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Abstract. The paper deals with polynomials characterized by coefficients determined by suc-
cessive elements of the Fibonacci sequence. Basic properties and applications of the Fibonacci 
polynomials are demonstrated. The index of concentration of Fibonacci polynomials at k-th 
degree, locations of their zeros and optimization procedures for such polynomials are discussed. 
Illustrative examples are presented. 
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1. Introduction 

In this paper we deal with polynomials 

z o	z 	z  
qn(z) = - + - + - + 

fo	1'	fz

+ fnxn >JfkXt	(n> 0)	(1) 

(n.?O),	 (2) 
fn	k=O k - 

pn(x) = fox° + fi x' +f2 x 2 + 

and 

i.e. polynomials in x E C and z e C with coefficients determined by elements of the 
Fibonacci sequence	 . 

fk+2 = fk+I+fk	 .	( 3) 

in which the first two values fo and f are known. It is usualy assumed (see [2, 15, 16, 
20]) that the absolute values of the subscripts in (3) are .I k I =0,1,2,... and the initial 
values are fo = 1 and f, = 1. Table 1 gives the first few Fibonacci numbers generated 
by (3). In other publications (see [5, 6, 8, 11, 13, 19, 22]) it is assumed that the first 
terms of the Fibonacci sequence take the values fo = 0 and f = 1. In the sequel we 
shall limit our attention to non-negative subscripts k > 0 only. The case of negative 
subscripts k< 0 can be treated analogously. 

Z. W. Trzaska: Warsaw Univ. Techn., Dept. Elec. Eng., Plac Politechniki 1, 00-661 Warsaw, 
Poland. e-mail: trz©nov.iem.pw.edu.pl  

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag



730	Z. W. Trzaska 

Although the Fibonacci sequence has been studied extensively for some hundred 
years it still remains a fascinating area for exploration and there always seems to be 
some new aspects that can be revealed. Here, we explore sonie of the basic features of 
the Fibonacci sequence. 

k ...-6-5-4-3-2-1012345 6 
1k ... —5 —3 —2 —1 —1 O 1 1 2 3 5 8 13 

Table 1. Successive elements of the Fibonacci sequence 

It should be emphasized that polynomials play a central role not only in mathe-
matics but also in many other domains of human activity to reveal phenomena in our 
environment and to design systems with desired properties (see [13 - 15]). The iñstanta- 
neous state of many physical plants usually depends on several variables and is described 
by one or several state functions of one or several variables. These state variables, if 
sufficiently smooth, can be represented by polynomials, in some range and within some 
accuracy. Thus, the study of any plant, no matter how complicated it is, involves the 
study of polynomials. 

In this paper we deal with fundamental concepts in the domain iof newly created 
Fibonacci polynomials with the emphasis put on their properties and their possible 
application in various branches of mathematics and neighbouring disciplines. New con-
cepts in the domain of the Fibonacci polynomials are presented.' In particular, we 
discuss the index of concentration of the Fibonacci polynomials at degree k, and the 
location of zeros of the newly created polynomials are systematically studied. In. this 
context we shall present new approaches allowing us to obtain a quantitative measure 
for the Fibonacci polynomials which result from the knowledge of qualitative ones. 
The fundamental notion and definition of concentration at low degree for polynomials 
are involved in the sequel. Illustrative examples are given along the presentation and 
sometimes examples will serve instead of formal proofs. 

The paper is organized in the following way. We begin, in Section 2, by presenting 
some of the most important properties of Fibonacci polynomials with regard to their 
possible application. Section 3 is devoted to basic Fibonacci binomial identities estab-
lished on the base of Fibonacci polynomials. Problems involving the need of applications 
of optimization approaches are included in Section 4. Conclusions and final remarks are 
presented in Section 5. 

2. Basic properties of Fibonacci polynomials' 

In this section we shall demonstrate a set of the most useful properties of the Fibonacci 
polynomials which may not be commonly known. 

