (2) 

In this paper we consider classical solutions of problem (1),(2) local with respect to 
the first variable. In other words, a function z E C'(E;R) is said to be a solution of 
problem (1),(2) if it satisfies equation (1) on Ed and fulfils initial-boundary condition 
(2) on E U ao Ed , for a certain a E (0, a]. 

Note that in equation (1) the given functions f and G are functional operators 
on C(B; R) with respect to the last variable. This model of functional dependence 
contains as a particular case equations with a deviated argument, and if r h = 0 
equations without any functional dependence. In non-functional setting generalized 
(in the "almost everywhere" sense) solutions of quasilinear systems with Cauchy and 
boundary conditions have been discussed in [1, 6, 7), while continuous solutions (i.e. 
solutions satisfying integral systems arising from differential equations by integrating 
along characteristics) of mixed problems have been discussed in [1, 15]. 

As a particular case of (1) we may also obtain some differential-integral equations 
and equations with operators of the Volterra type (cf. [16]). Classical solutions of 
quasilinear systems with such operators were investigated in [8, 91. From the literature 
concerning other problems for first order partial differential-functional equations where 
classical solutions are considered we refer here to the papers [12, 13]. Differential-integral 
problems are often used as mathematical models of various problems in nonlinear optics 
[4, 5] and may be used to describe the growth of a population of cells [10]. Differential 
problems for equations with a deviated argument arise in the theory of the distribution 
of wealth [11]. 

In this paper we prove a theorem on the local existence and uniqueness of solutions 
of the mixed problem (1),(2). Our result is analogous to that of [14] for generalized 
solutions of weak-coupled systems in two independent variables. We use the well known 
method of bicharacteristics (cf. [2, 3, 8, 14]) and the Banach fixed point theorem.
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2. Bicharacteristics 

If II 11° denotes the supremum norm in C(X; Y), where X is a domain in R' and Y is 
an Euclidean space, then the norm in C 1 (X; Y) is defined by II w Mi = IIwIIo+IID(z,y)wIIo, 
where D ( )w denotes the Jacobi matrix of w. For any w E C(X; Y) let 

II W IIL 	SUP {Iw(X)Y)_W(X,Y)I. [IX — l+I y —I]' : (x,y),(±,)EX}. 

If we put II w IIo,L = li w ilo + li w ilL and II w IIl,L = li w ili + II D(,)w IIL, then we denote by 
Ct L (X; Y) (i = 0, 1) the space of all functions z E C(X; Y) such that I IZlli,L < +00 

with the norm II 
Assumption (H 1 ). Suppose that 0 E C'(E UOoEa;R) and that 

IkIIo	A0,	II D IIo	Ai,	II DycIIo	Ai,	II Dz4IIL :^ A2,	II DvIIL 5 A2, 

where A 0 , A 1 , A2 are given non-negative constants. 

Supposed that Assumption (H 1 ) is satisfied and given non-negative Qo, Q1, Q2 such 
that Q ^! A, (i = 0,1,2) we will denote by C"(Q), where a e (0,a], the set of all 
functions z E C(Ea; R) such that 

(i) z(x,y) = (x,y) on E uôoE 

(ii) jjzjjo	Qo, iI Dz ilo	Qi, Il Dz Ilo	Qi, 1I D1 Z I1L	Q, iiDy zII i.. !^ Q2. 

Assumption (H 2 ). Suppose the following: 

1 0 1 = (1',. . . ,f) E C(EU x C(B; R); R') is a function of the variables (x, y, 
and the derivatives Df and Df exist on Ea X C 1 (B; R). 

2° There exist non-decreasing functions L0 , L 1 , L2 :	- R+ such that for all 
(x,y),(±,) E E0 we have 

f(x , y , w )i :5 Lo (q)	(w E C(B;R), li w ilo	q) 

f(x, y, w) - f(± , y, w)i	L ( q )i x -±1	(w E CoL(B; R), ii w iio,L !^ q) 

D f(x , y , w )I, ii Dwf(x , y , w )ll < L i (q)	(wE C'(B;R), li w lli	q) 

and
IDf(x,y,w) - D f(,, ü )I 5L2 (q)(ix - 2 + I - I + 11W - th1101 

iiDf(x , y, w) - D f(, , )ii :5 L2 (q)[ix -:ii + Ii - l + 11 w - tillo] 

where w,ü E C'"(B;R) with ii W ii l , L , ii W Ill,L	q. 

