
Zeit.schrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications 

Volume 16 (1997), No. 2, 405-433 

A General Approach to the Mm-Max Principle 
J.-N. Corvellec 

Abstract. Following the abstract approach of [11], we give a general mm-max principle in 
critical point theory which covers the classical results and applies to a variety of settings. 
Especially, thanks to the notion of weak slope introduced in [16] and results of [12], this 
principle applies to continuous functionals and some classes of lower semicontinuous functionals 
considered in the literature.	 -	- -	- 
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1. Introduction 
In this work, we propose an abstract and systematic approach to the mm-max method 
in critical point theory. Our interest in this matter was first motivated by the exposé 
of Eilenberg [17] which introduced us to critical point theory. Further motivated by a 
result of Pucci and Serrin [26] extending to the "limit-case" the Mountain Pass Theorem 
of Ambrosetti and Rabinowitz [1), we were led to the deformation property and mm-
max principle of [11]. Allowing to "locate" mm-max critical points on an appropriately 
given set, this principle is in the same spirit as the corresponding results of Ghoussoub 
and Preiss [22] and Ghoussoub [21]. Our approach, however, is different from the one 
followed in [21, 22], based on Ekeland's Variational Principle and ideas from [29]. Our 
point of view is to obtain an abstract mm-max principle by assuming the verification 
of a simple deformation property, in analogy with the classical approach using the 
Deformation Theorem [25]. This deformation property should then be verified, under a 
local Palais-Smale type condition, in a variety of settings considered in the literature. 

Here, we improve the deformation property of [11] essentially by the use of the so-
called graph metric. This allows to perform a more systematic treatment of the abstract 
theory and to enlarge the range of application of the principle, including situations where 
the mm-max values are defined via families of non-compact sets, or where the functionals 
are not smooth. In fact, the introduction of the graph metric in the present work was 
motivated by its use in critical point theory for some classes of lower semicontinuous 
functions (see [14, 15]). 

Degiovanni and Marzocchi introduced in [16] the notion of weak slope which permits 
to do critical point theory for continuous functions defined on metric spaces, as well as for 
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some classes of lower semicontinuous functions, via their epigraph function. This theory 
has been further developed in [12], including the classical theory for C' functionals 
while extending it to functionals defined on C' Finsler manifolds. Using a slightly 
modified version of the weak slope and a deformation result of [12], it turns out that 
also our deformation property is verified, in a natural way, under the "local Palais-Smale 
condition", for a continuous function defined on a complete metric space. 

This paper is organized as follows. 
Section 2 contains the deformation property and the mm-max principle. Like the 

whole paper, they are formulated in an equivariant setting, and the principle has the 
form of a multiplicity result. Indeed, it is intended to yield, as direct consequences, the 
known results on existence and multiplicity of mm-max critical points. After recalling 
the notion of index, some corollaries are given as an intermediate step in direction of 
more specialized results. For the sake of brevity, we did not consider other possible 
refinements, such as the use of relative indices. For the same reason, the bibliography 
is limited up to the examples given in Section 4. More references can be found in the 
ones we give. 

Section 3 deals with critical point theory for non-smooth functions. We introduce 
the weak d-slope and give the deformation results for continuous functions mentioned 
above. We also show how one can adapt standard constructions to define suitable 
(sequences of) mm-max values of the epigraph function, in order that the theory be 
applicable to some classes of lower semicontinuous functions. 

In Section 4, we give several examples of settings in which the deformation property 
is verified under the local Palais-Smale condition. This is achieved either via the classical 
method of steepest descent (and requires only slight modifications of the usual proofs) 
or by estimating the weak d-slope and using the results of Section 3. We also give, 
as special cases of those of Section 2, a few examples of results (or improvements of 
results) which can be found in the literature. 

This paper was written in the first half of 1992. Since then, however, further devel-
opments and applications of the theory based on the notion of weak slope have appeared. 
We refer to A. Canino and M. Degiovanni: Nonsmooih critical point theory and quasi-
linear elliptic equations (Top. Meth. in Duff. Equ. and Incl. (Montréal 1994); NATO 
ASI Series C. Dortrecht: Kluwer, 1995, pp. 1-50) and the references therein, for a more 
recent account. 

2. The mm-max principle 

In this section, (X, d) will denote a metric space and G a group (for the composition 
of applications) of isometries from X to X, i.e. d(g(x), g ( y )) = d(x, y) for all x, y E X 
and g E G. In this situation we say that X is a G-space. As usual, we say that 

A C X	is C-invariant if g(A) A for all g E G 

h: X 	isG-invariantifhog=h for all geG 

h: X —X is G-equivariant if hog=goh for all g E G.
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We shall suppose given a C-invariant function f : X —* R and a C-invariant set K 
K(f) C X, called the set of critical points of f . As usual, we let 

Gx = {g(x): g E C} 

denote the C-orbit of x E X. If x E K, Cx is called a critical G- orbit. 

We shall mainly consider, in place of the metric d, the so-called graph metric dj 
defined by

d1(x,y) = d(x,y) + 11( x ) — f()I 

and denote by X 1 the metric space (X,dj ). For a E R we shall use the notations 
fa = {x E X 1(x) < a} (f<a,f>a and f>a being defined accordingly) and 
Ka = Kflf 1 (a). If 6 >0 and A,B C X, then B(A;8) and B1 (A;6) -are the closed 6-
neighbourhood of A in (X, d) and in X1 , respectively, with the convention that B(0; 6) = 
B1 (ø;6) = 0, and d(A,B) = inf{d(a,b) a E A and b  B}, with the convention that 
d(A, 0) = +	(d1 (A, B) being defined accordingly). 

Since I is C-invariant, C is a group of isometries of X j . Hence, setting 

E1 C = { A C X: A is closed in Xj and C_invariant} 

we have that A fl B, A U B, A \ B (closure in X1 ), fa, f>a, B1 (A; 8), B1 (Ka; 8) be-
long to Ef,G whenever A, B E Ef,G . Also, the application PA defined by PA( X) = 
dj (x,A) (x E X) is C-invariant if A C X is C-invariant. 

We shall denote by Dc and Dj-,c the sets of C-invariant deformations of X = (X, d) 
and Xj , respectively, i.e. 77 E Dc means that i X x [0, 1] —i X is continuous, 
77(x,0) = 0 for all x and 17( . ,t) is C-invariant for each fixed t (the same for DIG, 
replacing X by X j ). Of course, D = DIG if f is continuous (still, the metrices 
d and d1 are not equivalent — though topologically equivalent - unless I is Lipschitz 
continuous). 

Finally, we shall indicate by idX both the identity of X and the trivial deformation 
r)(x, t) = x for all (x, t) E X x [0, 11, which belongs to both DC and DIG. 

Definition 2.1 (Property (P)). For 771, 772 E Dj ,c and g : Xj x [0,1] — [0,1] 
continuous with g( . ,0) 0 set 77(x, t) = 71(72(x,t),9(x,t)). We say that D C Df,G 
verifies property (P) if idx E D and the implication 

77I,12 E D 

g(-, t) C-invariant for each t E [0,1] }	
:	= qi,g E D 

-	is true.	 - 

Of course, Df,G verifies property (P).
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Definition 2.2 (Deformation property (D)K ,0 ). Given a e R and V c DJ,G 
verifying property (P), we say that I possesses property (D*) Ka if given ö > 0, there 
exists e > 0 and 71 E D such that 

(i) dj (ii(x,t),x)	Sfor all (x, t) E X 	[0,1] 

(ii) i (f<a+e \ B(Ka; S), 1) C f<a-6 

is fulfilled. 

Whenever I is continuous and D = DIG Dc, then the deformation property 
will still be referred to as (Df, G)K , a since it involves the metric d1 (see, e.g., Theorem 
3.6) — unless f is Lipschitz continuous. 

For the remainder of this section, we fix a subclass D* of Df,G verifying property 
(P). All subsets of X are endowed with the topology of Xf. 

Definition 2.3 (D*admissibility). We say that (r, S) is a D-admissible pair in 
X1 if 

(i) F C Ef,G and S E EJ,G 

(ii) 7lE D* , (x , t)=x for all (x , t) E Sx[0 , 1]	==	i(U,1)EF for all UEF 

is fulfilled. 

Definition 2.4 (mm-max value). If (F, S) is a D*admissible pair in X1 , define by 

= inf sup 1(x) 
UEr zEU 

the mm-max value c = e(f, F) E [—, +] of f over F. 

Definition 2.5 (Property (E)). Given a function J : EJG -p 7Z-- U {+}, we say 
that a sequence {F 1 }1<<M (M E NU {+}) possesses property (E) with respect to 3 
if for all  

(i) 0 54 F 1 C r i C EJ,G 

(il)UEF+ (p^!0) and YCE 1,c with 3(Y)p =	U\YEI', 

is fulfilled. 

