Initial-Mixed Boundary Value Problems for Parabolic Complex Equations of Second Order with Measurable Coefficients

Guo Chun Wen

Abstract

In [2], the authors introduced some results on initial-boundary value problems for divergence parabolic equations of second order with measurable coefficients. In [1], the authors considered the first boundary value problem for non-divergence parabolic equations of second order with discontinuous coefficients. In this paper, we consider initial-mixed boundary value problems for non-divergence parabolic complex equations of second order in a multiply connected domain. Firstly, we give a priori estimates of solutions of the above initial-boundary value problems by the method of symmetric extension, and then by using these estimates, the methods of auxiliary functions and parameter extension, we prove the solvability for the foregoing problems. Here the condition (1.3) is weaker than the corresponding one in [1] and [3], i.e. the constant $4 / 3$ in [1] and [3] is replaced by $3 / 2$ in (1.3).

Keywords: Initial-mixed problems, parabolic equations, measurable coefficients
AMS subject classification: $35 \mathrm{~K} 15,35 \mathrm{~K} 20$

1. Formulation of initial-mixed boundary value problems

Let D be an $(N+1)$-connected bounded domain in the $z=(x+i y)$-plane \mathbb{C} with the boundary $\Gamma=\sum_{j=0}^{N} \Gamma_{j} \in C_{\mu}^{2} \quad(0<\mu<1)$. Without loss of generality, we may consider that D is a circular domain in $|z|<1$ with the boundary $\Gamma=\sum_{j=0}^{N} \Gamma_{j}$, where $\Gamma_{j}=\left\{\left|z-z_{j}\right|=\gamma_{j}\right\} \quad(j=1, \ldots, N), \Gamma_{0}=\Gamma_{N+1}=\{|z|=1\}$ and $z=0 \in D$. Denote $G=D \times(0, T]$ with a constant $T>0$, and $\partial G=\partial G_{1} \cup \partial G_{2}$ with ∂G_{1} the bottom $\{(z, 0): z \in D\}$ and ∂G_{2} the lateral boundary $\{(z, t): z \in \Gamma, t \in[0,1]\}$ of the domain G.

We discuss the linear uniformly parabolic equation of second order

$$
\begin{equation*}
a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u+g=H u_{t} \quad \text { in } G \tag{1.1}
\end{equation*}
$$

where the coefficients a, b, c, d, e, f, g are real-valued measurable functions of $(z, t) \in G$ and H is a real constant satisfying the condition $0<H \leq 1$. It is easy to see that the real equation (1.1) can be rewritten in the complex form

$$
\begin{equation*}
\mathcal{L} u:=A_{0} u_{x \bar{z}}-\operatorname{Re}\left(Q u_{z z}+A_{1} u_{z}\right)-A_{2} u-H u_{t}=A_{3} \quad \text { in } G \tag{1.2}
\end{equation*}
$$

[^0]in which
\[

$$
\begin{aligned}
Q & =2(-a+c-2 b i) \\
A_{0} & =2(a+c), \quad A_{1}=-2(d+e i), \quad A_{2}=-f, \quad A_{3}=-g
\end{aligned}
$$
\]

Suppose that equation (1.2) satisfies the following
Condition (C): The functions $A_{j}=A_{j}(z, t)(j=0,1,2,3)$ and $Q=Q(z, t)$ are measurable in G and satisfy the conditions

$$
\begin{align*}
& 0<\delta \leq A_{0} \leq \frac{1}{\delta}, \quad\left|\frac{Q}{A_{0}}\right| \leq q_{0}<1, \quad \frac{\sup _{G}\left(A_{0}^{2}+|Q|^{2}\right)}{\inf _{G} A_{0}^{2}}<\frac{3}{2} \\
& \left|A_{j}\right| \leq k_{0} \quad(j=1,2), \quad L_{p}\left(A_{3}, \bar{G}\right)=\left(\iiint_{G}\left|A_{3}\right|^{p} d x d y d t\right)^{1 / p} \leq k_{0} \quad(p>4) \tag{1.3}
\end{align*}
$$