3° For every q E R there is S(q) > 0 such that f, (x, y, w) ^! (q) (i = 1,... , n) 
for (x,y,w) € E. x C(B;R) with 11w 11 0	q.
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For a fixed z E C"(Q), where a E (0,a], and for any (x, Y) E Ea, we consider the 
Cauchy problem

P(t) = —f(t, p(t), Z(j(j)))	
(3) 

dt p(x)=y.	 J 

If Assumption (H2 ) is satisfied, then there exists a unique solution of problem (3) which 
we denote by

g[z](.,x,y) = (g1[z](.,x,y),.. . 

Let A[z](x, y) be the left end of the maximal interval on which the solution g[z( . , x, y) 
is defined. Then

( A [z]( x , y), g[zI(A[z](x, y), x, y)) E (E U a0 E) fl E 

because of condition 30 of Assumption (11 2 ) and we may define the following two sets: 

Eao[z] =	E Ea:A [z](x,y) = o} 

Eao[z] = ( X 7 Y) E Ea g1[z](A[z](x,y),x,y) = bi for some 1	i 

Furthermore, we define the constants 

= Laexp{L[1 + Qi]a} 

r i a = (1 + L)exp{L[1 + Q1]a} 

2a = { L;[1 + Qi]( 1 + r 1 ) + [L 2* [ 1 + Qi) 2 + L]ra} exp{L[1 + Q1]a} 

where L = L( 0 Q3), for i = 0,1,2. 

Lemma 1. Suppose that Assumption (H2 ) is satisfied, z,z E C"(Q), and (x, y), 
E Ea. If the intervals 

K1 = [max{A[z](x, y), .\[z](, )}, min{x, }] 

K2 = [max { X [zl( x , y), X[](x, y)}, x] 

are non-empty, then we have the estimates 

I Dg [z1(t , x, )l	r1,	Dy g[z](t, x, y) 

Dg[z](t,x,y) - Dz g [z1(t,.2,)l <	- I + Il/ —VI] 

Dg[z](t,x,y) - Dg[z](t,,)I	- I + I - I] 

g[z](t,x,y) _g[](i,x,y)	r I z - IIo

if t E [A[zJ(x,y),x] (4) 

iftEKi (5) 

iftEKi (6) 

iftEK2 . (7)
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Proof. Let g = g[z] and = g[i]. It follows from classical theorems on differenti-
ation of solutions with respect to initial data that the derivatives Dg and Dg exist 
and fulfil the integral equations 

D1 g(t, x, y) = f(x, 1/, 

- f [Dy f(Pr ) + D f(P ) 0 (Dyz)(rg(rzy))JDzg(T,x,y)dT 

Dg(t,x,y) = i	[Df(Pr) + Dwf(Pr) 0 (DYZ)(rg(rry))]Dyg(T,X,Y)dT 

for t E [A[zj(x,y), x] and (x, y) E E, where I denotes the identity matrix and P- 
(TI g(r,x)y),z(9(f))). Hence, by Assumption (H 2 ), we have 

Dg(t,x,y)I <L +	L[1 +Qi]IDg(T,x,y)Idr 

IDg(t,x,y)I <1 + jL[1 + Qi] IDyg(T,x,y)IdT 

from which (4) follows by the Gronwall lemma. Analogously, by Assumption (H 2 ) and 
(4), we get

Dg(t, X, y) - D1 g(t, ±, 

<L;[1 + Qi] [I x - xl + I - I] 
+	

L[1 + Q 1 1 1 dr 

+	
{L;[1 + Q ' ] 2 + L } r 2 a [I x - I + I - I] dT 

+	L[1 + Q1flDg(T,x,y) - D1g(7,±,)dr 

and
Dg(t,x,y) - 

^
	L, [1 + Q1)I'Ia dT 

+
	L2* [1 + Q] 2 + L }r [l x - I + I - I] dr 

+	L[1 + Q 1 ]Dg(r,x,y) - Dy g(r , i , Y)j dr 

for t E K 1 , from which (5) and (6) follow by the Gronwall lemma. In the same way we 
may get for t E A 2 the estimate 

g(t,x,y) -

Lz - zIIEdT +	
L[1 + Q1]g(7*,x)y) - (r,x,y) dr 

from which using again the Gronwall lemma we get (7) which completes the proof of 
Lemma 1 1
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Lemma 2. If Assumption (H2 ) is satisfied and z C"(Q), then A[z] is piecewise 
of class C' on Ea & [z) and 