2.1. Properties of polynomials (1). First, let us represent a general term of the 
Fibonacci sequence (3) by the Binet formula (see [18: Chapter TV/p. 52]) 

- 
fk	a 	(/c>O)	 (4)
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where

a=1—b= 
2	

(5) 

Substituting (4) into (1) and rearranging terms yields 

n b
n 

pn(x) = _-_V'(ax)' -	 >2(bx)k 
b	 b	

((n> 0).	 (6) 

	

a—'--'	a— 

	

k=O	 k 0 

Taking into consideration the particular values of a and b, and assuming axj41 and 
bx1, we can use well known properties of the geometric progression and rewrite (6) in 
equivalent form as 

pn(x) - a (ax )'_-1 - b(bx)1_-1 
a — b ax — i	a — b bx-1	(n>0).	(7)

Since a+b=1,a—b=s/ and ab=—1 one gets 

1 (a - b) - (a'	- b)xn + 2 - (a+2 - bn+2)x'+' 
pn

(x) =a — b	 —x2 —x+1	
(n > 0). (8)

Finally, taking into account (4) we obtain 

fx' 2 + fn4.1XT+l —'ía 
pn(x) =
	 - 1	

(n > 0).	 (9)
x2 + x  

The above result indicates that any n-degree polynomial with coefficients determined 
by successive Fibonacci numbers can be represented as a ratio of two trinomials in x 
with appropriate degrees and coefficients from the set of Fibonacci numbers. It is worth 
mentioning that expression (9) can also be considered in inverse sense. This means 
that the polynomials r+2(x) = f,x' 2 + - 1 (n > 0) are divided without 
remainder by the polynomial s 2 (x) = x2 + x - 1. 

The importance Of (9) lies mainly in the fact that it can easily be used to prove many 
useful identities concerning the analysis of the set of Fibonacci numbers, in particular, 
when the variable x in p,, = pn(x) may take different numerical values and/or when n 
tends to infinity. To demonètrate these facts we shall consider some identities in the 
field of Fibonacci numbers. 

At first, we take x = 1 and use (9) to express the sum of n successive Fibonacci 
numbers as

fk = pn(x )111 = fn+i + In - fo = fn+2 - Io	(n > 0).	(10) 

Moreover, if we want to determine a partial sum of succesive Fibonacci numbers, then 
from (10) we obtain

fmm+1	... +f=fn+2—fm+1. 
P=M

	 (11)
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Next, taking the first derivative with respect to x of both sides of (9) and using (1) we 
obtain

S(kfk) = 

=
dx	z=1 

-	 (n>O)	(12) 
- dx	'x2+x-1	z=1 

	

=(n+2)f+(n+1)f1 —3(f+f	1o)  

= f fn+2 - fn+3 + 13. 

Therefore, to find En 0 kfk we need to know the three Fibonacci numbers 13, fn and 
fn+3• In a similar way we can prove that 

n  
S (k2 fk	

k2f - d2pn(x)I	
+S(kfk) 

k=O 
) =	 dx2	z=i	 (13) 

= (n + 1 ) 2 ffl+2 - (2n - 1)f 4 + 2f 3 - i3fo.-

Other sums may be determined in similar manner. 

Further, let us assume that lxi < and n —p oo. Then from (9) we can determine 
the infinite Fibonacci polynomial. This is done by taking lim_,p(x) in (1) and (9). 
This yields  

	

p(x) = lim	(xkfk) = lim fn + ffl+1.	- Jo 

k=O	 x2 + - 1	
(14) 

Observe that for Ix l < we have lim.,0 fx = 0. By using this we obtain 

P(x).2+°i = 1—x —x2	
(15) 

Note that (15) generates successive terms of (1). Moreover, the above result can be 
used to evaluatep(x) for various lxi < . For instance, if x i = -andx 2 =	then 
it can be easily checked that 

	

(i)	 1k	(-1'\ •4 and	Ld(_2)kPoo2)T.5 

Several other interesting cases of pn(X) for particular values of x and n can be investi-
gated in similar manner. 