where δ, q_{0}, k_{0} and p are non-negative constants.
The so-called initial-mixed boundary value problem is formulated as follows.
Problem (M): Find a solution $u \in C^{1,0}(\bar{G})$ satisfying the initial condition

$$
\begin{equation*}
u(z, 0)=g(z) \quad \text { on } D \tag{1.4}
\end{equation*}
$$

and the boundary condition $a_{1}(z, t) \frac{\partial u}{\partial \nu}+a_{2}(z, t) u=a_{3}(z, t)$ on ∂G_{2}, i.e.

$$
\begin{equation*}
2 \operatorname{Re}\left(a_{1} \bar{\lambda} u_{z}\right)+a_{2} u=a_{3} \quad \text { on } \quad \partial G_{2} \tag{1.5}
\end{equation*}
$$

where $\nu(z, t)$ is a unit vector at every point on $\partial G_{2} \quad$ (there is no harm in assuming that $\nu(z, t)$ is parallel to the $(t=0)$-plane $), g, a_{j} \quad(j=1,2,3)$ and λ with $\lambda(z, t)=$ $\cos (\nu, x)-i \cos (\nu, y)$ are known functions satisfying the conditions

$$
\begin{aligned}
C_{\alpha}^{2}[g, \bar{D}] & \leq k_{0} \\
C_{\alpha, \alpha / 2}^{1,0}\left[a_{j}, \partial G_{2}\right]=C_{\alpha, \alpha / 2}^{00}\left[a_{j}, \partial G_{2}\right]+C_{\alpha, \alpha / 2}^{00}\left[a_{j z}, \partial G_{2}\right] & \leq k_{0} \quad(j=1,2,3) \\
C_{\alpha, \alpha / 2}^{1,0}\left[\lambda, \partial G_{2}\right]=C_{\alpha, \alpha / 2}^{0,0}\left[\lambda, \partial G_{2}\right]+C_{\alpha, \alpha / 2}^{0,0}\left[\lambda_{z}, \partial G_{2}\right] & \leq k_{0}
\end{aligned}
$$

with

$$
C_{\alpha, \alpha / 2}^{00}\left[\lambda, \partial G_{2}\right]=\sup _{\left(z_{1}, t_{1}\right),\left(z_{2}, t_{2}\right) \in \partial G_{2}} \frac{\left|\lambda\left(z_{1}, t_{1}\right)-\lambda\left(z_{2}, t_{2}\right)\right|}{\left.| | z_{1}-\left.z_{2}\right|^{2}+\left|t_{1}-t_{2}\right|^{2}\right]^{\alpha}}
$$

and

$$
\begin{array}{lll}
\cos (\nu, n) \geq \eta \quad \text { on } \partial G_{2} & \text { and } & a_{1} \frac{\partial g}{\partial \nu}+a_{2} g=a_{3} \quad \text { on } \Gamma \times\{t=0\} \\
a_{j}(z, t) \geq 0(j=1,2) & \text { and } & a_{1}(z, t)+a_{2}(z, t) \geq 1 \quad \text { on } \partial G_{2}
\end{array}
$$

in which $\alpha\left(\frac{1}{2}<\alpha<1\right), k_{0}, \eta(0<\eta \leq 1)$ are non-negative constants and n is the outward normal at every point $(z, t) \in \partial G_{2}$.

Remark that when $a_{1}(z, t)=0$ on ∂G_{2}, then Problem (M) is the Dirichlet problem.

Problem (O): When $a_{1}(z, t) \neq 0$ for every point $(z, t) \in \partial G_{2}$, then Problem (M) is the initial-regular oblique derivative problem, which will be called Problem (O).

Now, we prove the uniqueness of solutions of Problem (M) for equation (1.2).
Theorem 1.1: Suppose that the complex equation (1.2) satisfies Condition (C). Then the solution of Problem (M) for equation (1.2) is unique.