A[z](x, y) - A[z)(±,	<ri [ -xi +  I - 9 1]	 (8)

for (x, y) € Eab[z], where 5 = ö(Qo). 
Proof. In the proof of this lemma, for simplicity, we will write A and g instead of 

A[z] and g[z], respectively. Note that A is defined by the relation 

9i (A(-, y), x, y ) = b,	((x, y ) € Esb[z]) 

for some 1 <i n. Thus, since gj is of class C 1 and	0, we see by the theorem on 
dt 

implicit differentiation that A is locally of class C', and its partial derivatives are given 
by the formulas 

D A(x,	
Dg1(A(x,y),x,y)	

(9)
f (A(x, y), g(A(x, y), X, y ), 0 (A(z,y)g((x,y),z,y))) 

DA(x,	
=	

D591(A(x,y),x,y)	
(10) 

 f (A(x, y), g(A(z, y), X, y ), (A(zy)g(A(xy)x,y))) 

From the above relations we get 

IDA(x,y)I <ria	and	ID5A(x,y)I 

which gives (8)1 
Remark 1. Note that from the proof of Lemma 2 it follows that A[zJ is of class C1 

on each of the sets {(x ) y) € Eab[z] g[z1(A[z(x,y),x,y) = b} (1	i	n). 

Lemma 3. If Assumption (H2 ) is satisfied and z, z € C"(Q), then we have 

1 

	

A[z](x,y) - A[](x,y)I < —Fz -	 (11) - 
on E. 

Proof. Since (11) is obviously satisfied if (x, y) E Edo [z] fl Ed o [z], without loss of 
generality we may assume that A[E](x,y) < A[z](x,y) and (x, y) € Eab[z]. Let 1 i n 
be such that g1[z](A[z](x,y),x,y) = b. Then we have 

9i [z] (A[z](x, y), x, y) - g1[] (A[z](x, y), x, 1/) 
^ g](A[](x, y), x, y) - g 1 [1(AEz](x, y), x, I') 

AMCC , Y) 
=
 J f (T ) 9j1(r, x, j ) Z(r,g[i)(r,z,y))) dT 

A[)(z,y) 

^	[A[z](x, y) - A[](x, y)]. 

The above estimate together with 

0	91[z](.)4z(x,y),x,y) - g[](A[z](x,y),x,y) 5 ra liz - IIo 
gives (11) 1
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Remark 2. Note that condition 30 of Assumption (H2 ) is essential in the proof of 
Lemma 3. In Lemma 2 it suffices to assume that f1 (x, y, w) ^: 6(q) for (x, y) E E6 such 
that y = b1 for some 1 <i <n and f(x,y,w) >0 on E. x C(B;R) while in Lemma 1 
only the latter condition is necessary. 

3. The main result 

Now we prove a theorem on existence and uniqueness of solutions of the mixed problem 
(1),(2). 

Assumption (H3 ). Suppose the following: 

1 0 G E C(Ea x C(B; IR); R) is a function of the variables (x, y, w), and the deriva-
tives DG and DG exist on Ea X C'(B;IR). 

2 0 There exist non-decreasing functions M0 , M1 M2 : IR+ - R+ such that G fulfils 
conditions analogous to those given in 2 0 of Assumption (H 2 ), with Li replaced by M1, 
respectively. 

3° The consistency condition 

It 

	

D1 çb(x,y) - >fI(x , y ,cb (Z,y))Dy qt (x , y) = G(x,y,cb(,))	(12) 

i= I 

holds true on (E U 30 E0 ) fl Ea. 

We define the operator W on C" (Q) by the formula 

(Wz)(x,y) = 

(	(A[z](x,y),gz](\(z](x,y),x,y)) 

I +	G(i, gz](t, x, y), z(j,9[Z](t,,))dt 
for (x, y) € E5	 (13) 

A[z](z ,y) 

( X , Y)	 for (x, Y) E E U 8o Ea. 

Remark 3. The right-hand side of (13) arises in the following way. We consider 
(1) along bicharacteristics

n 
Dz(t, gz](t, x, y)) -	f (t, g[z](i, x, y), Z(t,g[zl(t,z,y)))Dy, z(t, g[z](t, x, y)) 

i=I 

G(i, g[--](t, x, y), Z(l,9[)(,,))) 

from which by (3) we get 

g[zj(t, x, y)) = G(t, g[z](i, x,y), Z(,9[](t,,))). 
dt
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Integrating this equation with respect to t on the interval [A[z](x,y), x] we get the 
righ-hand side of (13). 