The following lemma will be useful when deriving corollaries from our mm-max 
principle. 

Lemma 2.6. Let a,a,A E R with a > a and A > 0. Assume that f possesses 
property (2Y)j.ç a . Then there exists e > 0 such that, if(F,S) is a D * -admissible pair 
verifying

a sup{f(S)}	and	d1(U,f^!a) > A for some U E F, 

then c(f, F)	a — E holds.
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Proof. Let 0 < 8 = min {\, a }. Let 0 < e = c(S) 5 S and r E VS be as in 
(V)K,., such that

d1(i1(x,t),x)	S	 (2.1) 

i7(U, 1) C f<a—e	 (2.2) 

where U E r is such that dj (U, f>a) > ), so that U C f<a \ B1 (Ka ; 8). Define 

p(x) = min {dj(x,S),S}	(x E X) 

h(x,t) =	' e.i:-) 
S )
	((X, t) e X x [0,1]) 

Then h E V5 by property (P) (p is G-invariant) and h(U, 1) C r by D * -admissibility. If 
x E U is such that f(h(x, 1)) > a - 5, it follows from (2.1) that 1(x) > a - 26> a + 5. 
Hence p(x) S and _f(h(x, 1)) = f(i1(x, 1)) < a - e, using (2.2). In conclusion, we have 
c(f,I') sup {f(h(U,1))} <a — el 

Suppose now given J : EfG - 7L.. U {+oo} and let {(F1,S)}I<<M (Me Nu 
{+}) be such that (F ; , 5;) is V5 -admissible for each i and {F} possesses property (E) 
with respect to J. Let {c2 } = {c1 (f, F)} be the corresponding sequence of mm-max 
values off over f 1 . For ACX, N <M and c>Oset 

	

kN,(A,{F;}) =	N: dj(A,F) <e} 

where # denotes cardinality and dj (A,F 1 ) = sup{df(A,U) : U E F ; }. Observe that 
since F21 c F 1 , {c1 } is a non-decreasing sequence and {d1 (A,F 1 )} is a non-increasing 
sequence. Thus, we can define 

k N( A ,{ FI}) = limkNe(A,{F ; })	(k E NU{+}). 

In fact, it holds

kN( A , {F 1 }) = N - max{j N: dj(A,r 1 ) > 0}	 (2.3) 

if N is finite and

(+cxD ifdf(A,FI)-40asi—^+oo

	

k+(A, {fl 
= '[0	otherwise.	

(2.4) 

The following is the main result of this section. 

Theorem 2.7 (Mm-Max Principle). Lei J, {(F1,S1)}I<1<M and {c;}1<;<M be as 
above-Assume that, for some A E E.f,G and some N < M, 

	

a:=inf{d1 (A,S1 ): i<N} >0	and c:=inf{f(A)} = sup {c j : i<NJ.
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Assume also that I possesses property (V*) K,c . Then 

J(Bj(Kc; A) fl B1 (A;A)) ^: k(A, {r'})	for all A > 0. 

Proof. We may suppose that k N (A, {r,}) > 0, otherwise there is nothing to prove. 
Suppose further, by contradiction, that 

p := J(B1(K; A) fl B1 (A; A)) <kN(A,{I'}) 

for some A >0. Let 0< 5< min {A,}, c >0 and r EV, as in (D*) K,c , be such that 

d1 (i(x, t), x)	8	 (2.5) 

	

ii(f<c +c \ B(K; A), i) C f<c—E .	 (2.6) 

According to (2.3) and (2.4) and since k N( A, {}) > p, given -y > 0 there exists i N 
such that

c, <c	and	d1 (A, r 1 ) <y.	 (2.7) 

Choose y < mm {A - 6, - 6,E} and let i N such that (2.7) holds. Let U E 

F,, fl f<c+e. Then V = U \ (B1 (Kc; A) fl B 1 (A; A)) E I', by property (E). Define, for 
(X, t) E .K x [0, 11,

p(x)t\ 
p(x) = min {df(x,S),6}	and	h(x,t) =	----) 

Then, similarly as in the proof of Lemma 2.6, h E 1Y and {(x, S) x E V} E r. 
Let x E V be such that	E B1 (A;y). In particular, 

I p(x)\\ 
f

f
yx,---)) >c — y >c — E. 

On the other hand, (2.5) implies that d1(x,A) < A so that dj(x,K) > 8, and that 
d1 (x,Si ) > 6 so that p(x) = 6. Hence, it follows from (2.6) that 

=f(i(x,1)) 5 c — E, 

which is a contradiction I 

We now wish to give two corollaries of Theorem 2.7 which correspond to situations 
encountered in applications. In the first one, we consider the simple case of a single 
V*admissible pair (F, S), with G = {id} and J 2X - {0,1} defined by 3(A) = 0 
if and only if A = 0.
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Corollary 2.8. Let (F, 5) be a D * -admissible pair in X1 . Assume the following: 

(i)c=c(f,F)ER 

(ii) There exists F  X such that d(F,S) >0, UflF 54 Ofor all  E  and 
/3	inf{f(F)} ^: sup{f(S)} 

(iii)I possesses property (D)K , , and K is compact. 

Then the following assertions are true: 

(a) K	0 

(b) c=13 implies KfiflFj4O 
Proof. First, condition (ii) implies that c P. If c = 0, assertion (b) is the 

conclusion of Theorem 2.7 with A = F and N 1 (i.e. r 1 = F), taking into account 
that Kc is compact. If c > 0, then c> sup{f(S)} and we can apply Theorem 2.7 with 
A = f>c and N = 1, since it follows from Lemma 2.6 that k i(f2 c , r) = 1 I 

Remark 2.9. Observe that we do not need to assume in the above result that S 
and the sets in F are closed in X1 (in fact, this is irrelevant since G and 3 are chosen 
to be the trivial group and "index"). However, the assumption of closedness in X 1 can 
be made without loss of generality. (Of course, K is compact in X if and only if it is 
compact in X1 , and if F is closed in X, then it is closed in Xj.) 

For the second corollary of we want to give, we shall restrict our attention to a 
particularly relevant choice of the group G and of the function J. First, we recall the 
notion of index. 

Definition 2.10 (Index). Let X be a metric G-space, EG the set of its closed G-
invariant subsets and VG the set of its G-invariant deformations. A function .7: EG - 
Z U {+oo} is said to be an index associated to (EG,VG) if it possesses the following 
Properties: 

(i1) 3(A) = 0 if and only if A = 0 

(i2) 3(A,) 3(A2 ) if A, C A2 

03 ) J(A, U A2 ) <3(A1) + 3(A2) 

(i4) 3(A)	J(71(A,1)) if ij E DG 

(i5) J(B(A; 6)) = 3(A) for some 6 > 0 if A E EG. 

Of course, property (i 2 ) is a special case of property (i4). 

Remark 2.11. Whenever the function 3 in Theorem 2.7 is an index associated to 
(Ej, , Vf,G) and K is compact, the conclusion of the theorem reads 

J(KC fl A) ^: kN(A, {F%}). 

Indeed, we may suppose that kN(A, {F 1 }) > 0 and the result obtains from conditions 
(i 1 ), (i 2 ) and (is): we have KflA0 and 

3(K fl A) = J(Bj(K fl A; A ' )) ^: J(Bj(Kc ; A 2 ) fl Bj(A; A2))
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for A 2 A2 > 0 sufficiently small. 
Assume now that C is a representation of a compact Lie group acting on X (see [5]). 

We may assume that G is a group of isometries (averaging d over C by means of the 
Haar integral yields an equivalent G-invariant metric). Any G-orbit Gx is a compact 
subset in X and Xj . If C 54 {idx}, let 

FixxG={xEX: g(x)=x for all gEG} 

be the fixed-point set of G in X. 
Let J be an index associated to (Ef , G, DIG). In order to estimate the number of 

critical points of f via the mm-max principle, the index J may be required to verify 
also the (standard) normalization condition 

(6) If x FixxG, then J(Gx) = 1. 
We thus have, as a consequence of conditions (i 2 ), (i 3 ), (i5 ) and (4): 

(4) If A E Ef,G is compact and An FjxxG = 0, then J(A) < +oo and A contains 
at least J(A) G-orbits. 

Here is now the announced corollary of Theorem 2.7. 
Corollary 2.12. Let {(rI,S)}l<<M and {c1}1<<M be as in (2.7), C a represen-

tation of a compact Lie group, and J an index associated to (EfG ,Df,G ) and verifying 
condition (i6 ). Assume the following: 

(i) There exists FE EJ,G such that, for each i, d(F,S1 ) > 0,Ffl U 0 0 for all 
U e r, and 3 := inf{f(F)} 2 sup{f(S;)}. 

