On the

Uncertainty Principle for Positive Definite Densities

I. Dreier

Abstract

The products of variances of adjoint positive definite densities have a greatest lower bound Λ. We improve the known estimates of Λ showing $0.527<\Lambda \leq 0.8609 \ldots$.

Keywords: Uncertainty principle, positive definite probability density
AMS subject classification: $60 \mathrm{E} 10,60 \mathrm{E} 99$

1. Introduction

Recall that a function $p: \mathbb{R} \rightarrow \mathbb{C}$ is called positive definite if

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} p\left(x_{j}-x_{i}\right) c_{i} \overline{c_{j}} \geq 0
$$

for all $x_{i} \in \mathbb{R}$ and $c_{i} \in \mathbb{C}(i=1, \ldots, n)$ and for each $n \in \mathbb{N}$. In the sequel, when writing a positive definite density, we mean a density that is positive definite and continuous. The density of the normal distribution with mean zero and variance σ^{2} is an example of a positive definite density.

By Bochner's Theorem (see [4: Theorem 1.9.6]) we know that a function f is a characteristic function if and only if f is positive definite, continuous and $f(0)=1$. Now let p be a positive definite probability density. Then its characteristic function f is integrable and non-negative (see [4: Theorem 1.9.8]). Therefore the function

$$
\tilde{p}(x)=\left(\int_{-\infty}^{+\infty} f(x) d x\right)^{-1} f(x) \quad(x \in \mathbb{R})
$$

is also a positive definite density. It is called the adjoint density of p. A density p is said to be selfadjoint if $f=\sqrt{2 \pi} p$. Note that p is selfadjoint if and only if $p=\tilde{p}$.

Denoting by σ^{2} and $\tilde{\sigma}^{2}$ the variances of p and \tilde{p}, respectively, the product $\sigma^{2} \tilde{\sigma}^{2}$ cannot be arbitrarily small. This fact is closely related to the uncertainty principles investigated in harmonic analysis and physics (see [1]). Roughly speaking, it is impossible for a non-zero function and its Fourier transform to be simultaneously very small.
I. Dreier: Techn. Univ., Inst. für Math. Stochastik, Mommsenstr. 13, D-01062 Dresden

We denote by Λ the greatest lower bound for all products of variances $\sigma^{2} \tilde{\sigma}^{2}$ of adjoint densities. It is known that $0.454<\Lambda<0.8907$. The lower bound can be found in [3: p. 365] and the upper bound in [2: Resultat 3.12]. From [2: Satz 3.7] it is also known that there is a selfadjoint positive definite density such that its product of variances is $\sigma^{4}=\Lambda$. In this note we will improve the lower and upper estimates for Λ showing $0.527<\Lambda \leq 0.8609 \ldots$.

2. The upper estimate for Λ

In this section we give an upper estimation for Λ by considering special selfadjoint densities. These densities are of the form

$$
\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2}} \sum_{k=0}^{n} a_{k} \frac{(2 k)!}{(4 k)!} H_{4 k}(x) \quad(n \geq 0)
$$

where the H_{k} are Hermite polynomials defined by

$$
H_{k}(x)=(-1)^{k} \mathrm{e}^{x^{2}} \frac{d^{k}}{d x^{k}}\left(\mathrm{e}^{-x^{2}}\right) \quad(k \geq 0)
$$

. Note that every selfadjoint density p satisfying $\int_{-\infty}^{+\infty}|x| p(x) d x<\infty$ has the form