Assumption (H 4 ). Suppose that 

Qo > A0 

Qi > A 1 (1 + L) + M 

Q2 > A 2 [(i + L) + i] (1 + Lo )2 + A 1 [L(1 + Lo )2 + L[l + Q](2 + L)] 

+ M[1 + Qil + [1+ (1 + L0 )] Mç[i + Q ' j(l + Lo) 

where M = M( 0 Q), for z = 0,1,2. 

Define the constants 

S0Ü = A + ãM 

510 = A, F l a + M' + aM'j1 + Qi]Fia 

S2 a = A2 
1 6. (1 + L) +	+ A1 I_L*r2 + r2a] I	lã 

	

+ M[1 +	+ [ + r id 	+ QiJri 

+a[i;'+Q 1)
 Q,)

i 2 r2 +MQ2r1+M[1+Q1]r2]. 

Remark 4. Note that since 

	

urn r1 = 1 + L	and	urn f2a = L[1 + Q](2 + L) 
ã0+ 

we may by Assumption (H 4 ) choose a e (0, al sufficiently small in order that S0 
for z	0, 1,2. 

Theorem 1. If Assumptions (H 1 ) - (H3 ) are satisfied, then for a E (0,a] suffi- 
ciently small the operator W defined by (13) maps C"(Q) into itself. 

Proof. Let z E C"(Q). As in the proof of Lemma 2, for simplicity, we will write 
.\ and g instead of A[z] and gjz], respectively. From (13) it follows that 

D(Wz)(x, y)	D0(0, g(0, x, y))D1 g(0, x, y) + G(x, y, z())
 

+ j

Z 

[DyG(Pt ) + Da(P) 0 Dz] Dg(t, x, y) dt	
(14)

 

and
D(Wz)(x,y)	D4(0,g(0,x.y))Dg(0,x,y)

(15) 
+ j [D,G(Pi ) + DG(Pj) 0 Dz] Dg(t, x, y) dt
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on Eo[z], where P = ( i,g(t,x,y),z(j9(j))). Suppose that (x,y) E Eab[zJ, which 
means that g,(A(x, y), x, y) = b3 for some 1 <j n. From (13) and (3) we have then 

D(Wz)(x, y)	Dct.(\(x, y), g(\(x, y), x, y))DA(x, y) 

+	D5((x,y),g(A(x,y),x,y)) 

x [- fI(PA( ) )D1 \(x,y) + D1g(A(x,y),x,y)] 

+ G(x,y,z(1)) - G(PA(,))D\(x,y) 

+ f	[DyG(Pt) + DG(P,) 0 (Dyz)(,g(t,x,y))]Drg(t,x,y)dt. 
J)(zy) 

Using consistency condition (12) and (9) we may transform the above relation into the 
form

D(Wz)(x, y) 

= D, /(.\(x, y), g()(x, y), x, y))fj(PA( ) )D1 )%(x, y) 

+	D	(x, y), g(A(x, y), x, y))Dg(x, y), x, y) 

+ G(x, y,Z(,y))	 (16) 

+f'
	

DyG,) + DWG(Pt ) o (Dz)(t,g(j,r,y))] Dg(i, X, y) dt 
A(r y) 

= Dq5((x, y), g(A(x, y), x, y))Dg(.X(x, y), x, y) + G(x, j, 
Pr 

+ I	[DyG(Pz) + DG(P1 ) 0 (Dyz)(:,g(t,ry))J Dg(i, x, y) di. 
JA(zy) 

Analogously, by consistency condition (12) and (10), we get 

D(Wz)(x. y) 
= D)(x, y), g(A(x, y), x, ?J))Dg(A(x, y), x,	

(17)Pr 

+ 
j[Dy G(Pt ) + D,G(P) 0 (Dyz)(tg(,z,y))] Dg(i,x,y)dt. 

A(r y)  

Note that the right-hand sides of (16) and (17) do not depend on 1	j	n, which
means that Wz is of class C' on Eab[z]. 