(ii) cj < b for each z, for some b E (0, +oo]. 
(iii) f possesses property (V) K,a and K,, is compact for all 0 < a < b. 

Then the following assertions are true: 

(a) If c = /3 for some j, then J(K, n F) 2 j. 
(b) If c3 = c3 = c for some j j + p, then J(K) 2 p + 1. 
(c) If (F U f> )3) n K n FixxG = 0, then f possesses at least #{c} = M critical 

G-orbits. Furthermore, if M = +00, then c 1 - b as i - +00. 
Proof. Taking Remark 2.11 into account, assertions (a) and (b) are the conclusion 

of Theorem 2.7 with A = F and A = f^! c , respectively, observing that in the latter case 
we have

ki+p(f2c, {r'}) 2 p + 1 
thanks to Lemma 2.6. Assume that {c} is an infinite sequence converging to c < b. 
Then, either J(K n F) = +00 in case c = /3, according to assertion (a), or 

J(K) = k+(f2c, {r}) = +00 

if c> /3 since dj(f2 b, ['1) - 0, according to Lemma 2.6 (see also (2.4)). In any case we 
have a contradiction with condition (4) since (F U f>3) fl K n FixxG = 0. 

If M E N, assertions (a) and (b) and condition (4) also show that I has at least M 
critical C-orbits and assertion (c) is proved I
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Remark 2.13. (1) Arguing as in the proof of assertion (c) shows that if M = +oo 
and b E R, then I does not possess property (lY)Kb. 

(ii) Properties (i 3 ) and (i 4 ) of 3 are not used in proving Corollary 2.12. These 
properties allow, in practice, to define sequences of Dc-admissible families possessing 
property (E). In Section 3 we shall consider a setting for which Corollary 2.12 holds, 
involving a function 3 defined via an index but which is not necessarily an index itself. 

(ill) Suppose that for each 1 <j < M (M E N U {+}) we are given a sequence 
{(r 1,3 , S ,j)}I<<M1 (M3 E N) of D-admissible pairs in X 1 such that {F1,j}I<1<M, 
possesses property (E) with respect to a fixed function J. Define 

= U r i ,	and	S = U 5 i-
i<j<M	 i,j 

Then {(r 1 , S)} 1<<1 with M = sup3 {M3 } is a sequence of D-admissible pairs in X1 
and {r} 1<<	xpossesses property (E) with respect to 3 (as is easily verified). Hence, 
Theorem 2 _.f and Corollary 2.12 hold with {( F , Si )) and {c} replaced by {(L', S)} and 
{c} = {c,(f, r)}, respectively, if we assume in Theorem 2.7 that 

inf{dj (A,S1,,): 1iiNM and 1j<M} >0 

and if we replace condition (i) of Corollary 2.12 by the following one: 
(i)' There exists F E E1,c such that d(F, S) > 0 (resp. [nothing)), F n  0 0 for all 

U E r i and inf{f(F)} > sup{f(S 3 )} for all i,j (resp. inf{f(F)} > sup{f(S)}). 
In particular, if M = +oo and M - +oo as j - +, {c} is an infinite sequence and 
the last conclusion of Corollary 212 can be obtained. 

Let us now consider a sequence of V-adm.issible pairs of a particular type. Set 

ii={UEEf,: J(U)^!i}	(1<iJ(X)) 

(i EN if 3(X) = +) where 3 is an index associated to (E1 c,D1,c). That ( ['R,0) is 
D1,c-admissible for each i follows immediately from property (i 4 ) of 3, and property 
(E) for the sequence {r} follows from properties (i 1 ) - (6) in a standard way. 

We have the following proposition. 

Lemma 2.14. Let {I'} as above and {} the corresponding sequence of.min-max 
values off. Assume that f possesses property (Df,G ) K,a for all a E 1(X). Then 

Zi :^ sup {f(K)}	(1 c i c 3(X))
with the convention that sup{f(0)} = -. 

Proof. We may suppose that there exists b E 1(X) with b > sup{f(K)} (otherwise 
there is nothing to prove). Assume also that for any such b we have 

i7(X, 1) C f 5	for some ij E Di,.	 (2.8)
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Then J(X) < J(f<b) according to property (i 4 ), hence tE < b for each i and the 
conclusion of the lemma follows. 

We now show that property (2.8) holds. For this suppose first that 8 = sup {f(X)} 
is achieved. From deformation property (DJG ) Ka we can cover [b, /3] by the family of 
intervals { [b - e, b 1 + e 1 ) } < j<k, where b, b 1 , no interval in this family is included in 
another one, and there exist ij : X x [0, 1] - X continuous such that ij(f<b+e, 1) C 
fb 1 —c 1 . Define inductively 

: X x [--- j] - X 

77 : X x [0,1] - X 

Then 77 satisfies (2.8).

by 7'(., t) = i7 ((x,1),kt - (i - 1)) 

ri—i zi 
by 77(x,t) = 77 '(x, t) if t E

L k 'ki 

Suppose now that 3 = sup{f(X)} is not achieved.Let {b} C 1(X) with b - 0 
be a strictly increasing sequence, with b 1 = b, b0 = b - e (e > 0) and Tin E Df,G such 
that

i7(f<b+1,1) C 

77(x, t) = x for all (x, t) E f<b_ 1 x [0, 11. }	
(2.9) 

The existence of ij,., and r follows easily from the previous construction and property (i) 
of the deformation property (Vf,G ) K,o (see Definition 2.2 and the agreement following 
it). Indeed, all the deformations i7 i above can be chosen so as to keep fb—c fixed, 
with e > 0 arbitrarily but fixed (one then finds c < E). Finally, let {t} C (0,11 
with t 1 = 1 be a strictly decreasing sequence converging to 0 and define ij = 77(x , t) if 
f(x) E [b,b+ 1 ] by 

Ti(x,t) = 
x	 if t e [0, t21 

(X , ( t - t+2)(t+1 - t+2')	 if t E [t+2,t+i] 

77m (Tim+i (...Tin (x, 1)..., 1) (t - tm+I )(tm - tm+l )_1) if t E [tm+i , tmj 

where 1 < rn	ri. One easily verifies that ij : X x [0, 11 - X is well-defined, that it
belongs to Vf , G and satisfies property (2.8) I 

Remark 2.15. A statement similar to the implication (2.9) = (2.8) is made in [7: 
p. 606]. 

The following result is a corollary of Theorem 2.7 and Lemma 2.14. 

Corollary 2.16. Let {F1}I<1<J(x) and {}1<j<3(X) be as in Lemma 2.14, with 
G being a representation of a compact Lie group and the index 3' verifying condition. 

06 )' J(Gx) = 1 for all x E X. 

Assume that, for each b E f(X), f possesses deformation property (Df , G)K, a and Ka is 
compact for all a b. Then the following assertions are true:
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(a) a, = inf{f(X)}. 

(b) If Zj =	= c < b for some 1jj+p:53(X) and some b E 1(X), then 
3(K) > p+ 1. 

(c) If f is bounded below, if it has at least 3(X) critical G-orbits and if moreover 
3(X) = +, then sup{f(K)} = sup{f(X)} and this sup is not achieved. 

Proof. (a) According to property (i 6 )' we have Z, < f(x) = sup{f(Cx)} for all 
x e X, so that E <inf{f(X)}. The other inequality is obvious. 

(b) This assertion is deduced from (2.7) in the same way as Corollary 2.12/(b) is, 
letting A = X in Theorem 2.7 (deformation property (Vf, G)K, c holds). 

(c) Note that E, = min{f(X)}. If sup{f(X)} for some j and this supremum is 
not achieved, Lemma 2.14 implies that K is an infinite set and sup{f(K)} = sup{f(X)}. 
Otherwise Ei E f(X) for all i. Observe that properties (i 2 ), (6) and (i 6 )' imply the 
following one: 

(i7 )' If A E Ef,G is compact, then it contains at least 3(A) C-orbits. 

Applying Theorem 2.7 as in Corollary 2.12/(c) then shows that f has at least #{} = 
3(X) critical C-orbits, and that if 3(X) +, then Ej - sup{f(X)} as i - +oo and 
this supremum is not achieved I 

Remark 2.17. If we assume in Corollary 2.16 that f possesses deformation prop-
erty (Vf,G ) K,a and Ka is compact for all a < b, for some b  RU {+}, then c —* b if 
3(X) = +oo like in Corollary 2.12. 

3. The weak slope and the epigraph function 

In this section, (X, d) will denote a metric space, C a representation of a compact Lie 
group acting on X by isometries, DG the set of C-equivariant deformations of X, EG 
the set of closed C-invariant subsets of X and f: X - R a C-invariant function. 

