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A Generalization of the Weierstrass Theorem 

A. Drwalewska 

Abstract. The well-known Weierstrass theorem stating that a real-valued continuous function 
I on a compact set K C R attains its maximum on K is generalized. Namely, the space of real 
numbers is replaced by a set Y with arbitrary preference relation p (in place of the inequality 
<), and the assumption of continuity of I is replaced by its monotonic semicontinuity (with 
respect to the relation p). 
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1. Introduction 

Let X be a locally convex space and K C X a sequentially compact set (a formal 
definition of such sets is given in Section 2). Let f: K -* Y be a function mapping K 
into Y, which is an abstract space equipped with arbitrary preference relation p C V2. 
By p we mean the transitive closure of p, i.e. xpy if and only if there are elements 

y, E Y such that x = y', Y1PY2, Y2PY3, -•, Yn-iPYn, y,, = y. By a (p,p.)-maximal 
point of f on K we will understand a point x 0 E K such that if for some x E X we have 
f(xo)pf(x), then also f(x)pf(xo). Equivalently, I will be said to achieve its ( p, p')-
maximal value on K. Our aim is to investigate sufficient conditions for-the existence of 
(p p* )-maximal points off on K. 

2. The main result 

First we recall the definition of a sequentially compact set. 

Definition 1 (see [2: p. 261]). A subset Z of a topological space X is called 
sequentially compact if for every sequence {x 1 } 1 >1 C Z there is a subsequence {x! k }k>I C 
x} 1 >1 converging to some x E Z. 

A locally convex topological vector space is a vector space with a topology defined 
by some collection of seminorms. The following example shows, that the notion of 
sequential compactness does not coincide with the notion of compactness, even in the 
case of locally convex topological spaces. 
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Example 2 (see [8: P. 253/Exercise 38]). Let B = [0, i]d be the d-fold Cartesian 
product of [0, 1], where d has the cardinality of a real line. Let B0 be the subset of all 
elements of B with at most countable non-zero coordinates. Then B0 is sequentially 
compact but not compact and B is compact but not sequentially compact. 

The topology of a locally convex topological vector space is metrizable if and only 
if it may be defined by a countable collection of seminorms. This is not always possible, 
however. Let us consider the following example. 

Example 3 (see [6: p. 68/Counterexample 1.1.81). Let Co(R) denote the vector 
space of continuous functions on the, real line JR with compact support. For any positive 
function let

1111k = sup (x)lf(x)l. 

The collection of seminorms {II II} defines a topology in Co(R) such that Co(R) is a 
complete locally convex Hausdorif topological vector space, but is not metrizable. 

Weak topology is permanently used in many important fields of applications. The 
following theorem shows when a weak topology on a vector space X makes X be a 
locally convex linear space. 

Theorem 4 (see [7: p. 76/Theorem 3.10]). Let X be a vector space and X' a 
vector space of linear functionals, which separate points in X. Then the topology in X 
induced by X' makes X be a locally convex space. Moreover the conjugate space X to 
the space X is equal to X'. 

The next theorem establishes the equivalence between compactness and sequential 
compactness with respect to weak topologies. 

Theorem 5 (see [1: Theorem C8/p. 164]). Let X be a Banach space. A subset E 
of X is weakly compact if and only, if it is weakly sequentially compact (i.e. sequentially 
compact with respect to the weak topology on X). 

Definition 6 (see [5: p. 201]). We shall call f monotonically semi continuous (with 
respect to the relation p) at x 0 E X, if for every sequence {x 1 } C X converging to xo 
and such that

f(x1)pf(x1+j)	for all i E 

the relation
f(x)p*f(x0)	for all i E N	'	 (1) 

holds. 

Definition 7 (see [4: p. .288]). X is called countably orderable with respect to 
the relation p if for every non-empty subset W c X the existence of a relation 77 well 
ordering W and such that 77 c p U id implies that W is at most countable. 

The following theorem extends the Weierstrass theorem due to Gajek and Zagrodny 
[5] to the case when K is a sequentially compact set.
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Theorem 8. Let X be a locally convex topological space and let p be an arbitrary 
preference relation on a set Y. Assume f X -+ V is monotonically semicontinuous 
on a sequentially compact (with respect to the induced topology) and convex set K C X. 
Then f achieves its (p , p*)maximal value on K. 

Proof. Define a relation q ç K 2 in the following way: 

I x y, f(x)pf(y) and there is r > 0 such 
xqy	

l that (r(K_K)+x)fl{zEKIf(y)p*f(z)} =0. 