It is obvious that Wz is continuous on E and that 

D(Wz)(0,y) = D5 (0,0,y) = D5c6(0,y) 

for y E [—h, b]. Moreover, the relation 

D(Wz)(0,y) = D(0,y)D 1 g(0,0,y) + C(0,y, ( o ) ) = D(0, y)



472	T. Cz+apitiski 

for y E [—b, b] follows from (14) and from the consistency condition (12). Analogously, 
(16) and (17) give

Dy (Wz)(x,y) = Dy(x,y)Dg(x,x,y) = D4(x,y) 

and
D(Wz)(x,y) = Dcb(x,y)D 1 g(x,x,y) + G(x,y, (1) ) = D(x,y) 

for (x, y) E Ea such that y1 = b1 for some 1 i n. In order to get Wz e C'(E;R) 
it remains to prove that formulas (14),(15) and (16),(17) define the same values for 
(x,y) E Eao[z) fl Eab[z], but this is obvious since A(x,y) = 0 in this case. 

Now we prove that 

I(W'z)(x, )I < Qo, ID(Wz)(x, )l < Qi, ID(Wz)(x, )I <	( 18)

on E. From (13), (16) and (17) we have 

fA
x(Wz)(x,y)I Ao +	 Mdi So
z,y) 

ID(Wz)(x,y)I A i F i a + M + fAx	
M1 + Qi] r ia di S1

x,y) 

ID(Wz)(x, )I <AF + 
fAx 

M[1 + QJr 1 dt 
z ,y) 

on Eab[z]. Note that since the integral f;() is estimated by f0a the above estimates 
will still be valid on Eo[z]. Taking a sufficiently small in order that So Qo and 
S i a 5 Qi we get (18) for all (x,y) E E. Since A 0 <Qo and A 1 < Q ' we see that (18) 
hold true for all (x, y) E E. 

Finally, we prove that 

D(Wz)(x, y ) - D(Wz)(±,	< Q [I x - ± 1 + 1Y -
(19) 

D(Wz)(x,y) - D(Wz)(±,)I	Q [I x - I + I  - I] 

on E. For (x,y),(5,) E Eab[z] we have 

D ( Wz )( x , y ) - D(Wz)(2,) 

<D(A(x, y), g((x, y), x, y)) Dg(A(x, y), x, y) 

- 

+ G(x, y, z ( . , y ) ) - G(±, y, Z()) 

+ J' [D9 G() + DG() 0
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fA(X,y) 

+
 
J+ DG(P1 ) o Dz(i, g(t, 5, ))1 D1 g(t, 2, ) dt 

A(z,y) 

+
 f { 

[Dc(	+ DG() o Dz(t, g(t, 2, p))] D9 (t, 2, ) 
A(r,y) 

- [DG(13 ) + DG( 1 ) 0 Dyz(t,g(t,±,))]Dg(t,±,V)}dt 

{A2 {(1+L)+1Jf+A i {_Lir+r2J 

+ M[1 + Qi] + 1+ r iii M[1 + Q1]r1 

+ f [;i + ] 2 r + MQ2 F 1 + M[1 + Qi] F2a] dt } [ I x — 2 1 + ly - I] 

where P1 = (t,g(t,2,),z(19(j))). Analogously we get the estimate 

Dy (Wz)(x,y) - D(Wz)(2,) 

	

<{A2 1(1 + L) + 1]	+ A 1	 + r2, 	+ Qi]fia 

+ f [i + Q 1 ] 2 r + MQ2FI + M[1 + Qi]F2a] dt} [I x -xi + IY - IJ. 

The above estimates hold true also in the case (x,y),(5,) E E o[z], or (x, y) E Eoo[z] 
and (5, ) E Eab[z ] . Taking a sufficiently small in order that S2a Q2 and making use 
of the relation A 2 < Q2 we get (19), which completes the proof of Theorem 11 

Theorem 2. If Assumptions (H 1 ) - ( H4 ) are satisfied, then for sufficiently small 
a E (0, a] the problem (1), (2) has a unique solution on E in the class C"(Q). 