2.2. Particular properties of polynomials (1). Let us now turn to the fundamental 
notion of the index of concentration at low degree 0 < k <n for a polynomial in x of
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n-th degree. In the general case it is defined (see [1] or [17: Chapter II/p. 44]) by the 
expression

fik(n) =(16)a En oldri 

where dr (0 r <n) denotes the successive coefficients of the given polynomial 

	

pn(X) =40 +di x +...	+ ... +d,x'.	 (16)b

Applying the above result to determine the index of concentration of the polynomial p 
at degree k we obtain

k(fl)= .	 (16)En 
P= 0 fP 

Relation (16)c is a measure for the relative importance of the terms of low degree inside 
the whole polynomial (1). This gives a possibility to determine the location of the zeros 
and the size of the polynomial in a given interval. On the other hand, polynomials (1) 
with different .n do not have identical indices of concentration at the same degree k, 
but as we will see (due to the concentration property) the number of their zeros in any 
given disk remains uniformly bounded, independently of n. 

Now, we want to determine the degree k of polynomial (1) for which 6k(n) 
This specific value can be used to determine the radius of an open disk centered at 0 
and containing at most k zeros of p,. Substituting the above value into (16) we get 

	

1	1 
fk+2	fn+2 +..	S	 (17) 

This implies that for sufficiently large n the relation 

k < n — 2	 (18)

holds. For instance, if ii = 3, then for k = 1 we have from (16) that 

(3)= :I =< . 
But for k = 2 we obtain

f4-1 4 1 
82(3)f15>. 

To prove (18) we use (4) and take n > 3 to get 

k+1 3 v(5- 8_2(n)	
a"k=n-2 

= a2 =	2	
0.381966... .	(19) 

Under the above conditions any polynomial (1) at degree k satysfying (18) has at most 
k roots in the open disk centered at 0 and radius p(5; k) determined by the expression 

Xp(8,k) 
= ( j— 	- 

1.	 (20)
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It has to be noted that for 6 > 1 the estimation of the radius needs more complex 
analysis in a Hubert space (see 120, 22]) and is beyond the scope of the present paper. 

2.3. Singular cases of (9). Now we can consider two specific (singular) cases which 
appear when x = — b or x = = —a are substituted into (9). Note that the 
identities

a2=a+1	and	b2=b+1 

hold. To consider the singular cases of (9) we can evaluate the ratio of the derivatives 
of the numerator and denominator of the right-hand side of (9). As a result, we find 
that

(i'\ —	[fx2 + fn+Ir'	— fo] 
[x2+x_1) 

Z	 Z=-	 (21) 
— (n+2)fx''+(n+1)f+ix' 
—	 2+1 

Again, making use of the Binet formula for fn and fi, substituting x =	and
rearranging terms we get 

pn ( —) =   
I i'	(n + l)a —	1	

((1)"+
	 (22) a,	a — b	(a —b)2a 

Next, consider pn(X) for x 1 = — a. Again, we use the ratio of derivatives with repect 
to x to get

(1'\ — (n+2)fnxl+(n+1)f+ixl 
2x+1

(23) 
— — ((n + i)b +	1	((a)n+l

 a—b	(a—b)2	b 

It is now evident that several other useful expressions based on (9) can be derived. We 
shall present some of them in the next subsection. 

2.4. Properties of polynomials (2). Let us now turn to the study of basic properties 
of polynomials (2), i.e. polynomials with coefficients determined by the inverses of 
successive Fibonacci numbers. 

Assuming a finite number of terms in (2) we can represent its right-hand side in a 
more compact form, namely

	

" k	>T1	f z' 
q.( Z) =	=	In.	

(24)
fn! 

where
fn! = foflf2 ... In—in	 (25)

and
=	 (26) 

fp
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denote the Fibonacci factorials which are determined by the product of successive Fi-
bonacci numbers and the partial Fibonacci factorials resulting from f! by neglecting 
the f-th term. For example, for n = 2, 3,4 we have 

12! = fo 1112 = 2,	f3! = fo fi 1213 = 6,	14! = Jo 11121314 = 30
and

Pf2!zP = 2z° + 2z' + z2 

f3 !z = 6z° + 6z' + 3z 2 +2 Z3 

1: P f4!z P = 30z° + 30z' + 15z 2 + 10z 3 + 6 Z5. 