Let ,uKK denote the Minkowski functional related to the set K - K. We have, for 
every x,yEK;

/.LK_K(X - !)
f<r when y(r(K—K)+r) 

1 - ̂ r when y(r(K—K)+x). 

First we show that K is countably orderable with respect to the relation q. Let W c K 
be well ordered with respect to some relation 17 c q U id. Since W is well ordered, for 
every w E W there is an immediate successor of w, say n(w). Since 77 c q U id there is 
an r(w) > 0 such that 

(r(w)(K - K)+w) fl {z E W I n ( w ) 7iz,n (w ) $ z} = 0. 

For every n E N, define
Xn{wEWr(w)> } 

Obviously, W = U flEN Xfl . If X, were not finite for some no E N, then X, 0 would 
contain a subset {X*}IEN such that x177x271x3.... Consider the sequence {xk}kodd. We 
have	

1 - x3 )> -'	for all i,j odd and i j4 j .	 (2)no 
Since K is sequentially compact, there is a point x 0 E K and a subsequence {x k } C {xk } 
such that { x k 1 } converges to x 0 . Consequently, by the definition of convergence, we infer 
that for any neighbourhood of x 0 , in particular for 1 (V fl (K - K)) + x 0 where V is 
a convex absorbing neighbourhood of zero, there is an index kj such that, for km > k1, 

Xk E 4n0 

and consequently
1 

PVn(K_K)(Xk,,, - xo) < - 4n0 
So we have 

/1K_K(Xk,, - Xk,) /LVn(K-K)(Xk - Xk) 

11 1/n(K-K) [(Xk - x0 ) +.(x0. — xkjJ 
1Vfl(K_K)( X k m - x0 ) + /1 vn(K_K)( xk - x0) 

1	1	1 

	

4n 0 4n0	2n0
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which contradicts (2). Therefore each X, 0 is finite which implies that W is at most 
countable. So K is countably orderable with respect to the relation q. 

Now let us consider any sequence {x 1 } C K such that x j qxti for all i E N. By the 
definition of q, there are r > 0 such that 

(r j (K_K)+ xi) fl{zEKPI(xi+l)p*f(z)} =0.	 (3) 

Since K is sequentially compact, there is a point x E K and a subsequence {xjk } C {x1} 
converging to x. Applying the monotonic semicontinuity property at x, we conclude 
that f(x1)p*f(x) for all k E N. Consequentlyby (3), it follows that xqx for all k E N. 
By [4: Theorem 3.7] there is a (q, q)-maximal element of K, say x 0 . We will show that 
this implies the thesis. To this end consider any y E K, y 54 x 0 , for which f(xo)pf(y). 
If there is an r0 > 0 such that 

(ro(K - K) + x0) fl {z E KI f(y)pf(z)} = 0,	 (4) 

then xoqy. By the (q, q)-maximality of xo, yqxo, which implies f(y)pf(xo). So assume 
that (4) does not hold for any r > 0. Then chosing r 1 = 1, there is an element 

y i E (r i (K - K) + xo) n {z E KI f(y)p*f(z)}. 

If (4) holds for y = Yl, then again we can get the assertion. So assume that for r2 = 
there is an element

Y2 e (r2 (K - K) + x 0 ) n {z e KI f(yi)pf(z)} 

for which (4) is not valid, and so on. In this way either the theorem holds directly or 
we can get a sequence I yj } such that 

f(x)pf(y)p*f(y)pf(y)p*... .	 (5) 

Suppose that x 0 is not the limit of the sequence {y1}. Then there is a convex symmetric 
neighbourhood of 0, say Uo, a subsequence {y } and a number N E N such that, for 
all n N, y	(U0 fl (K - K)) + x 0 . The way the subsequence {y 1 } was constructed 
implies that we can choose points k E (K - K) for which y - xo = rk	Uo for 
every n N. On the other hand, the set K is sequentially compact. So for some 
subsequence {k, }, k -+ k e (K - K). It means that for every j, 1 large enough, we 
have ,u u0 (k, - ku,) 1. Hence for n -* 

+00 -	, u0(k1)	u(k,) + /A u0 ( k 1 - ku,) ,z u0 ( kn,) + 1 < +oo 

which is a contradiction. Therefore the sequence {yj} is converging to x 0 . 'Consequently, 
by the monotonic semicontinuity property, we have f(y1)p*f(x) for all i E N. This and 
(5) together imply that f(y)p*f(xo) U 

Remark 9. When K is countable we need not assume that K is convex.
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