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2}} \sum_{k=0}^{\infty} a_{k} \frac{(2 k)!}{(4 k)!} H_{4 k}(x)
$$

with pointwise convergence (see [2: Satz 1.13]). If the conditions

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k}=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} \frac{(2 k)!}{(4 k)!} H_{4 k}(x) \geq 0 \quad(x \in \mathbb{R}) \tag{2}
\end{equation*}
$$

are satisfied, then

$$
p_{n}(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2}} \sum_{k=0}^{n} a_{k} \frac{(2 k)!}{(4 k)!} H_{4 k}(x) \quad(n \geq 0)
$$

is a selfadjoint density. This can be proved using the equality

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{e}^{-\mathrm{i} t x} \mathrm{e}^{-\frac{x^{2}}{2}} H_{k}(x) d x=\mathrm{i}^{k} \mathrm{e}^{-\frac{t^{2}}{2}} H_{k}(t) \quad(t \in \mathbb{R} ; k \geq 0)
$$

(see [5: Theorem 57]). The variance of this density is given by $1+8 \sum_{k=1}^{n} k a_{k}$ (see [2: p. 49]). Hence the product of variances, denoted by λ_{n}, is

$$
\lambda_{n}\left(a_{1}, \ldots, a_{n}\right)=\left(1+8 \sum_{k=1}^{n} k a_{k}\right)^{2} \quad(n \geq 1) .
$$

We search for coefficents a_{0}, \ldots, a_{n} such that the conditions (1) and (2) are satisfied and the product of variances is as low as possible. Because the coefficient of x^{n} in the Hermite polynomial H_{n} is positive condition (2) implies that a_{n} is non-negative. If the product of variances is lower than 1 , then at least one $a_{k}(k=1, \ldots, n-1)$ is negative. Therefore we consider the case $n \geq 2$. Obviously the conditions (1) and (2) are equivalent to the conditions

$$
\begin{equation*}
1+\sum_{k=1}^{n} G_{4 k}(x) a_{k} \geq 0 \quad(n \geq 2) \tag{3}
\end{equation*}
$$

where

$$
G_{4 k}(x)=\frac{(2 k)!}{(4 k)!} H_{4 k}(x)-1 \quad(x \in \mathbb{R} ; k \geq 1)
$$

and

$$
a_{0}=1-\sum_{k=1}^{n} a_{k} \quad(n \geq 2)
$$

The product of variances is minimal if and only if the value $c_{n}=\sum_{k=1}^{n} k a_{k}$ is minimal. So we search for a point $\tilde{\mathbf{a}} \in \mathbb{R}^{n}$ such that

$$
\left.\begin{array}{l}
\tilde{\mathbf{a}} \in P_{n}=\left\{\mathrm{a} \in \mathbb{R}^{n} \left\lvert\, a_{1} \geq-\sum_{k=2}^{n} \frac{G_{4 k}(x)}{G_{4}(x)} a_{k}-\frac{1}{G_{4}(x)} \quad(x>\sqrt{3})\right.\right\} \\
\tilde{\mathbf{a}} \in \tilde{P}_{n}=\left\{\mathrm{a} \in \mathbb{R}^{n} \left\lvert\, a_{1} \leq-\sum_{k=2}^{n} \frac{G_{4 k}(x)}{G_{4}(x)} a_{k}-\frac{1}{G_{4}(x)} \quad(0<x<\sqrt{3})\right.\right.
\end{array}\right\}
$$

and

$$
\sum_{k=1}^{n} k \tilde{a}_{k} \longrightarrow \min
$$

Note that the function G_{4} has its only zero in $(0,+\infty)$ at $\sqrt{3}$.
Now we consider the case $n=2$.
Theorem 2.1. There are coefficents $\tilde{a}_{0}, \tilde{a}_{1}$ and \tilde{a}_{2} such that the conditions (1) and (2) are satisfied and

$$
\lambda_{2}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)=\min _{\left(a_{1}, a_{2}\right) \in P_{2} \cap \tilde{P}_{2}} \lambda_{2}\left(a_{1}, a_{2}\right)=0.8609 \ldots
$$

holds.