Finally, we obtain the corresponding polynomials (2) as 
2z°+2z'+z2 q2(z)=	

2	=1+z+-- 

6z° + 6z' + 3z 2 + 2 Z 3 z 2 	z3 q3(z)=	
6	

=1+z+--+— 

30z° + 30z' +15 Z2  + 10z 3 + 6z 4 z2	z3	z4 q4(z)=	
30 

It is also easily seen that the Fibonacci factorials fulfil the relations 

	

fn ! =f_ 1 !f	and	fn!=fnfn_i!+fn_i!	(n>O).	(27) 

So, if we focus on a recursive process we can evaluate the Fibonacci factorials very 
effectively. 

Next, substituting z = 1 into (24) we obtain the expression for the sum of inverses 
of n successive Fibonacci numbers

	

V"	'ci 
11 fi\ - V' -
 En in. 

L1T	fn! 
We list the first few Q(i) in the following table. 

Ti fn	f!	En O'fn' 

0	1	1	1	 1.0 
1	1	1	2	 2.0 
2 2	2	5	 5/2=2.5 
3	3	6	17	17/62.8333... 
4	5	30	91	91/303.03333... 
5	8	240	758	379/120 3.1583... 
6 13 3120	10094	5047/1560 3.2353... 
7 21 65520	215094	107547/327603.2829... 

00 00	00	00	 3.3598856662....
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Table 2. Sum of inverses of the Fibonacci numbers 

The above result can be useful in many of possible applications of Fibonacci polynomials 
and Fibonacci numbers. For instance, using (27) for k E (m, n) we obtain 

	

i	V" YF!	Em-01Pf A	(1\ V'
	Fn

	Jfl	 p 	jm-1 
l-1m,fl) -	-

	
fn!	-	F 

	

k=m	 jml	 (29) 

	

-	Pf! - 11 ,,= m f >Io 'fm—i! 
f! 

This result applied for three successive values k = n - 2, n - 1, n gives the relation 

1	f_+f (30) 
- f-ifTh + (- i) 

from which we get
 

fn—I	fn= fn-fn+i _(_1)n 

Further, let us evaluate Q(i) for n - x. From (28) we get 

Q,(1)= hm	 3.3598856662... .	 (32) 

	

n—. co	f,,! 

A proof of this result is not simple and can be performed by using the approach presented 
in [7]. For the sake of compactness of presentation it is omitted here. 

2.5. Particular properties of polynomials (2). Let us now consider the index of 
concentration at low degrees of the polynomials (2) as n -* oo. Using (32) it is easy to 
check that fork = 0,1,2 we have

f! 
t(oo)= lim	c0.2976291753... 

n 00 

	

6', (oo) = 2lim	
f! 0.5952583506... 

P=O P fn-

(oo) = 4 lim rn 
f!	1.1905167012... 

Thus the polynomials (2) are characterized by higher values of the indices of concen-
tration at low degrees in comparison with that of polynomials (1). This is one of the 
important differences between the polynomials (1) and (2). 

Applying (32) in circuit theory we get a simple expression for a parrallel connec-
tion of infinite number of resistors with resistances determined by successive Fibonacci 
numbers. Such type of electric circuits can be considered as an alternative structure for 
ladder networks composed of identical resistors (see [9, 16]).
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Let us now examine other properties of the polynomials (2). Using (24) we can 
determine the index of concentration 6(n) of the polynomial qn at degree k as 

6;c(n)-
- ffl!>_oPfk!

(33) V'	1 
_- -  

To transform (33) into a simpler form we can apply (25) and after performing a series 
of suitable manipulations on respective terms we get 

5(n) - 1 - 
I_.q=k+I qf TI	

(34) - 

For instance, taking n = 5 and k 2 we have 

V'5 qç 
62, ( 5) = 1—	= 1— -	0.7915567... 

	

Pf5 !	758 

Observe that on the right-hand side of (34), both numerator and denominator depend 
on n and k, so for a given n there is a value of k at which 6(n) is maximal. It is 
easily seen from (34) that this maximum equals 1 and that it is reached at k = n. The 
obtained result needs special attention for Izi < 1 and n -, oo. Using (24) we obtain 

1	 k	 k 

	

(oo) = lim L-'p-O 
7' -
	Lp=O fk!	- >Ip=O "fk!

(35) ' n	1 

	

L.pzO 7 -	 T,- Q(1)fk! 