Proof: Denote by u_{1} and u_{2} two solutions of Problem (M) for equation (1.2). It is clear that the function $u=u_{1}-u_{2}$ is a solution of the following homogeneous initialboundary value problem (M_{0}):

$$
\begin{align*}
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-A_{2} u-H u_{t} & =0 \\
u(z, 0) & =0 \quad \text { in } \quad \text { on } D \tag{1.6}\\
a_{1}(z, t) \frac{\partial u}{\partial \nu}+a_{2}(z, t) u=0 & \text { on } \partial G_{2} .
\end{align*} .
$$

Making a transformation of the unknown function $U(z, t)=u(z, t) e^{-B t}$ where B is a real constant such that $H B+\inf _{\bar{G}} A_{2}>0$, obviously, U is a solution of the initial-boundary value problem

$$
\begin{align*}
A_{0} U_{z \bar{z}}-\operatorname{Re}\left(Q U_{z z}+A_{1} U_{z}\right)-\left(H B+A_{2}\right) U & =H U_{t} & & \text { in } G \tag{1.7}\\
U(z, 0) & =0 & & \text { on } D \tag{1.8}\\
a_{1}(z, t) \frac{\partial U}{\partial \nu}+a_{2}(z, t) U & =0 & & \text { on } \partial G_{2} . \tag{1.9}
\end{align*}
$$

On the basis of the maximin principle of solutions for equation (1.7), if $U \not \equiv 0$ on \bar{G}, then U takes its positive maximum or negative minimum on the lateral boundary ∂G_{2}. Suppose that U takes a positive maximum at a point $p_{0}=\left(z_{0}, t_{0}\right) \in \partial G_{2}$. It can be derived that $U\left(p_{0}\right)>0$ and $\left.\frac{\partial U}{\partial \nu}\right|_{p=p_{0}}>0$. Thus $\left.\left(a_{1}(z, t) \frac{\partial U}{\partial \nu}+a_{2}(z, t) U\right)\right|_{p=p_{0}}>0$. This contradicts (1.9). Similarly, we can prove that U does not attain a negative minimum at a point $p_{0} \in \partial G_{2}$. This shows that $U=0$ on \bar{G}, i.e. $u_{1}=u_{2}$ on $\bar{G} \boldsymbol{\square}$

2. A priori estimates of solutions of the initial-mixed problem

First of all, we shall give a boundness estimate of solutions of Problem (M).
Theorem 2.1: Let equation (1.2) satisfy Condition (C). Then any solution u of Problem (M) for equation (1.2) satisfies the estimate

$$
\begin{equation*}
C[u, \bar{G}] \leq M_{1} \tag{2.1}
\end{equation*}
$$

where $M_{1}=M_{1}\left(\delta, q_{0}, \alpha, k_{0}, p, G\right)$ is a non-negative constant only dependent on δ, q_{0}, α, k_{0}, p, G.

Proof: We first find a solution ψ of equation (1.2) with the initial-boundary condition $\psi=0$ on ∂G. On the basis of the results in [1], [2: Chapter 3] and [3], we can obtain for ψ the estimates

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}[\psi, \bar{G}] \leq M_{2} \quad \text { and } \quad\|\psi\|_{W_{2}^{2,1}(G)} \leq M_{2} \tag{2.2}
\end{equation*}
$$

in which $\beta(0<\beta \leq \alpha)$ and $M_{2}=M_{2}\left(\delta, q_{0}, \alpha, k_{0}, p, G\right)$ are non-negative constants. Secondly, we find a solution Ψ of the homogeneous equation

$$
\mathcal{L} u=A_{0} u_{z \bar{z}}-\operatorname{Re}\left(Q u_{z z}+A_{1} u_{z}\right)-A_{2} u-H u_{\ell}=0 \quad \text { in } G
$$

with the initial-boundary condition $\Psi=1$ on ∂G. Similarly, it can be proved that Ψ satisfies the estimates