Definition 3.1 (Weak d-slope). Let the function f : X —i R be continuous and 
C-invariant. Given x E X and a > 0, say that x E A(f,cr) if there exists 6 > 0 and 
77 : B(Cx; 6) x [0,61 — X continuous such that 

(i) ij( . , t) is C-equivariant for each t E [0,6] 

(ii) d(ij(y,t),y) < 

(iii) f((y, i)) - f(ij(y, s))	—a(t - s) if 0 <_ s	t 5 6. 

We define and denote the C-weak d-slope of f at x by 

	

dfIG( x) = SUP for : X  A(f,ci)}	(E [0, +001). 

The definition of the weak slope off at x as introduced in [16] (without consideration 
of symmetry) is the same as (3.1) but with s = 0 only in (iii). The terminology "weak 
slope" was chosen with respect to the "(strong) slope" (see [13, 16]); the weak slope is 
denoted by ldf I . Adding the symmetry hypothesis (i), we shall naturally use the notation
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IdfI G (x) and obviously, J df IG ^! l WfI G (of course, we also write J Tfj when G = {idx }). 
We do not know whether equality holds in general. However equality does hold for 
various important special cases as we shall see in Section 4 (see also Remark 3.8/(i)). 
Clearly, Idfl G (as well as Idf Ia) is G-invariant and lower semicontinuous. 

Remark 3.2. It is not known whether or not IdfI G = Idf I in general. But if 
G. = {g e C: g(x) = x}, the isotropy group of x, is trivial, then IdIa(x) = ldf 1(x) and 
Idfla(x) = IdfI(x). Indeed, let S > 0 and 77 : B(x;tS) x [0,5] - X continuous satisfying 
properties (ii) and (iii) of Definition 3.1 (for some a > 0). Let S be a slice at x (see 
[5]). Unless reducing 5, if y E B(Gx; 5), then there exists a unique gy E C such that 
g(y) E S. Of course, y	gy is continuous. Defining 

r1'(y,t) = 

we see that ,' : B(Gx; 5) x [0,5] -+ X verifies all the conditions of Definition 3.1. 

Definition 3.3 (Palais-Smale condition). Let f: X - R and f: X R+U{+oo} 
be two C-invariant functions and a E R. We say that f verifies condition (PS)10 if the 
implication 

f(x)	
a ({x} c X)}	{x} has a convergent subsequence 

is true. 

Set
K={xEX: ldfIG(x)=0}EEG -

If f is continuous and verifies the Palais-Smale condition (PS)jj a. then any accumu- 

lation point of a sequence Ix,, I C X such that IdfIc(x) - 0 and f(x) - a belongs 
to K0 , which is compact (recall that ldf Ia is lower semicontinuous). 

Our motivation for introducing the weak d-slope lies in the following result and 
Theorem 3.6 below. 

Lemma 3.4. Assume that the function f : X -# R is continuous and denote by f$ 

the function f considered as a function from X1 to R. Then 

{ IIi(x )	if IdfI G (x) <+oo 
kf*I G (x) =	1 + Idfla(x) 

1	 ifldfla(x)=+oo 

for each x E X. 

Proof. (a) Note that since f' is Lipschitz continuous of constant 1, Idf*I G 1. Let 
z E X, 0 a <isuch that x e A(f* , a) with corresponding S > 0, i : Bj (Gx;S) x 
[0,5] - X1 continuous and such that whenever y E Bj(Gx; 5) and 0 s t 5, then 
77( . ,t) is G-equivariant, 

df (17(y,t),y) <t	and	f(i7(y,t)) - f(i(y,$))	—a(t - .$).
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Then d(ri(y,t),y) < (1 - o)t. Defining ij(y,t) = Y7 (y, --), it is readily seen that 
x E A(f, --) with corresponding S > 0 such that B(Gx; 8) c Bj (Gx; 5), where 6 
(1— o)8 and : B(Gx;) x [0,] - X as in Definition 3.1. Hence, IdfI G (x) ^	and 
we conclude that I df'IG(r )	I7fI G (x)(1 + Idflc(x))'. 

(b) Let x E X and 0 < a < +oo such that x E A(f,a). We show that x E 
We may suppose that a > 0. Let S > 0 and 77: B(Gz;5) x [0,8) -b X 

continuous be as in Definition 3.1. For (y, t) E B(Cx;6) x [0, 61, define a(y,t) by 

f(i,(y,a(y,t))) - 1(o) = — a----t. 
1+a 

Using the continuity of 17 and f and condition (iii) of Definition 3.1 - in particular, 
the fact that t -* f(ij(y,t)) is decreasing on [0,6) (which explains the "d" in "weak 
d-slope") for each fixed y - one sees that a(y,t) is well-defined and a is continuous. 
Indeed, a(y,0) = 0, t i- a(y,t) is increasing for each fixed y and a(y,t) - a(y,$) 
(1 + a)'(t - s) for 0 < s < t < 6. Furthermore, a(-, t) is C-invariant for each t since I 
is C-invariant and 77 is G-equiva.riant. Hence, defining 

i(y,t) = 77(y,a(y,t)) 

shows that x E A(f', j— ) with corresponding Sand ,: Bj(Cx;S) x [0,8) -+ Xj. 
We conclude that Idf'IG(x ) > I dfIG(x )( l +I dfIG(x))' if df(x) < +oo and Idf'IG(x) 

= 1 if IdfI G (x) = +00 I 
The following is a symmetric version of a basic result from [12]. 

Theorem 3.5. Assume that (X,d) is a complete metric G-space and f : X - R 
a continuous C-invariant function. Let A E EG and -y, a > 0 be such that dl IG(X) > a 
for all x E B(A; ay). Then there exists 17: X x [0,7] -p X continuous such that: 

(a) d(77(x,t),x) < t 

(b) f(77 (x,t))	f(x) 

(c) f(77(x,t)) - f(x) <—at if x  A 

(d) 77( . ,t) is G-equivariani for each t E 10 , -Y] 
Proof. That of [12: Theorem 2.11] transposes immediately to the symmetric situa-

tion we consider here. That is, starting with invariant sets and equivariant deformations 
produces, by construction, an equivariant deformation I 

As a consequence of Theorem 3.5 and Lemma 3.4, we have now 

Theorem 3.6. Let X be a complete metric C-space, f : X - R a continuous 
C-invariant function and a E R. If I verifies the Palais-Smale condition(PS)j ' 
then function f possesses the deformation property (Df,G)K,o. 

Proof. Let a E IR and S > 0 and assume the Palais-Smale condition (PS)	-. l—dfIa,a 

df Consider the function 1' as in Lemma 3.4 and let K' = {x E X :	'IG(z) =
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0}. Lemma 3.4 tells that K* = K and that f verifies the Palais-Smale condition 
For a,/3 > 0 we shall denote 

A	 E X 1(x) e [a— a,a+aI and dj (x,Ka) 2O I  E Ef,G ( EG). 

The Palais-Smale condition (PS) 1j1	implies that there exist a, a > 0 such that 

df*IG(x) 2 Iaf'ic(x) > a	for all x EA., 2 

Let -y = min{ j , }. Since f* is Lipschitz continuous of constant 1, B1(A,6; ) C 
Since X is complete and f is continuous, X1 is complete and we can apply Theorem 
3.5 to X, f and	to obtain ij': X x [0,7] -+ X continuous and such that 

dj(7i'(x,t),x)	t	and	f(ii'(x,t)) <f(x) 

and
f(ij'(x,t)) - 1(x)	—at	if x E A. , A. 

Defining r: X x [0,1] -* X by 77 (X, t) = i(x,t) and letting e = min{-y, E2 }, we have 

dI (ij(x,t),x)t<8	and	f(i(x,i))a—e iff(x)a — c 

and, if 1(x) E [a-6,a+e] and d1 (x,Ka) > (5, 

f(7(x,1)) 5 f(x) — a7<a+e — a7 <a — E 

so that the deformation property (Vf, G)K , a is verified I 

Recall that the epigraph of a function f : X -+ R is the set 

epif = {(x ,e) : x E X and 2 f(x) 
I - 

Consider (epif, d) as a metric space with the metric 

J((x, ), (y, )) = d(x, y) + I - izI. 

It is complete if X is complete and f is lower semicontinuous. For g E G and (x, ) E epif 
we let g(x, ) := (gx, so that, slightly abusing notation, we shall consider G as a group 
of isometries of epif too (epif as a G-space). 

The following definition appeared in [13].
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Definition 3.7 (Epigraph function). The epigraph function of a function 1: X 
IR is the function

Q1: epif — R, 9A-'O=. 
Obviously, the epigraph function 9 f is Lipschitz continuous of constant 1, and is C-
invariant since f is. 