Proof. First we minimize $c_{2}=a_{1}+2 a_{2}$ in the set P_{2}. For each $x \in(\sqrt{3},+\infty)$

$$
u=-\frac{G_{8}(x)}{G_{4}(x)} v-\frac{1}{G_{4}(x)}
$$

is a straight line in the Cartesian coordinate system (v, u). In the sequel we exchange the coordinates writing (u, v). A point $\left(a_{1}, a_{2}\right)$ is in the set P_{2} if it is above all lines of the form

$$
\begin{equation*}
u=-\frac{G_{8}(x)}{G_{4}(x)} v-\frac{1}{G_{4}(x)} \quad(x>\sqrt{3}) . \tag{4}
\end{equation*}
$$

In the line $a_{1}=-2 a_{2}+c_{2}$ the value c_{2} is to minimize. We shift this line downwards within the set P_{2}. So the line $a_{1}=-2 a_{2}+c_{2}$ is one of the lines which limit the set P_{2}, that is there is an $x_{s} \in(\sqrt{3},+\infty)$ such that the corresponding line (4) has the slope -2 . We denote the obtained point by ($\tilde{a}_{1}, \tilde{a}_{2}$). First we calculate the product of variances $\lambda_{2}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)$. Then we prove that the point $\left(\tilde{a}_{1}, \tilde{a}_{2}\right)$ is in the sets \tilde{P}_{2} and P_{2}. Last we show that the obtained product of variances is minimal.

The equation

$$
\begin{equation*}
-2=-\frac{G_{8}\left(x_{s}\right)}{G_{4}\left(x_{s}\right)} \quad\left(x_{s}>\sqrt{3}\right) \tag{5}
\end{equation*}
$$

holds. We obtain

$$
x_{s, 1}=\sqrt{7-\sqrt{14}} \quad \text { and } \quad x_{s, 2}=\sqrt{7+\sqrt{14}}
$$

Moreover,

$$
-\frac{1}{G_{4}\left(x_{s, 1}\right)}=-0.890981 \ldots \quad \text { and } \quad-\frac{1}{G_{4}\left(x_{s, 2}\right)}=-0.00901895 \ldots
$$

Because of the definition of the set $P_{2}, x_{s, 2}=\sqrt{7+\sqrt{14}}$ is a solution of equation (5). Therefore

$$
\tilde{c}_{2}:=-\frac{1}{G_{4}\left(x_{s, 2}\right)}=-0.00901895 \ldots
$$

For the product of variances we obtain

$$
\lambda_{2}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)=\left(1+8 \tilde{c}_{2}\right)^{2}=0.860903 \ldots
$$

and for the point $\tilde{\mathbf{a}}$

$$
\tilde{a}_{1}=-2 \tilde{a}_{2}+\tilde{c}_{2}=-\frac{G_{8}\left(x_{s, 2}\right)}{G_{4}\left(x_{s, 2}\right)} \tilde{a}_{2}-\frac{1}{G_{4}\left(x_{s, 2}\right)}
$$

In view of the above consideration we can suppose that $\tilde{a}_{1}<0$ and $\tilde{a}_{2}>0$. Since $-\frac{G_{9}}{G_{4}}>-2$ and $-\frac{1}{G_{4}}>0$ on $(0, \sqrt{3})$, we see that

$$
\tilde{a}_{1}=-2 \tilde{a}_{2}+\tilde{c}_{2}<-\frac{G_{8}(x)}{G_{4}(x)} \tilde{a}_{2}-\frac{1}{G_{4}(x)} \quad(x \in(0, \sqrt{3}))
$$

and therefore $\tilde{\mathbf{a}} \in \tilde{P}_{2}$.
Now we prove that $\tilde{\mathbf{a}} \in P_{2}$. We show that

$$
\tilde{a}_{1}=\max _{x>\sqrt{3}}\left(-\frac{G_{8}(x)}{G_{4}(x)} \tilde{a}_{2}-\frac{1}{G_{4}(x)}\right) .
$$