The above expression is useful for determining the influence of the coefficients of poly-
nomials (2) on the index of concentration. For a given Fibonacci polynomial q the 
index of concentration ii,m(n) for difference of rn terms is defined as the ratio of the 
concentration indices at degree k + m and k, respectively. Thus we can write 

q --m() -	L..p=O ' fk+m !	L..qk+1 fk-fm! 
k+m >k 0fk1 - 

1 + .çk+m	 (36) Tik,mj•iI = 6(n)	Hs=k-4-1	 P1k! 

The concept of the index of concentration at fixed degree k of polynomials (1) and 
(2) is very important for the location of their zeros in the complex plane [21]. Details 
concerning this problem will be studied in the next section.
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3. Zeros of the Fibonacci polynomials 

One of the most important characteristics of the Fibonacci polynomials is the location 
of their zeros in the complex plane. Finding the location of the zeros is one of the major 
problems, and it is well known that if the polynomial's degree is at least 5, no exact 
algebraic solution can be given so, in general, the procedure has to be numerical. Here 
we shall present advantages offered in this domain. 

Theorem 1. All zeros of the polynomials (1) with ri E N lie in the annulus 
r 1 where r denotes the radius of a disk centered at 0 in the complex plane. 

Proof. To prove the theorem we consider the real positive coefficients of the poly-
nomials which are determined by the successive Fibonacci numbers. Using the result of 
Kakeya (see 10, 17]) we obtain the estimate for the absolute values of all zeros of the 
polynomials (1) as 

min l—)<IxI<	(1k) max	 (0<k<n-1).	 (37) 
\.fk+1J	 fk+1 

Now we take into account (3) and find that 

	

(fk\.	1k mini — j=-- 

	

\fk+1J	1k-fl k=1	2 

and

	

(yk—fk\	1k	fo max	
I+lJ	1k-fl k=O f 

The first zeros Zn,k of the polynomials (1) are given in the following table. 

n	 Xn,k 

1 
2	–0.25 + iO.6614	–0.25 - 10.6614 
3	–0.7839	0.0586 + iO.6495	0.0586 - iO.6495 
4 –0.5337 + iO.45831 –0.5337 - i0.45831 0.2337 + 10.5912 0.2337 - iO.5912 

Table 3. Zeros of polynomials (1) 

The prof is completed by substituting the above estimates into (37) U 

Looking at the above annulus in more detail we can find that the ratio of its max-
imal and minimal radii equals 2 and the area of the annulus is equal to A l = ir 

2.35619449... 

Applying a similar procedure with respect to polynomial (2) we can formulate the 
following theorem.
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Theorem 2. All zeros of the polynomials (2) with n E N lie in the annulus 1 < 
7 <2 where r is the radius of the disk centered at 0 in the complex plane. 

The proof can be performed in a manner similar to that in the previous case but 
for the sake of compactness it is omitted here. Note only that the ratio of the disk radii 
equals 2, but the area of the disk equals 

A2 = 37r	9.424777961... 

Another interesting result can be derived from the above theorems. It can be easily 
verified that the difference of the areas of the two introduced disks equals 

A2 - A 1 = 37r - ir = 7r = 3A1. 

Thus the study of the locations of zeros of polynomials (1) and (2) in the complex plane 
leads to a new approach for determining the irrational number ir. On the other hand, 
the sum of these disk areas is equal to 

A 1 + A2 = 3 + 37r = 15 

Moreover, if the polynomials (1) and (2) represent discrete dynamical systems, then the 
location of their zeros provides useful information on the stability of such systems. 

Tables 3 and 4 give the values of zeros of the polynomials (1) and (2) obtained by 
MATLAB procedures 1121. They agree well with the theorems above. 

n	 q,k 

1	—1.0 
2	—1+i 
3 —0.1732 + il.6033 
4	0.4091+21.5141 
5 0.7439 + il.4355

—1 - 
—0.1732 - il.6033 
0.4091 - il.5141 
0.7439 - 21.4355

—1.1537 
—1.2424 + iO.5940 —1.2424 - iO.5940 
—0.9411 + il.2486 —0.9411 - i1.2486 

Table 4. Zeros of polynomials (2) 

Consider 'now the zeros of the polynomials (1) and (2) with positive real parts. To 
do this we first consider the family of polynomials (1) for different n 0. 