Remark 3.8. (i) For the epigraph function, weak d-slope and weak slope coincide. 
That is, for any C-invariant function f: X - R and any (x, ) E epif it holds 

I dcfIG(x ,) = ldciIc(x,). 
For, if Idg j Ic(x,) > a > 0, 6 > 0 and 77 : B((x,);ö) x [0,6] - epif, 77 = ( 7 1, 712) are 
such that

J(ij((y,),t),(y,11))	t	and	772((y,1z),t) -	— at, 

it suffices to use = ('11,2), where iz((y,),t) = p - at, to see that J dgflG(x ,e) ^! a, 
and the conclusion follows. 

(ii) If f : X - R is continuous, then 

(	dl IG(x)	if = 1(x) and J df Ic(x) < 00 
d9f IG(,e) =	

+ df IG(x) 

1	 if > 1(x) or dl IG(x) = +00 

(see [16: Proposition 2.3]). Indeed, the different form is only due to a different choice 
of metric on epif, and passage to the symmetric case is obvious. Hence, assuming only 
the Palais-Smale condition (PS)IdfIG,a, one may use 9 f in order to obtain a deformation 
property for f . This is the procedure used in [12: Theorem 2.141. 

By applying the results of Section 2 to 9f via Theorem 3.6, one can obtain results 
in critical point theory for some classes of lower semicontinuous functions. To this aim, 
we give in the following simple procedures in order to define appropriate sequences of 
mm-max values of c. More concrete examples will be given at the end of Section 4. 

Let U : epif - X be the projection on X: 11(x,) = x. Denote by EG the set of 
strongly closed C-invariant subsets of epif, i.e. 

A E E	A C epif is closed, C—invariant and 11(A) is closed 

(whence 11(A) E Ec). Note that fG is not empty, containing the compact C-invariant 
subsets of epif, as well as the uniform neighbourhoods of such sets. Let VG be the 
set of C-equivariant deformations of epif, that is ' E 5G if 77 = ('71 ,'72), where Y71 
epif x [0, 1] - X and 772 : epif x [0, 1] - R are continuous and verify, for (x, ) E epif, 

E [0,1] and g E C: 

f(i((x,),t)) < 

ii ' ((x, a 0) = x, 772 ((x, e), 0) 

i ((g X , e) ' t) = 9 i ((x, 0, t),	772((gx, ),t) = 712(( X , ), t).
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Suppose now given an index 3 associated to (EG,VG ) and define 

EG -+ Z+ U {+oc},	3(A) J(H(A)) 

with the convention that 3(0) = 0. It is easy to show that 3 verifies properties (i 1 ) - 
(i3 ) and ( i 5 ) of Definition 2.9 (using the fact that 3 does), but 3 is not, in general, an 
index associated to (EG, DG) that is, it may not verify property ( i4 ). 3 also verifies 
properties ( i 6 ) and ( i 7 ) whenever 3 does (clearly, (x, ) E epif belongs to FiXepjj G if 
and only if x E FixxG). 

We shall assume that 3 verifies the following stronger form of property (14): 

(L)' If A,B E EG and h : A - B is continuous and C-invariant, then 3(A) 
3(B). 

Let j € N and set

rj = {u € EG : U compact and 3(U) ^! 

Assume that
rj 54 0	and	c3 = c(f,f 3 ) ER.	 (3.1) 

Define 

ir = {h(U): U E I 3 and h: U - epif continuous and Cequivariant}	(3.2) 

and Ej = Zj (gj;rj). 
Proposition 3.9. It holds: 

(i) I')	0, F, is Dc-admissible and Ej = c3. 

(ii) 11(3.1 ) holds for 1 < j	p, then F j < j ..5p possesses property (E) with respect 
toJ. 

Proof. (i) Let U € r, be be such that 9= sup{f(U)} < +00 and define h 
U -i epif by h(x) = (x,/3). Clearly, h(U) E r3 , and this also shows that ë,	c3.
Conversely, if h(U) € fj and h = ( h 1 , h2 ), then h 1 (U) € 1', by property ( i4)' and 
sup{f(h i (U))} < sup{gj(h(U))}, showing that c3	That F 3 is Dc-admissible is 
obvious. 

(ii) The inclusion F	C r3 is obvious. Let 1	j	j + k < p, h(U) € Fj+k
and Y € EG such that 3(Y) < k. Then, h(U) \ Y = h(U \ Y') where Y' {x € U 
h(x) € Y} (see also the proof of Proposition 3.101(u)). Set h = (h 1 , h 2 ). Then clearly 
Y' C hj'(H(Y)) so that 

3(Y') <3(h'(H(Y))) <3(11(Y)) = j(Y) <k 

using properties ( i2) and (2* 4 )'. It follows in a standard way, using properties (i 2 ) and 
(6) that J(U \ Y') ^! j whence h(U) \ Y € rI
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Assume now that (X, ) is  Banach space and G a group of linear isometries of 
X. Set (B, S) = (B R fl E, SR fl E), where BR and SR are the closed ball and sphere of 
radius R> 0, respectively, and E is a finite-dimensional linear subspace of X. We shall 
assume that 6 = sup{f(B)} <+oo and set a = sup{f(S)}. Fix p E N and set 

I h continuous, G-equivariant 
r {h: B . epif and 

h(x) = (x, a) for all xE s	
(3.3) 

	

{h(B \ Y) I he r, Y E EG, J(Y) p - i}	(1 i p)	(3.4) 

Finally, let c = cg(gj , ['i) for 1 < i < p. 

Proposition 3.10. It holds: 

(i) ( 1 S x {a}) is Dc-admissible for each 1	i p. 

(ii) {F,} 1 < 2 < possesses property (E) with respect to J. 

(iii) c 1 C R for each 1 < i <p. 

Proof. Assertion (i) is obvious. Assertion (ii): Clearly, rj+ i C ri for 1	i p – i. 
We show that r 54 {ø}. Define, for x C B, 

12x	for xEB 
h i (x) =	R x forxEB\B 

lixil 

and
{ /3 for xEB 

h2 (X) =	 xII (2_I_ -1)a+2(1_ ui1 t )/3 for xCB\B. 

It is readily verified that h 1 and h 2 are well-defined and continuous, that h 1 is C-
equivariant and h 2 is C-invariant, because C is a group of linear isometries. Also, 
f(h i (x))	h 2 (x) for all x e B, h i (x) = x and h 2 (x) = a whenever x C S. Hence, 
h = (h i , h 2 ) e r so that h(B) C r. This proves Assertion (iii). Indeed, a c1	3 for 
i e {i,. .. ,p}.  

We now turn to verify that if U = h(B \ Y) e 1' i+k for 1 < i + k p and if 
Z C EG is suchthat J(Z) J(fl(Z)) k, then U \ Z E 1' s . Indeed, it is easy to see 
that U —\ Z = h(B \ (Y U Z')) where Z' = {x e B: h(x) € Z} (see also E27: Proposition 
9.181). Now, h 1 (Z') C 11(Z), whence 

J(Z') J(h 1 (Z')) <J(11(Z)) < k 

and
J(YUZ')J(Y)+J(Z')p–(i+k)+k=p–i 

and the conclusion follows I
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Remark 3.11. Of course, whenever f is continuous one may consider directly the 
construction: 

r= {h: B	X
h continuous, G-equivariant 
and h(x)=xforallx ES } 

	

r ={h(B\Y) hEr, YE EG, 3(Y)<p_i}	(1 <i <p) 

and use Theorem 3.6 to obtain c(f, F ) as critical values for f . It is not clear whether 
c 2 (f, r) ..,( g1, F) in general. However, if we define 

hEf, YEEG, 3(Y)p_iandYflS=01 

1i={h(B\Y): hEF, YEEG, 3(Y)p—i and YflS=O} 

(so that ri C 1', and r i C r'), then we can show that c(f,f1 ) = c 2 (91 ,r) for each 
1 i p (assuming that sup{f(B)} <+oc). 

Observe that Theorem 2.7 still holds but with the thesis being valid for A small 
enough (and the proof is the same), if item (ii) of property (E) is modified to read: 

(ii)' If U E r + for p 2 0 and Z C Ef,G is such that 3(Z) <p and dj (Z, S1 ) > 0, 
then U \ Z E r1. 

We would then say that {(F 1 , S1 )}l<1<M possesses property (E) with respect to J. This 
modified property (ii)' is similar to property (E) in [21: Theorem 31. However, for the 
sequence {(r,,S x {a})}i<<, the following holds: 

(II)" If U E r+k fork > 0 and Z C EG is such that 3(Z) < k and 11(Z) fl S = 0, 
then U \ Z E r1. 