First the functions $-\frac{1}{G_{4}}$ and $-\frac{G_{8}}{G_{4}}$ are considered on the intervall $(\sqrt{3},+\infty)$. They have the following properties: $-\frac{1}{G_{4}}<0,-\left(\frac{1}{G_{4}}\right)^{\prime}>0,-\left(\frac{1}{G_{4}}\right)^{\prime \prime}<0,-\left(\frac{G_{8}}{G_{4}}\right)^{\prime}$ is strictly decreasing, and there is an $x_{0} \in(2,3)$ with $-\left(\frac{G_{8}\left(x_{0}\right)}{G_{4}\left(x_{0}\right)}\right)^{\prime}=0$: Up to now it was sufficient to know that $\tilde{a}_{1}=-2 \tilde{a}_{2}+\tilde{c}_{2}$. Next we show that the coordinate \tilde{a}_{2} has the value

$$
\tilde{a}_{2}=-\left(-\frac{1}{G_{4}\left(x_{s, 2}\right)}\right)^{\prime} /\left(-\frac{G_{8}\left(x_{s, 2}\right)}{G_{4}\left(x_{s, 2}\right.}\right)^{\prime}
$$

Obviously $x_{s, 2}=3.2774 \ldots>x_{0}$. Therefore $\tilde{a}_{2}>0$ and the function $-\frac{G_{8}}{G_{4}} \tilde{a}_{2}-\frac{1}{G_{4}}$ has a local maximum at $x_{s, 2}$. Now we suppose that there is another extremum at $x_{w} \neq x_{s, 2}$. So

$$
\tilde{a}_{2}=-\left(-\frac{1}{G_{4}\left(x_{w}\right)}\right)^{\prime} /\left(-\frac{G_{8}\left(x_{w}\right)}{G_{4}\left(x_{w}\right)}\right)^{\prime}
$$

follows. It is clear that also x_{w} must be greater than x_{0}. Furthermore the derivative of the function $-\left(-\frac{1}{G_{4}}\right)^{\prime} /\left(-\frac{G_{8}}{G_{4}}\right)^{\prime}$ must have a zero x_{d} between x_{w} and $x_{s, 2}$. Hence

$$
\left(-\frac{1}{G_{4}\left(x_{d}\right)}\right)^{\prime \prime}\left(-\frac{G_{8}\left(x_{d}\right)}{G_{4}\left(x_{d}\right)}\right)^{\prime}=\left(-\frac{1}{G_{4}\left(x_{d}\right)}\right)^{\prime}\left(-\frac{G_{8}\left(x_{d}\right)}{G_{4}\left(x_{d}\right)}\right)^{\prime \prime}
$$

but this is not possible because the left side is positive and the right side is negative on the interval $\left(x_{0},+\infty\right)$. Applying

$$
\lim _{x!\sqrt{3}}\left(-\frac{G_{8}(x)}{G_{4}(x)} \tilde{a}_{2}-\frac{1}{G_{4}(x)}\right)=\lim _{x \rightarrow \infty}\left(-\frac{G_{8}(x)}{G_{4}(x)} \tilde{a}_{2}-\frac{1}{G_{4}(x)}\right)=-\infty
$$

it follows that

$$
\tilde{a}_{1}=-\frac{G_{8}\left(x_{s, 2}\right)}{G_{4}\left(x_{s, 2}\right)} \tilde{a}_{2}-\frac{1}{G_{4}\left(x_{s, 2}\right)}=\max _{x>\sqrt{3}}\left(-\frac{G_{8}(x)}{G_{4}(x)} \tilde{a}_{2}-\frac{1}{G_{4}(x)}\right)
$$

and also $\tilde{\mathbf{a}} \in P_{2} .{ }^{1)}$ Obviously the point $\tilde{\mathbf{a}}$ is in the boundary ∂P_{2} of the set P_{2}. So the product of variances is minimal.