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}[\Psi, \tilde{G}] \leq M_{3}, \quad\|\Psi\|_{W_{2}^{2,1}(G)} \leq M_{3}, \quad 0<M_{4} \leq \Psi \leq 1 \tag{2.3}
\end{equation*}
$$

where $M_{j}=M_{j}\left(\delta, q_{0}, \alpha, k_{0}, p, G\right) \geq 0(j=3,4)$. According to the method in [3] and [4: Chapter 3/Theorem 3.3], we see that the function $U=\frac{u-\psi}{\psi}$ is a solution of the initial-boundary value problem

$$
\begin{array}{r}
A_{0} U_{z \bar{z}}-\operatorname{Re}\left[Q U_{z z}+A U_{z}\right]-H U_{t}=0 \text { in } G \tag{2.4}\\
U(z, 0)=\frac{u(z, 0)-\psi(z, 0)}{\Psi(z, 0)}=U_{0}(z) \quad \text { on } D \\
a_{1} \frac{\partial U}{\partial \nu}+a_{4} U=a_{5}, \quad a_{4}=a_{2}+a_{1} \frac{\partial \ln \Psi}{\partial \nu}, \quad a_{5}=\frac{a_{3}-a_{1} \frac{\partial \psi}{\partial \nu}-a_{2} \psi}{\Psi} \text { on } \partial G_{2}
\end{array}
$$

where $A=A_{1}-2 A_{0}(\ln \Psi)_{\bar{z}}+2 Q(\ln \Psi)_{z}$ in G and $a_{4}>0$ on ∂G_{2}. By means of the maximin principle of solutions of equation (2.4), we know that U attains its maximum and minimum at points $p^{*}=\left(z^{*}, t^{*}\right)$ and $p_{*}=\left(z_{*}, t_{*}\right)$ in ∂G_{2}, respectively. It can be derived

$$
\begin{equation*}
C[U, \bar{G}]=\max \left\{U\left(z^{*}, t^{*}\right),\left|U\left(z_{*}, t_{*}\right)\right|\right\} \leq \max \left\{\max _{D}\left|U_{0}(z)\right|, \frac{\max _{\partial G_{2}}\left|a_{5}\right|}{\min _{\partial G_{2}} a_{4}}\right\} . \tag{2.5}
\end{equation*}
$$

Combining (2.2), (2.3) and (2.5), the estimate (2.1) is derived \square
Next, we shall prove
Theorem 2.2: Let equation (1.2) satisfy condition (C). Then any solution u of Problem (M) for equation (1.2) satisfies the estimates

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}\left[u, G^{*}\right] \leq M_{5} \quad \text { and } \quad\|u\|_{W_{2}^{2,1}\left(G^{*}\right)} \leq M_{5} \tag{2.6}
\end{equation*}
$$

where

$$
G^{*}=\bar{G} \cap\left\{\cap_{\left(z^{*}, t^{*}\right) \in \partial G_{2}^{*}}\left\{\left|z-z^{*}\right|^{2}+\left|t-t^{*}\right| \geq \varepsilon\right\}\right\}
$$

ε is a small positive number, $G_{2}^{*}=\left\{(z, t) \in \partial G_{2}: a_{1}(z, t)=0\right\}, \partial G_{2}^{*}$ is the boundary of $G_{2}^{*}, \beta(0<\beta \leq \alpha)$ and $M_{5}=M_{5}\left(\delta, q_{0}, \alpha, k_{0}, p, G\right)$ are non-negative constants.