Proof. We prove that for sufficiently small a E (0,a] the operator W: C"(Q) 
C(Q) is a contraction. Indeed, if z,E E C"(Q), g = g[z], = g[E],. A = A[z] and 
A = A[s], then we have 

Wz(x,y) - Wz(x,y) 

<(A(x, y), g(A(x, y), x, y)) -	(x, y),	(x, y), x, y)) 

+ 
JG(t, g (t, x, y), Z(l(t , ))) dt 

A(z,y) 

+
 
JG(t, g(t, x, y), z(lg(lzy))) - G(t, g(t, x, y), 5(tg(txy))) dt 

A(z,y) 

	

A 1 [(1 + Lo)IA(x,y)	A(x,y)j + g(A(x,y),x,y) - g(A(x,y),x,y)I] 

+MA(x,y) - 

+ j M{1 + Q i jg(t,x,y) - (t,x,y) + Z(t,g(t,x,y))
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from which by (7), (11) and the obvious relation (Wz)(x,y) = (W)(x,y) on EUô0E 
we obtain

IIWz - W0	SaII z - IIo 
where

Sa=Ai[(1+Lfl+1Jfa+Mora+aMi{r[1+Qi]+1}. 

Since lima_o+ Sa = 0 we may choose a E (0,a] sufficiently small in order that S < 1. 
Consequently W is a contraction, and by the Banach theorem there exists a unique 
fixed-point of W. Denoting this fixed point by f we prove that it is a solution of 
equation (4 

For any (x, y) E Eao [z*] we have 

z*(x, y)	(0, g(0, x, y)) + I x G(t, g(t, x, y), z 9(1)) )di.	(20) 

For a fixed x we consider the transformation y '-* g(0, x, y) = e. Using this transforma-
tion and the group property (20) takes the form 

z*(x , g(x, 0, )) = (0, 0 + j 
G(i, g(t, 0, ), z9(jO)))di. 

Differentiating this equation with respect to x we get 

Dz(x,g(x,0,)) +
dt 

= G(x,g(x,0,e),z9(1O))). 
Making use of the inverse transformation -* g(x,0,) = y and (3), we get (1). 

For any (x, y) E Eab[z] we have 

	

z(x, y) = (A (x, y), g((x, y), x, y)) + J	G(i, g(t, x, y), z l9(jZ)) )d.	(21) 
A(z,y) 

For simplicity of notation suppose that g(A(x, y), x, y) = b 1 for i = n, and write 

C = (es,. . . ,efl - I)	and	g'	,gn-1). 
Fixing x and using the transformation 

-* (g'(A(x,y),x,y),A(x,y)) = (e',ii) 
we see that (21) takes the form 

z (x, g(x, q, ', b8 )) =0(17,C, b) + J G(t, g(t, 71, , be ), z(j9(1,6)))dt. 

Differentiating the above equation with respect to x we get 

D1z(x,g(x,rbn)) 

= G(x, g(x, r, ', b a ), Z(Zg(Zb,,))). 
Making use of the inverse transformation (, q) g(x,ij,,b,,) y and (3) we get (1). 
Since f E C,"(Q) obviously fulfils the mixed condition (2) this completes the proof of 
Theorem 2 1
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4. Some noteworthy particular cases 

Given f, C : Ea x JR -* JR (i = 1,.. . , n) let us consider the differential-integral equation 
with deviated argument 

Dz(x,y) =	jj(x,y)z(x,y),z(a(x,y),/3(x,y)))Dz(x,y)	
(22) 

+ d (x, y, z(x, y), z(a(x, y), /3(x, y))) 

where & : Ejj - JR and 3 : E -* JRI%• We give sufficient conditions for the existence 
and uniqueness of solutions of the problem (22),(2). 

Assumption (H 5 ). Suppose the following:	 - 

1 0 f= (Jj,...,f) E C(EO x JR x JR;JR") and O E C(EG x JR x R- R) are functions 
of the variables (x,y,z,p), and the derivatives Df, Df, Df, DU G, DG and DG 
exist on E. x JR x R. 

2° There exist non-decreasing functions L 1 : IR+ -i R+ (i = 0, 1,2) such that 

f(x , y , z , p) I <Lo(q),	J(x,y,z,p) - J(E,y,z,p)	L i (q)x - 

Df(x,y,z,p) <L i (q),	Df(x,y,z,p)	L i (q),	DpJ(x,y,z,p)	Li(q) 

and

Dyf(x , y , z , p) —D J(E ,, E,5 L2(q)[lx-EI+ly-l+lz_El+lp_l] 
Dj(x,y, z,p) - D f(, E ,	L2(q)[Ix - l + l - Yl + lz - El + l - l] 
Df(x,y,z,p) - Dpf( E ,, E ,)I	L 2 (q)[Ix - l + ki - l + lz - E + l - ui] 

for (x,y),(E,y),(E,) E E. and z,E,p,u E JR with I zI, iEi,Ipi, lul	q. 