Now we have found a point $\tilde{\mathbf{a}} \in \partial P_{2} \cap \tilde{P}_{2}$, that is, $\tilde{\mathbf{a}}$ satisfies condition (3). Hence

$$
p_{2}(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2}} \sum_{k=0}^{2} a_{k} \frac{(2 k)!}{(4 k)!} H_{4 k}(x)
$$

with coeffients $a_{0}=1-\tilde{a}_{1}-\tilde{a}_{2}, a_{1}=\tilde{a}_{1}$ and $a_{2}=\tilde{a}_{2}$ is a selfadjoint positive definite density with product of variances

$$
\lambda_{2}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)=\min _{\left(a_{1}, a_{2}\right) \in P_{2} \cap \dot{P}_{2}} \lambda_{2}\left(a_{1}, a_{2}\right)=0.8609 \ldots
$$

Thus the assertion is proved
Collorary 2.2. The inequality $\Lambda \leq 0.8609$. $:$ holds.

[^0]
3. The lower estimate for Λ

In this section we give a lower estimation for Λ. First we prove that the set of all products of variances is an interval.

Lemma 3.1. The set of all products of variances $\sigma^{2} \tilde{\sigma}^{2}$ of adjoint positive definite densities is the interval $[\Lambda,+\infty)$.

Proof. Let ($p_{1}, \tilde{p_{1}}$) and ($p_{2}, \tilde{p_{2}}$) be pairs of adjoint positive definite densities with products of variances $\lambda_{1}=\sigma_{1}^{2}{\tilde{\sigma_{1}}}^{2}$ and $\lambda_{2}=\sigma_{2}^{2} \tilde{\sigma}_{2}^{2}$, and for $\beta \in[0,1]$ let p be the positive definite density given by

$$
p(x)=\beta p_{1}(x)+(1-\beta) p_{2}(x) \quad(x \in \mathbb{R})
$$

We denote the variance of p by σ^{2}, the characteristic function by f and the variance of the adjoint positive definite density \tilde{p} by $\tilde{\sigma}^{2}$. We have $\sigma^{2}=\beta \sigma_{1}^{2}+(1-\beta) \sigma_{2}^{2}$ and

$$
\tilde{\sigma}^{2}=\frac{\int t^{2} f(t) d t}{\int f(t) d t}=\frac{\frac{\beta}{\tilde{p}_{1}(0)}{\tilde{\sigma_{1}}}^{2}+\frac{1-\beta}{\tilde{p}_{2}(0)}{\tilde{\sigma_{2}}}^{2}}{\frac{1}{\tilde{p}(0)}}
$$

Hence

$$
\lambda(\beta):=\sigma^{2} \tilde{\sigma}^{2}=\frac{\left(\beta \sigma_{1}^{2}+(1-\beta) \sigma_{2}^{2}\right)\left(\frac{\beta}{\tilde{p}_{1}(0)}{\tilde{\sigma_{1}}}^{2}+\frac{1-\beta}{\tilde{p}_{2}(0)}{\tilde{\sigma_{2}}}^{2}\right)}{\frac{1}{\tilde{\tilde{p}}(0)}}
$$

Since λ is a continuous function of β, and since $\lambda(0)=\lambda_{2}$ and $\lambda(1)=\lambda_{1}$ we see that the set of products of variances is an interval I. By [2: Satz 3.7] Λ is the lower end point of the interval I.