Theorem 3. For every n > 2, the polynomial p in (1) has at least one zero with 
non-negative real part. 

Proof. To prove the above theorem we consider two polynomials (1) with degree 
n and ri + 1. Observe that using (1) and (3) we have 

pn+l( X ) = pn(X) + fn+ i x + '	(n > 0):
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Thus, the ratio of polynomials Pn+i and p, can be represented in the form of the 
continued fraction

— pn+l(X) 

— pn(X) 

= 1 +
pn(X) 

=1+
+ 

fn+1 x fn+lxn+I 

=1+
in +	2 fn+iX + 

fn+1X
In-i 

fn __	 1 
t

4-	
t Jn1 1	Jn+iX 2 
in—i	 in—i 

fn+lfn_2 Z — fn+i12 
fn —I 

It can be easily verified that for n > 2 some of the partial coefficients in (38) take 
negative values. Moreover, the stated theorem follows immediately from the deter-
minental Routh-Hurwitz stability criterion (see 110, 17]), since for n > 2 we have 
D1 = fn_i,D2 = (_1' and D3 = 

( _ l)nfn+l showing that not all Di can be posi-
tive, where D (i = 1,2,3) denote the respective determinants. Thus, using results of 
[3, 10,171 we can state that not all zeros of (1) lie in the left half-plane and this completes 
the proof I 

For instance, if n = 3, we have 

T3(X)_(1 

35x2	4 5x2 1 .52) 
:ix h	5x' 25x 

where the short notation has been used for the continued fraction. 

Next, for, the family of polynomials (2) with different degree n > 0 we have the 
following statement. 

Theorem 4. Some of the zeros of the polynomials (2) with n > 3 have non-negative 
real parts. 

The proof is similar to that above. For instance, if n = 4, then using the short

	

notation for continued fraction r'	we obtain 

	

4	q4 

1 8 3z2	16 9z2 2	9z2	163z2 
T4 (z) = 1; —; -j--;—--; -j--;	; --j— ; —; --- 

=1+

1
El
	 (38) 

Fn-2 k") 
fn+1 X 

1
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This indicates that some zeros of the polynomial q4 are located in the right half-plane 
Let us now focus on further details concerning the index of concentration of the 

polynomial (1) at low degree. Using the results presented above we are able to estimate 
the index of concentration 6k(n ) corresponding to the radius r 1 of the disk 
centered at 0. Taking into account (12) we can formulate the following question: is 
it possible that polynomials (1) may have k zeros located in the open unit disk with 
index of concentration ök(n) <? That question is important for computations with 
Fibonacci polynomials on parallel processors. To answer it we consider the limit value 
6k( n ) = , and using (20) we obtain 

/ 1 \Tr 
p (1,k) = (ji)	—1 = 1	(0< k < n).	 (39) 

Solving this equality gives k = 0. Thus, using (16) we can state that there exists any 
polynomial (1) with index of concentration S which has some zeros located in the 
open unit disk centered at 0. It means that the location of the zeros of the polynomial 
(1) in the open unit disk corresponds to values of the index of concentration greater 
than

From (20) and (37) we obtain 

—<1	 1<1 
1	/	1	k+1 

a -	- '5k( fl))

	

- 
-	(0 k n; n > 0).	 (40) 

Solving (40) and using (24) and (16) yield the estimate

(41) 

Further, a relatively simple transformation of (41) leads 'to the solution 

	

0 < k < n	 (42) 

which indicates that for each n and fixed value 6k(n) E (0, 1) all zeros of the polynomial 
(1) are located in the ring with radius	r	1. 

4. Optimizations with Fibonacci polynomials 
The Fibonacci polynomials can be used to represent a given physical quantity, for ex-
ample, voltage in a voltage divider (see [11, 13, 16)), or a fixed number as a sum of 
suitable components (see [4, 20]). Our particular interest here is the decomposition of 
a given value g into elements of a Fibonacci polynomial of n-th degree, i.e. 