Property (ii)" is more restrictive than property (ii)' since 11(Z)flS = 0 implies Zfl(S x 
{a}) = 0 (S and S x {a} are compact). It follows that Theorem 2.7 holds (for A small 
enough) for c1 and {(f 1 ,S x {a})}i<< if the set AE EG is such that rI(A)nS= 0. 

In order to apply Corollary 2.12 to 91 and {(r 1 ,Sx {a})}i < 1 <, we thus need to 
know, in particular, that ll(K)fl5 = 0 for c > a, where K = {(x ,e) : dc k r e) = O}. 
This condition is verified if I d91I(,e) > U whenever > f(x), and it is clearly nec-
essary in order to obtain "critical points" for f from critical points of ci. However, 
elementary examples show that it is not fulfilled in general if f is only lower semicon-
tinuous. 

On the other hand, if IdGJ IG is bounded away from 0 on {(x,) : e > f(x)}, then a 
complete transfer from f to gf can be carried out, and it turns out that this property 
holds for some classes of lower semicontinuous functions f (see Section 4). 

To conclude this section let us observe that, if we suppose given for each . E N 
a pair (B,, 5,) of finite-dimensional ball B, and sphere 5, of radius R, > 0 in X 
such that sup{f(B,)} < +, and a corresponding sequence {F,}1<<, of the type 
of the sequence { r 1 } 1 << above with p, - as j - then we may define 
ri = U{r,, : j E N) and c = c1(c1,r1) (i E N) as in Remark 2.13/(iii), in order 
to obtain (eventually) an infinite sequence of critical values of 9 f . This is the type of 
construction to be used in Theorem 4.8.
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Remark 3.12. Let us observe that when dealing with the epigraph function ç1, 
Lemma 2.6 is not needed to derive a result like Corollary 2.12 from Theorem 2.7, since 
whenever (x,) E epif and .z ? , then d((x,),Qj>z) = , -. 

4. Some particular cases and examples 

In this section, we give various examples of triplets (X,-f, K) for which the deformation 
property (V') Ka is implied by the verification of the Palais-Smale condition at level a. 
To do this, we shall often use the weak d-slope, which reduces the problem to a local 
one, via the results of Section 3. We also give some examples of results which can then 
be obtained as special cases of those of Section 2. We shall use the same notations X, 
Xi, E, Ei,c, VG and DIG introduced before. 

Let (E, ) be a (real) Banach space and (E*, its dual. In this section, when 
saying that E is a G-space we mean that C is an isometric representation of a compact 
Lie group acting on E; each g E G is a linear isometry of E. Then E* may (and will) 
be considered as a C-space, defining g(a) for g E C and a E E by 

(g(a),x) = (a,g'(x))	for all x E E. 

When saying that (H,( . ,.)) is a G-Hilbert space, with associated norm	= (.,. ) h/2,
we mean that C is an orthogonal representation of a compact Lie group acting on H: 

(g(x),g(y)) = (x, y)	for all g E C and x,y E H. 

Now, let X be a Finsler manifold of class C 1 (and without boundary). As usual, 
let T(X) denote the tangent bundle of X and T1 (X) the tangent space at x E X. 
Further, II : T(X) -i R will denote the Finsler structure and its restriction to 
T1 (X) (which is a norm). When saying that X is a C-manifold, we mean that C is a 
representation of a compact Lie group acting differentiably on X. T(X) is a C-space 
defining, for g E C and x E X, 

g : T1 (X) -.+ T(X)	by g(y) = dg(x)(y), 

each g being linear and isometric. The cotangent bundle T(X)* is also a C-space letting, 
for g E C, x EX and a  

(g(a),y) = (a,g(y)) = (a,dg'(x)(y))	for all Y  T1 (X). 

For various notions about C-manifolds to be used in the sequel we refer to [5]. 

A metric d is well-defined on each connected component of X by 

d(x,y) = inf {L()	j 11 a1 ( s )II,(,) ds a E 

where C1 is the set of C' paths a : [0, 1] - X between x and y (see [241); d(x, y) 
is the geodesic distance between x and y and d is C-invariant. It follows from the
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structure of Finsler manifold that given x E X and a number k > 1, there exists a chart 
: U -* T(X) at x (x E U, p a diffeomorphism) such that 

	

II() - (z )II	d(y, z)	k[I(y) - (z )II	for all y, z E U.	(4.1) 

Now, let f: X - R be a C-invariant function of class C', f'(x) the differential of 
f at x E X and, of course, 

K{XEX: f1(x)=0ET(X)*}. 

Then f' is continuous and G-equivariant, IIf'()II is G-invariant and K E EG. 
Proposition 4.1. The following assertions are true: 

(a) For each x E X, Idflc(x)	dl 1(x) = IIf'(x )IIz . , where 11 	
is the norm in 

T(X).

(b) If X is complete and I verifies for some a E R the Palais-Srnale condition 
(PS)IIf'(.)lI.,a, then f possesses the deformation property (DfG)K,a. 

Proof. Assertion (b) is a consequence of assertion (a) and Theorem 3.6. To prove 
assertion (a) we first show that l dfl llf'()ll• Let x E X, k > 1 and (U,9) such that 
(4.1) holds; we may suppose that ldf 1(x) > 0. Fix E > 0 and let -y > 0 be such that 

11(1 °	)'( z )II .	IIf'( x )II . + c	for all z E B((x); y) fl y(U). 

Let 6,a >0 and ij: B(x;6) x [0,6] - X be such that 

d(77(y,t),y)	t	and	f(ri(y,t)) - f(y) 5 —at. 

We may suppose that 6 is so small that B(x;26) C U and (B(x;26)) C B((x);6). 
Now, for arbitrary (y, t) E B(x; 6) x [0,6] fixed we have, using (4.1) and the Mean Value 
Theorem,

	

at	f(y) - f((y , t)) 

	

= ((I o	')'(z) ,(y) - 

(Ilf'(x )lIz . + ) p(y) - p(i(y , t))lI 

(IIf'(x )IIz . + e) k d(ij (y, t), y) 

(IIf'(x )IIx . + ) kt 

where z belongs to the segment [p(y), ço(ij(y, t))]. Since k can be chosen arbitrarily close 
to 1 and e arbitrarily close to 0 (taking 6 as small as needed), the conclusion follows 
from the definition of J df (x). 

We now show that jWfIG ^: IIf)II• Let x E X and assume that IIf'(x )Il . > 0. 
We may take as a chart around Gx a G-equivariant diffeomorphism	U - .,Ve(Gx)
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(a so-called tubular neighborhood), where c > 0, Af(Gx) is the normal bundle of Gx, 
AI(Gx) the normal space to Gx at y E Cx and 

	

A/(Gx) = {v E .iV(Gx)	l v ii <c} 

((y) = 0 E V(Gx)). A1(Gx) is a Cu -space, where G = {g E G g(y) = Y} is 
the isotropy group of y; since f is G-invariant, F(Y) = f'(y)I.f(G)• Given k > 1, 
we may choose e so small that (4.1) holds for all y,z E U. Fix 0 < c < 1 and let 
0 < -y < s and v(y) e .AI(Cx) (a pseudo-gradient) such that v = v(y) is continuous on 
Cx, G-equivariant and 

K (1 o

	

	')'(u) V  ) > (1 - &)iif'(x)ii.	for all U E jV(Cx).	(4.2)
Iiv(y)Ii 

Such v = v(y) exists. Indeed, there exists a G-equivariarit pseudo-gradient vector field 
v = v(y) defined on X \ K such that 

	

((1 0 -l)'(Y), 
v(y) \ ^ (1— a)IIf'(y)iI.	for all y E X \ K

iiv(y)IIy 

and (4.2) follows using also the continuity of f', (f o and the compactness of 
Cx. Let 0 < 6 < -y be such that p(B(Cx;5)) C A/(Cx) and set, for z E B(Gx;ö), 
w(z) = v(y) if ço(z) E iV(Cx) (that is, if z belongs to the slice at y E Cx defined via 
p ) . Define i B(Gx; 6) x [0,8] - X by

tw(y) \ 
(y, t)	-' (() - 

kliw(y)ii) 

Then, being w continuous, i is continuous and 77 ( . , t) is G-equivariant for each t. For 
y e B(Cx; 6) and 0 .s t S we have, using (4.1), 

d(i1(y, t), ,7(y, .$)) < k ç(j(y, t)) - (,(y, s))11 ,: = t - s 

and, according to (4.2),

\ 
f((y, t)) - f(i(y, s)) = (fo	) (? - 

iv 
—j1) - (1 o	(() - 

sv 

= ((10	1)l (() -
	

, —(t - 

1—cr -	Ilfl(x)iiz. (I - s) 
k 

where v = v(y) ands	r	I. Since k can be chosen arbitrarily close to 1 and a 
arbitrarily close to 0, the conclusion follows from the definition of idfic(x) U
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The fact that Id! 1(x) = IIf'(x )II . can also be found in [16: Corollary 2.131 

If X is a Finsler manifold of class at least C 2 , one can use the fact that there exists 
a G-equivariant locally Lipschitz pseudo-gradient vector field defined on X \ K (see 
[24]) in order to prove Proposition 4.11(a) in a more classical way. Namely, the desired 
deformation can be obtained via the (negative) flow associated to this vector field. This 
can be achieved by means of a slight modification of [27: Theorem A.41 (this result 
naturally extending to the G-manifold case). 