To show that the product of variances can be arbitrarily large we give a simple example. Let p_{ϕ} be the density of the standard normal distribution. Then the characteristic function f_{ϕ} is given by $f_{\phi}(t)=\mathrm{e}^{-\frac{t^{2}}{2}}$, and the variance is $\sigma_{\phi}^{2}=1$. We define for $y \geq 0$ a new density by

$$
p(x)=\frac{1}{2} p_{\phi}(x)+\frac{1}{4}\left(p_{\phi}(x-y)+p_{\phi}(x+y)\right)
$$

The characteristic function is given by

$$
f(t)=\frac{1}{2}(1+\cos y t) \mathrm{e}^{-\frac{t^{2}}{2}} .
$$

Since f is integrable and non-negative the density p is positive definite. Recall that the variance σ^{2} of the density p is $-f^{\prime \prime}(0)$, where f is the corresponding characteristic function. Since the adjoint density \tilde{p} of p is $\left(\int f(x) d x\right)^{-1} f$ the variance $\tilde{\sigma}^{2}$ of \tilde{p} is given by $\tilde{\sigma}^{2}=\left(\int x^{2} f(x) d x\right) /\left(\int f(x) d x\right)$. We obtain for the product of variances λ of the adjoint densities p and \tilde{p}

$$
\lambda(y)=\frac{-f^{\prime \prime}(0) \int t^{2} f(t) d t}{\int f(t) d t}=\frac{\left(\frac{1}{2} y^{2}+1\right)\left(\mathrm{e}^{\frac{v^{2}}{2}}-y^{2}+1\right)}{\mathrm{e}^{\frac{x^{2}}{2}}+1}
$$

Since $\lim _{y \rightarrow \infty} \lambda(y)=+\infty$ the set of products of variances is the interval $[\Lambda,+\infty)$

Now let p be a selfadjoint density with characteristic function f. Then

$$
\begin{equation*}
f(x)=\sqrt{2 \pi} p(x) \tag{5}
\end{equation*}
$$

We will use the inequality

$$
\begin{equation*}
f(x)>\cos \sigma x+2 J\left(\frac{x}{2}\right) \quad\left(0<|x \sigma|<\frac{\pi}{2}\right) \tag{6}
\end{equation*}
$$

where

$$
J(x)=\int_{-\infty}^{+\infty}(\cos t x-\cos \sigma x)^{2} p(t) d t
$$

(see [3: Satz 3/p. 348]).
Lemma 3.2. The inequality

$$
J(x)>\frac{2}{\sqrt{2 \pi} \sigma} \int_{0}^{\pi / 2}\left(\cos \frac{x t}{\sigma}-\cos x \sigma\right)^{2}\left(2 J\left(\frac{t}{2 \sigma}\right)+\cos t\right) d t \quad(x \in \mathbb{R})
$$

holds.
Proof. Applying (5) and (6) we obtain

$$
\begin{aligned}
J(x) & =\frac{2}{\sqrt{2 \pi}} \int_{0}^{+\infty}(\cos x t-\cos \sigma x)^{2} f(t) d t \\
& \geq \frac{2}{\sqrt{2 \pi}} \int_{0}^{\pi / 2 \sigma}(\cos x t-\cos \sigma x)^{2} f(t) d t \\
& >\frac{2}{\sqrt{2 \pi}} \int_{0}^{\pi / 2 \sigma}(\cos x t-\cos \sigma x)^{2}\left(2 J\left(\frac{t}{2}\right)+\cos t \sigma\right) d t
\end{aligned}
$$

and the assertion is proved
We define $J_{0}=0$ and

$$
J_{n}(x)=\frac{2}{\sqrt{2 \pi} \sigma} \int_{0}^{\pi / 2}\left(\cos \frac{t x}{\sigma}-\cos \sigma x\right)^{2}\left(2 J_{n-1}\left(\frac{t}{2 \sigma}\right)+\cos t\right) d t
$$

for all $x \in \mathbb{R}$ and $n \geq 1$. It is clear that J and $J_{n}(n \geq 1)$ are strictly positive and that the inequalities

$$
\begin{equation*}
J>J_{n} \quad(n \geq 0) \tag{7}
\end{equation*}
$$

hold.