	

9 p-(x)	 (43) 

where n and x are to be determined accordingly. To achieve this goal we take into 
account (9) and obtain

f,ixn+2 + fn+ix1 - fo g=	
x2+x-1	.	 (44)
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Since n has to be taken from the set of integer numbers, there exists a remainder in 
(43). Let us denote this remainder as 

fx 2 +f,+ i x	- fo —(x 2 +x - 1)g = 	 (45) X2 + x - 1 

Note that (45) depends on two variables: x and n. It means that in an ideal case we 
must have il.'(x , n ) = 0 but in reality we are looking for the remainder I(x,n) to he 
minimal for some values n n and x x. That is an optimization problem. Thus 
we can write

b(x,n) = minn,r ,b(x,n).	 (46)

Following the standard minimization procedure we obtain two simultaneous equations 

	

th,b(x,n) = 0
	and	&(x,n) =

	 (47) 
an	 ox 

whose solutions yield the desired values of n and x. Performing necessary calculations 
we obtain

x2+fxfl+2lfl+fl+1fl+1+ffl+1lO	(48)a

and
[(n + 2)f,, Xn+1 + (n + 1)f+ 1 x - g(2x + 1)]

(48)ô

	

_[fn x 2 +fn+i x	—(x 2 +x_1)g](2x+1)=0. 

To determine the solution of (48) we need to use a special procedure due to the difficulties 
in the direct calculation of the derivative of the Fibonacci number f' with respect to ri. 
This special procedure is ased on a well known approximation of (4) by the expression 

a 
f—+ 0(n) (n>2) (49) 

(see [8, 18, 19]) where 0(n) denotes a small term. Neglecting 0(n) in (49), we can 
represent succesive derivatives of f, as 

d'	n+1	 d'	n+2 a	 Jn+1	a - = —Ina and	= —lna.	 50 
dn a — b	 dn	a—b 

Now, substituting (50) into equation (48)a gives 

(x2a1 Ina +x2a1 lnx +x lafl+2 Ina +xn + l a fl + 2 lnx) = 0.	(51)

It is clear that the condition x > 0 has to be satisfied, so we find that 

(x + a)ln(ax) 0	 (52)

from which we obtain one component of the optimal solution

(53)
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Note that (53) determines the singular value for (9) and for this reason we need to take 
(22) to represent the given value g. Thus we can write 

	

(n+1)a	1	((b)1	

) 

	

a — b	(a—b)2 

Solving this with respect to ri gives the second component if of the desired optimal 
solution. For example, for g = 3, values of if and x' for the optimal representation in 
terms of pn(X) are

n=3	and	x*=O.618O339... 

Finally, we can write 

	

fo++f2 f	1	2	3 
a	a2	a3	a a 

what is a good representation of the fixed value g = 3. 

It has to be emphasized that the above problem can be also considered in terms of 
polynomial equations in two variables. Fixing one of them, preferably n,we can always 
find the unique positive value of x. 

Our second problem concerning optimization with Fibonacci polynomials deals with 
a partition of a given value h into n parts in such a way that the first element is big as 
possible, while the other elements are smaller in ratios determined by the corresponding 
Fibonacci numbers. Denoting by-h' the biggest part in such decompositions we have 
the relation

(54) 

It is easily seen that the variable z appears as a control parameter. Such problems 
appear very often in practice, for example, in power systems where a number of loads 
are connected to a system but one of them is the most important and needs a fixed 
amount of electric energy supplied from a real source. 

• Thus we have two optimization problems. The first one appears when h and h' are 
fixed and we need to find the optimal solution of (54) with respect to n and z. The 
second problem appears when h and n are given and the optimal solution concerns 
and z. Observe that in the-first case we can take z =1 and then the problem is to 
determine n. Thus, using (28) we can write 

= 

E n P 

 f! 
p..	 (55) 

Note first that from (2), (3) and (32) we obtain 1 < e < Q(1) so as n -* - we have 

I  =minh.

	

Co	Qcx(1)	'
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Thus for fixed ii	we have
h'> h. 