The same method can be applied to treat the following special case being of par-
ticular interest in applications (to Hamiltonian systems and wave equations). Assume 
that (X, (.,.)) is a C-Hubert space and that the function f : X -+ R is of the form 

1(x) = (Lx, x) + b(x)	 (4.3) 

where L : X —* X is a G-equivariant linear continuous self-adjoint operator and b 
X -* R is a C-invariant C' function such that b' : X -4 X is completely continuous. To 
the class of functions of the form (4.3) there is associated (see Proposition 4.2 below) 
the following class of G-equivariant deformations of X: 

= 1 77 E DG : 77(x, t) = e°"x + h(x,t)}.	 (4.4) 

Here 6 = 617 : X x [0,1] —* R is continuous, G-invariant and 6(,0)	0, and h = h,, 
X x [0, 11 — X is G-equivariant, continuous, completely continuous and h( . , 0) 0. The 
set V verifies property (P) (see Definition 2.1): if	E VS and g : X x [0,11 — [0,11
is continuous, G-invariant and such that g( . , 0) 0, then ij o (, g) E D with 

6 0(g) = 917 o (, g) + 6	and	h,,0(,9) = eO0,9)Lh + 1 o (, g). 

With a slight modification of the proof of (a symmetric version of) [27: Proposition 
A.18] (see also [3: Theorem 3.4] for the primitive idea, with consideration of symmetry) 
one shows the following 

Proposition 4.2. Let X be a G-Hilbert space and I : X — IR a G-invariant 
C' function of the form (4.3) verifying for some a E R the Palais-Smale condition 
(PS)IIf' ()II ,a. Then f possesses the deformation property (D)K, a, where V' is defined 
in (4.4). 

According to Proposition 4.1, Corollary 2.8 contains as special cases the Mountain 
Pass Theorem (MPT; see [1]) and its generalization (GMPT), and the Saddle Point 
Theorem (SPT) (see [27: Theorems 2.2, 5.3 and 4.61, respectively). Indeed, Corollary 
2.8/(b) is a generalization of these results to the limit case and to continuous functions 
(via Theorem 3.6). 

The limit-case for the Mountain Pass Theorem has been treated in various places, 
starting with [26]. In [21] the limit-case is treated in general, for invariant C' functions 
defined on C' Finsler manifolds and mm-max values defined through families of compact 
sets. There as in [29] (see also [16, 22]) only a weaker deformation property is shown to
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hold (the construction of that deformation inspired our proof of Proposition 4.1), and 
the results are obtained by combining this property with the i-Variational Principle of 
Ekeland. 

Thanks to Proposition 4.2, Corollary 2.8 generalizes [27: Theorem 5.29] where the 
mm-max value of f is defined via a family of possibly non-compact subsets of X; [27: 
Examples 5.22 and 5.26] give examples of such situations (infinite-dimensional linking 
of the type of the Generalized Mountain Pass Theorem (GMPT) and the Saddle Point 
Theorem (SPT) [4]. 

Of course, multiplicity results for C' functions in the presence of symmetry are also 
available as special cases of Corollaries 2.12 and 2.16. We shall give some examples of 
such results below, for other choices of the function f. 

For a second particular case (see [6, 9]) let (X, IIII) be a G-Banach space, (X, II•II) 
its dual and f : X - R a C-invariant locally Lipschitz continuous function. Define, for 
x,y,zEX and t>O,	 - 

f(x+z+ty)—f(x+z) I (X, Y) = lim sup 

	

z-.O,t-.O	 t 

for each x. The function f°(x,.) : X - IR is continuous, subadditive and positively 
homogeneous, therefore convex. Define 

ôf(x) = {a E X*: f°(x,y) 2 (a, y) for all y  x}. 

Here t9f is Clarke's subdifferential (see [9]). For each x E X, ôf(x) is a non-empty 
weak-compact subset of X, so that A(x) = min {II a II * : a E ôf(x)} is well-defined. 
Furthermore, A : X - R is lower semicontinuous and C-invariant (since f is). Thus, 
setting K= {x E X: A(x) = 01 we see that K E Ecj. 

Proposition 4.3. Let X be a G-Banach space and f : X - R be G-invariant and 
locally Lipschitz. Then the following assertions are true: 

(a) For each x E X, I dfIG( x ) 2 A(x). 

(b) If f satisfies for some a E IR the Palais-Smale condition (PS) A ,a, then f pos-
sesses the deformation property (DfG)K,a. 

Proof. Assertion (b) is a consequence of assertion (a) and Theorem 3.6. It is 
shown in [16: Theorem 2.7] that I clfKx ) 2 A(x), using [28: Lemma 1.3] applied to the 
function f°(x, ); it is not difficult to see from the proof that in fact IdfI(x) 2 A(x). To 
treat the symmetric case, we can proceed like in Proposition 4.1. Let x E X such that 
A(x) > 0 and 0 < 0 < 1. Using [6: Lemma 3.3] (existence of pseudo-gradients) and 
after symmetrization we can find 5 > 0 and z : Gx - X continuous and G-equivariant 
such that II z (y )lI < 1 and 

(a, z(y)) 2 (1 - /3) A(x)	for all a E Of (y '), y' E B(Gx; 25) fl .iV(Gx).

Defining z(y') = z(y) if y' E B(Gx; 25) fl H(Gx) and 77: B(Gx; 5) x [0,5] - X by 
i(y, t) = y - tz(y), we have for 0	s	t	5, using [6: Proposition (9)], 

f( i (y , t)) - f(tj(y, s)) = jf(ij(y, r)) dr <(1 -,8) A(x) (t - s) 

and the conclusion follows I
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We now consider a class of lower semicontinuous functions (see [14, 15]). Recall 
first that if (E, ) is a Banach space, the function f : E - R U {+} is lower 
semicontinuous and x E E with 1(x) < +, then the Fréchet subdifferential of f at x 
is defined as the (possibly empty) closed and convex subset 

ô7(x) = {a E E liminf1 - 1(x) - (a,y - x) o}. 
y—.z	 1111 - xii 

Now, let (H,(,)) be a G-Hilbert space and 1: H - RU {+oo} be a G-invariant 
lower semicontinuous (proper) function. Further, let X = {x E H : 1(x) < +} E EG 
denote the effective domain of 1 . We assume that f has a so-monotone subdifferential of 
order 2, which means (see [15]) that there exists a continuous function x : X 2 x R 2 -* 
such that

(a
_ /3, x - y) 

^! (x, y, f(x), 1(y)) (1 + 1la11 2 + 11011 2 ) li x - y112 

whenever a E 9-f (x) and /3 E 49-f (y). 
Denote (as before) .X(x) = min {ii a ii : a E a-f(x)}. Then A: X1 -p RU {+oo} is 

lower semicontinuous (as follows from 115: Theorem 1.18]) and G-invariant (since f is). 
Hence K := {x E X : .A(x) = O} E Ef,G . The set K is called the set of critical points 
from below for f . Furthermore, using also [15: Remark 1.14], a convergent sequence 
{x} C X such that f(x) - a and .\(x) -* 0 converges in Xj , hence to a point in 
K3 . In particular, the Palais-Smale condition (PS) ),, implies that K3 is compact. 

Proposition 4.4. Let H be a G-Hilbert space and f : H -i R U {+oo} a lower 
semi continuous G-invariant funcion with a co-monotone subdifferential of order 2. As-
sume that I satisfies for some a E R the Palais-Smale condition (PS) A , 3 . Then f 
possesses the deformation property (Vf,G)K,3. 

The result can be easily deduced from [14: Theorem 3.81. The basic (non-symmet-
ric) results are in [15: Section 3]. The deformation ij in the deformation property 
(Df,G)K,a is obtained from the flow associated to an evolution problem of the form 

-U'(i) E ôf(U(t)), 

generalizing the analogous classical problem. 

Let us point out that the introduction of the graph metric in the present work was 
induced by its use, in the above cited papers, in connection with some classes of lower 
semicontinuous functions, in particular those having a co-monotone subdifferential of 
order 2. 