Lemma 3.3. If σ^{2} is the variance of a selfadjoint density, then

$$
F_{n}(\sigma):=\sigma^{2}-\frac{\pi^{2}-8}{2 \sqrt{2 \pi} \sigma^{3}}-K_{n}(\sigma)>0
$$

where

$$
K_{n}(\sigma)=\frac{4}{\sqrt{2 \pi} \sigma^{3}} \int_{0}^{\pi / 2} J_{n}\left(\frac{x}{2 \sigma}\right) x^{2} d x \quad(n \geq 0)
$$

Proof. Applying (5) - (7) we obtain

$$
\begin{aligned}
\sigma^{2} & =\int_{-\infty}^{+\infty} x^{2} p(x) d x \\
& \geq \frac{2}{\sqrt{2 \pi} \sigma^{3}} \int_{0}^{\pi / 2} x^{2} f\left(\frac{x}{\sigma}\right) d x \\
& >\frac{2}{\sqrt{2 \pi} \sigma^{3}} \int_{0}^{\pi / 2} x^{2} \cos x d x+\frac{4}{\sqrt{2 \pi} \sigma^{3}} \int_{0}^{\pi / 2} J\left(\frac{x}{2 \sigma}\right) x^{2} d x \\
& =\frac{\pi^{2}-8}{2 \sqrt{2 \pi} \sigma^{3}}+\frac{4}{\sqrt{2 \pi} \sigma^{3}} \int_{0}^{\pi / 2} J\left(\frac{x}{2 \sigma}\right) x^{2} d x \\
& >\frac{\pi^{2}-8}{2 \sqrt{2 \pi} \sigma^{3}}+K_{n}(\sigma) \quad(n \geq 0)
\end{aligned}
$$

and the assertion is proved
Theorem 3.4. The inequality $\Lambda>0.5276 \ldots$ holds .
Proof. From [3: Satz 5/p. 364] we know that if p and \tilde{p} are adjoint densities with product of variances λ, then there is a selfadjoint density with the same product of variances. Therefore it is sufficient to consider only selfadjoint desities. By Lemma 3.3, the inequalities $F_{n}(\sigma)>0(n \geq 0)$ hold for σ if σ^{2} is the variance of a selfadjoint density. Hence σ^{4} cannot be contained in the interval $[\Lambda,+\infty)$ if $F_{n}(\sigma) \leq 0$. We computed the following values with the program Mathematica:

n	σ	$F_{n}(\sigma)$	σ^{4}
0	0.8207	$-0.0010983517 \ldots$	$0.453667568 \ldots$
1	0.8464	$-0.0012940136 \ldots$	$0.513218873 \ldots$
2	0.8511	$-0.0011355911 \ldots$	$0.524713649 \ldots$
3	0.852	$-0.0015642939 \ldots$	$0.526936617 \ldots$
4	0.8523	$-0.0011071585 \ldots$	$0.527679173 \ldots$

Hence $\Lambda>0.5276 \ldots$

Acknowledgement. The author's research is sponsored by Claussen- Stiftung. The author would also like to acknowledge helpful discussions with Prof. Zoltán Sasvári and Dr. Matthias Weber.

References

[1] Havin, V. and B. Jöricke: The Uncertainty Principle in Harmonic Analysis. Berlin: Springer-Verlag 1994.
[2] Pfannschmidt, C.: Positiv definite Verteilungsdichten. Thesis. Leipzig: Universität 1995.
[3] Rossberg, H.-J.: Positiv definite Verteilungsdichten. Appendix to: Gnedenko, B. W.: Einführung in die Wahrscheinlichkeitstheorie (9th ed.). Berlin: Akademie-Verlag 1991.
[4] Sasv́ari, Z.: Positive Definite and Definitizable Functions. Berlin: Akademie-Verlag 1994.
[5] Titchmarsh, E. C.: Theory of Fourier Integrals (2nd ed.). London: Oxford Univ. Press 1948.

Received 08.02.1996

[^0]: 1) 'We note that $\tilde{a}_{1}=-0.0123976 \ldots$ and $\tilde{a}_{2}=0.0016893 \therefore$.