3° There exist non-decreasing functions M :	- + (i = 0, 1,2) such that C 
fulfils conditions analogous to those given in 2°, with L 1 replaced by M1 , respectively. 

4° For every q E JR there is (q) >0 such that f1 (x,y,z,p) 2 S(q) (i = 1,... ,n) 
for (x,y,z,p) e E. x JR x JR with i z i, ii q. 

50 The consistency condition 

D1 (x,y) -	Jj(x,y,(x,y),(a(x,y),/3(x,y)))Dy(x,y) 

=	(x,y,cb(x,y),c6(c(x,y),/3(x,y))) 

holds true on (E U a, E.) fl E0. 

Assumption (H 6 ). Suppose the following:
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10 a E C(Ea;R) and fi E C(E0 ;R'1 ) are functions of the variables (x, y) such that 
(a(x, y) — x, beta(x, y) — y) EB for (x,y)E Ea. 

2° The derivatives Da and Df3 exist on Ea, and there are constants Ni , Pi E 
R (i = 1,2) such that

I iI x —I	and	0(x)y)—fl(±,y) <Pl Ix -±I 

on Ea and

I Dy a IIo	N1,	II D I3 IIo 5 151,	II D Y a IL 5 92,	II DY/3 11L	P2. 

Theorem 3. If Assumptions (H1 ), (H5 ) and (H6 ) are satisfied, then there are 
Qj E R+ with Q1 > A (i = 0,1,2) such that for sufficiently small a e (0,a] the 

IL problem (22), (2) has a unique solution on Ea in the class Ca (Q). 

Proof. If we define the function f = (1' ... , f,) by 

f(x,y,w) = J(x,y,w(0,0),w(a(x,y) - x,(x,y) - y)) 

for (x,y,w) € Ea x C(B;R), then the relations 

Df(x,y,w) = Df(x,y,w(0,0),w(a(x,y) - x,fi(x,y) - y)) 
+ Df (x,y,w(0,0),w(a(x,y) - x,8(x,y) - y)) 

[D x w(c(x,y) - x ,fl(x , y) - y)Da(x,y) 

+ Dy w(a(x,y) - x,/3(x,y) - y) (D/3(x,y) - i)] 

and

D f(x , y , w) oh = DJ(x,y,w(0,0),w(a(x,y) - x,13(x,y) - y))h(0,0) 

+ Dp f(x,y,w(0,0),w(a(x,y) - x,/3(x,y) - y)) 

x h(a(x,y) - x,8(x,y) - 

where (x,y,w) E Ea x C 1 (B;R) and h € C 1 (B;R), imply that f fulfils Assumption 
(H2 ) with the functions 

Lo(q) = Lo(q) 

L j (q) = L 1 (q)[2 + q(Ni + Pi + 1)] 

L2 (q) = L2 (q)11 + [i + q(1J1 + Pi + 1)121 

+L i (q)[q(1+111 +P1)+q(1+Z2+P2)J. 

Analogously, the function C defined by 

G(x,y,w) = 6 (x,y,w(0,0),w(a(x,y) - x,/3(x,y) - y))
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for (x,y,w) E E5 x C(B;R) fulfils Assumption (H3 ) with the functions 

Mo(q) = A1o(q) 

Mi (q) = M i (q)[2 + q(IcJi + .l i + i)] 

M2(q)=M2(q){1+ [1+q(N i +P1 +1)12) 

+Afi (q)[q(1 +IJ + Pi ) +q(i +N2 + 62)]. 

Then we choose Q > A, (i = 0, 1,2) such that Assumption (114 ) holds true, and our 
claim follows by Theorem 21 

Remark 5. The equation with a deviated argument considered by Eichorn and 
Gleissner [11] is a special case of (22). 

Remark 6. With f and G as in equation (22) consider the differential-integral 
equation

R1
 

fB	 (23) 

+a(xz(x,),J
B 

z(x+t+s)dtds). 

If we define the functions f and G by 

Ax ) y,w) = J (xw(oo),J w(t,$)dtds) 

G(x, y, w) = O (x I y, w(0, 0), 
JB 

w(t, s)dtds) 

for (x, y, w) E Ec, x C(B; R), then it is also easy to formulate assumptions on f and G 
in order to get an existence and uniqueness theorem for problem (23),(2) as a particular 
case of problem (1),(2). 
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