Now, it is shown in [14: Theorem 3.141 that Xj is a G-ANR (while, in general, X 
is not (see [14: Remark 3.151)). Hence the Lusternzk-Schnirelman G-category G-cat: 
Ef,G - 7L U {+00} is an index associated to (Ef,G,Df,G) (see 114, 24]). Indeed, by 
definition, A E Ef,G is categorical in X1 if there exists q E V,c such that 77(A, 1) = Gx 
for some x e X and G-cat(A) is then defined as the least integer ri such that A can be 
covered by n categorical sets in X 1 , with the conventions that G-catx, (A) = +00 if no 
such integer exists and that G-catx, (0) 0.
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As an example of a special case of Corollary 2.16 we thus have the following theorem 
which is essentially 114: Theorem 4.9] and reminds [24: Theorem 7.2]. Observe that the 
latter extends to the C'-manifold case, according to Proposition 4.1, which improves 
the main result of [29]. 

Theorem 4.5. Let H be a C-Hubert space and f : H. R U {+oo} a lower 
serrucontinuous C-invariant function with a tp-monotone subdifferential of order 2. De-
note by X the effective domain of f and assume that f is bounded below and satisfies 
the Palais-Srnale condition (PS) A ,o for all a b whenever b E f(X). Then I has 
at least G-cat(Xj ) critical C-orbits from below. If moreover G-cat(Xj ) = +, then 
sup{f(K)} sup{f(X)} and this supremum is not achieved. 

As a final example, we consider another class of lower semicontinuous functions. Let 
E be a C-Banach space and 1: E - R U {+00} a function of the form 

f = g5+?,b	 (4.5) 

where

E C 1 (E,R) is G-invariant 
&: E -+ R  {+oo} is C-invariant, convex and lower semicontinuous. 

This class of functions has been studied in [28]. Let X denote the effective domain 
of 0 (hence of f) . For x E X consider ôf(x) as defined above. In the special case 
considered here we have the equivalence 

a E ôf(x)	==	i,b(z)— ,b(x) ^! (a —gY(x),z —x) for all z E X. 

0f(x) is a (possibly empty) convex weak*closed subset of E*. Hence 

.X(x) - { 
min {II a II, : a E 0f(x)} if ôf(x) 0 0 

+00	 ifôf(x)=O 

is well-defined and A : X -* R u {+oo} is lower semicontinuous and C-invariant. Set, 
as before, K = {x E X: A(x) = O} E E. We shall make the following assumption: 

0 E K and the isotropy group G is trivial for each x 54 0.	(4.6)

In connection with the following proposition, recall Remark 3.11. 
Proposition 4.6. Let E be a C-Banach space and f : E - RU{+oo} a C-invariant 

function of the form (4.5). Assume (4.6). Then, for each (x,) e epif, 

(	A(x) 
dci Ic(x,e) =) 1+ A(x) 

Ii
if = f(x) and 9 —f(x) 54 0 

if>AX ) orOf(x)=0 

holds. 

Proof. The result with Id 1 I instead of J d9f lc is obtained in [16] (combining var-
ious definitions and results, and modulo obvious modifications due to the choice of a 
different metric on epif), and this does not require that 0 € K. That Idci lc Idcíl 
follows from (4.6) and Remark 3.21
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We now assume that 0 and b are even functions, i.e. they are G-invariant with 
G = {idE , —idE }, a representation of the group Z 2 . Notice that (4.6) is verified in that 
case: '(0) = 0 and 0 is a minimum of 0, so that 0 E K. 

EG is now the set of closed symmetric subsets of X and VG the set of odd defor-
mations of X. An index associated to (EG, VG) verifying property (i 4 )' (see Section 3) 
is the genus -y of Krasnoselski (see [10, 23] and [27: Section 7]): for A E E, y(A) is the 
smallest n E N such that there exists W : A - R" \ {0} continuous and odd, with the 
conventions that (A) = +oo if no such n exists and that y(0) 0. The genus -y also 
verifies property (i 6 ) and indeed, if 0 A E EG and (A) > 1, then A is an infinite set. 

In what follows, B,. and S, denote respectively the closed ball and sphere in E, 
of radius r > 0 and centered at the origin. The following assertion is a version of [8: 
Theorem 8] and is similar to [28: Theorem 4.3]. 

Theorem 4.7. Let E be a Banach space and f : E - R U {+oo} a function of 
the form (4.5) with 0 and 0 even. Assume that 1(0) = 0, f is bounded below, satisfies 
the Palais-Smale condition (PS) A ,a for all a < 0, and that there exist r > 0 and a 
finite-dimensional subspace E of E such that sup{f(S,. fl E)} <0. Then f has at least 
dimE pairs of critical points. 

Proof. For 1 <j <p := dimE define 

= {u e EG : U is compact and J(U) ^: 

and c3 = c3 (f,r,). Clearly, we have Sr fl E E ['n . Since f is bounded below and 
sup{f(S,. fl E)} <0, it follows that —oo < c <0 for 1 < j :^ p. 

According to Proposition 4.6, the epigraph function gf verifies the Palais-Smale 
condition (PS)Idc,Ic,a for a < 0 and, defining r, (1 j p) as in (3.2), we can 
use Theorem 3.6 and Proposition 3.9 to obtain from Corollary 2.12 (letting F = epif) 
that 91 possesses at least p pairs of critical points (Exj , j ) with E3 = c3 for each 
J. By Proposition 4.6 again, this yields p pairs of critical points ±x3 for f, with 
f(x) = c3 <0 U 

The following theorem is a version of the Symmetric Mountain Pass Theorem [27: 
Theorem 9.12], which improves [28: Theorem 4.4 and Corollary 4.8]. 

Theorem 4.8. Let E be a Banach space and f: E - RU {+oo} a function of the 
form (4.5) with 0 and b even. Assume that 1(0) = 0, f is bounded below, satisfies the 
Palais-Smale condition (PS) A , for all a > 0, and that 

(i) there is a subspace E 1 of E of finite codimension and r, a > 0 such that 
inf{f(Sr fl E)} > a 

(ii) for each finite-dimensional subspace E of E there exists R = R(E) > 0 such 
that sup{f(E \ Br)) 0. 

Then f possesses dimE1 pairs of critical points. Moreover, if dimE = +, f 
possesses an unbounded sequence of critical values.
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Proof. Set k codimE 1 , let E C E be a finite-dimensional subspace with dimE = 
p> k and R > r such that sup{f(SRflE)} < 0. It is easy to see that sup{f(BR flE )} < 
+. Thus, we may define consistently I' and r (1 i p - k) as in (3.3) and (3.4) in 
Section 3 (the notations correspond). If h = (h i , h2 ) E F and U := h(BR n E \ Y) E ['i, 
then h l (BR fl E \ Y) fl Sr fl E1 54 0 (see [27: Proposition 9.23], observing that 0 Y 
since y(Y) < +00). If we set

F= [(SrflEi ) x IR]flepif, 

then U fl F 0 0. Using Proposition 4.6, Theorem 3.6 and Proposition 3.10, Corollary 
2.12 yields p - k pairs of critical points of 9 f and hence p - k pairs of critical points of 
f, by Proposition 4.6 again. If E is finite-dimensional, the result is thus proved letting 
E = E. 

If E is infinite-dimensional, for each j-dimensional subspace E, with j > k one can 
define (as already mentioned at the end of Section 3) rij like F, above for 1 < i j, 
choosing R, R(E,) such that inf{R, - r : j > k} > 0 (this restriction is not 
necessary if a > 0). Defining I', (i e N) as in Remark 2.13/(iii) (similarly as in the 
proof of [27: Theorem 9.12]) we obtain the result from Corollary 2.12 applied to gf 
again I 

Remark 4.9. (1) This result improves [28, Theorem 4.4, Corollary 4.81 since we 
have defined actual critical values of the function f, and we can conclude on the be-
haviour of the sequence of critical values whenever dimE = +00. 

(ii) From previous results and remarks, one can see that Theorem 4.8 holds with 
E1 of possibly infinite codimension, for E a Hilbert space and f of the form (4.3). 
Also, analogous results hold using other groups G and related indices 3 possessing the 
dimension property, for example the S'-index of Benci [2] (see [3: Theorem 4.2 and 
Corollary 4.5]). The cohomological index theories of [19, 20) can be used as well. 

(iii) The analogue of Proposition 4.6 holds if E is a Hilbert space and f is of the 
form I = with 0 E C'(E,R) and b: E - IRU{+oo} lower semicontinuous with 
a -monotone subdifferential of order 2 (see [12, 16]); indeed, this result holds without 
the restriction (4.6). 
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