The corresponding value of n is a solution of the equation 

n	 n n' 0 -fl (a' - bk+1) = 
ill (a -	 (56) 

P = O	 p=Ok=O 

where superscript ' says that the term with index p has to be omitted. 
Observe that this represents a complex nonlinear equation in n, and its solution 

can be found in a numerical process. In many practical calculations we can apply the 
result presented in Table 2 to solve (56) (equivalently (55)). For instance, let h = 10 
and W = 4. Then we have 0 = 2.5 and from Table 2 we find directly that n = 2. Note 
that an alternative approach which takes the similar form as that with the polynomials 
(1) can be also applied. 

The second problem of optimization with the polynomials (2) is much more com-
plicated than the previous one. This problem is still under research. 

5. Final discussion and concluding remarks 

In this paper we have discussed new types of polynomials, p, = pn(x) (see (1)) and 
q. = qn(z) (see (2)), characterized by coefficients equal to the successive Fibonacci 
numbers or their inverses, respectively. A common feature of these polynomials is that 
all manipulations on their components are simple and can be easily implemented on a 
computer. It was proved that both polynomials lead to effective methods for establishing 
many of the Fibonacci identities. 

The results obtained in this paper seem to be very useful in applications, e.g., in 
optimizations of electric networks, capacitors voltage dividers and other plants where 
more classical numerical treatments are difficult or at least expensive. Moreover, such 
characteristic properties of these new polynomials as the location of zeros on particular 
rings in the complex plane, their indices of concentration at low degree have been 
examined. 

As an additional theoretical benefit, these new polynomials allowed an easy descrip-
tion of extremal terms in the product result, as well as the influence of a control variable 
when the partition of a given value into many smaller parts must be controlled appro-
priately. Our results also show that if we have some additional information about a 
given quantity or simple number we can, in special cases, get sharper bounds on its de-
compositions or partitions. This result can be considered as an alternative to solutions 
of such type problems in terms of polynomial equations in two variables. 

Another area where interesting results may be obtained is that of index of con-
centration at low degree of products of polynomials Pn and q,, (both polynomials in 
x E R and, in general case, of different degrees). Note that the polynomials p,3 have 
large coefficients and the polynomials qm are characterized by high concentrations at 
low degrees. But their product has a large coefficient. It is quite likely (but not proved 
yet) that the correct order of magnitude is of exponential type. The determination of
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the precise values of the estimates does not only involve computational accuracy but a 
better understanding of the problem itself. 

It is worth mentioning that polynomials Pn and q,,, have no common root (except 
for p' and q). Thus, following the Bezout identity (see [10: Chapter X/p. 200]), we 
obtain that there exist two other polynomials Vm and w,, such that PnVm + qmwn 1 
The problem of determining Vm and W n is still open. 

An interesting point related to the presented studies is that the polynomials p, are 
solutions to the non-homogeneous recurrence 

	

!Jn+i - Xn - X 2 _1 = 1	(n > 0)	 (57) 

with y. = 0 and yo = 1. To describe the solutions to this recurrence, we may use a 
general approach for solutions of second order difference equations with constant right-
hand side term [8]. Thus under the condition 

	

1 - x -	0 

we can solve (68) by superposition of the general and particular solutions. We obtain

	

y.= A 1 i + A 2 i' +	 (58) 
1—x—x2 

where i , 72 and A 1 , A2 denote the roots of the corresponding characteristic equation 
and two arbitrary constants, respectively. Applying the whole procedure for determi-
nation of the solution corresponding to the given initial values we obtain 

fnxn+2 + fn+ix1 - fo 

	

2	 (59) x+x-1 
Thus, comparing the right-hand sides of (9) and (58) we can state that 

	

Yn = pn(x)
	

(60) 

It is now obvious that the polynomials p, (n > 0) are determined by the recurrence 

pn+ i ( x) - xpn(x) - x 2 pn _ l ( x) = 1	(Ti >_ 0) 
with p = 0 and P0 = 1. In this way we have obtained an additional relation which can 
be considered as generating the Fibonacci numbers (successive coefficients of polynomial 
(60)). 

The similar problem with polynomial (2) is still under investigation. It can be shown 
that the recurrence

zn+1 

	

qn--i(z) = qn(z) +	(n > 0) 
fn+I 

holds true with q_ = 0 and qo = 1. To get a more explicit version which could be free 
of the Fibonacci numbers some additional studies are needed. 
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