Proof: According to the method in [3], we can obtain that any solution u of Problem (M) for equaton (1.2) satisfies the estimates

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}\left[u, G_{m}\right] \leq M_{6} \quad \text { and } \quad\|u\|_{W_{2}^{2,1}\left(G_{m}\right)} \leq M_{6} \tag{2.7}
\end{equation*}
$$

in which $G_{m}=\left\{(z, t) \in \bar{G}: \operatorname{dist}(z, \Gamma) \geq \frac{1}{m}\right\}$ for a positive integer $m, \beta(0<\beta \leq \alpha)$ and $M_{6}=M_{6}\left(\delta, q_{0}, \alpha, k_{0}, p, \varepsilon, m, G\right)$ are non-negative constants. In the following, we shall give the estimates of the solution near the lateral ∂G_{2} of G. We arbitrarily choose an inner point $p^{*}=\left(z^{*}, t^{*}\right)$ of G^{*} and denote $\widetilde{G}_{2}=\left\{(z, t) \in G_{2}^{*}:\left|z-z^{*}\right|^{2}+\left|t-t^{*}\right|<\varepsilon^{*}\right\}$, where $\varepsilon^{*}(<\varepsilon)$ is an appropriately small positive number such that $\widetilde{G}_{2} \cap \partial G_{2} \subset G_{2}^{*} \backslash \partial G_{2}^{*}$. There is no harm in assuming that $\left|z^{*}\right|=1$, otherwise through a linear fractional transformation this requirement can be realized. Now we find a solution u_{1} of equation (1.2) satisfying the boundary condition $u_{1}=\frac{a_{3}}{a_{2}}$ on \widetilde{G}_{2}. Thus the function $U=u-u_{1}$ satisfies the equation and boundary condition

$$
\begin{aligned}
\mathcal{L} U:=A_{0} U_{z \bar{z}}-\operatorname{Re}\left[Q U_{z z}+A_{1} U_{z}\right]-A_{2} U-H U_{t} & =A \quad \text { in } G \\
U(z, 0) & =0 \quad \text { on } \tilde{G}_{2}
\end{aligned}
$$

where $A=A_{3}-\mathcal{L} u_{1}$. In this case, the solution U can be continuously extended along \widetilde{G}_{2} from G into \tilde{G} (the symmetric domain of G). In fact, it is sufficient to introduce the function \widetilde{U} by

$$
\tilde{U}(z, t)= \begin{cases}U(z, t) & \text { if }(z, t) \in G \cup \widetilde{G}_{2} \\ -U(1 / \bar{z}, t) & \text { if }(z, t) \in \widetilde{G}\end{cases}
$$

Due to $\tilde{U}=0$ on \tilde{G}_{2}, it is clear that $\operatorname{Re}\left(i z \tilde{U}_{z}\right)=0$, i.e. $z U_{z}=\bar{z} U_{\bar{z}}$ for $(z, t) \in \tilde{G}_{2}$, and when $z=1 / \bar{\zeta} \in \widetilde{G}+\widetilde{G}_{2}$, then $\widetilde{U}_{z}=-U_{\bar{\zeta}}\left(-1 / z^{2}\right)$, hence $z \widetilde{U}_{z}=\bar{z} U_{\bar{z}}$ for $(z, t) \in \widetilde{G}_{2}$. This shows that \widetilde{U} and $\tilde{U}_{\bar{z}}$ are continuous in $G \cup \widetilde{G} \cup \widetilde{G}_{2}$. Noting that

$$
\widetilde{U}_{z \bar{z}}=-|z|^{-4} U_{\zeta \bar{\zeta}} \quad \text { and } \quad \tilde{U}_{\bar{z} \bar{z}}=-\bar{z}^{-4} U_{\zeta \zeta}-2 \bar{z}^{-3} U_{\zeta} \quad\left((z, t) \in \widetilde{G} \cup \widetilde{G}_{2}\right)
$$

it is seen that \tilde{U} is a solution of the equation

$$
\begin{equation*}
\tilde{A}_{0} \tilde{U}_{z \bar{z}}-\operatorname{Re}\left(\widetilde{Q} \tilde{U}_{z z}+\tilde{A}_{1} \tilde{U}\right)-\tilde{A}_{2} \tilde{U}-H \tilde{U}_{t}=\tilde{A} \quad \text { in } G \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{A}_{0}= \begin{cases}A_{0}(z, t) & \tilde{A}_{1}=\left\{\begin{array}{l}
A_{1}(z, t) \\
-\overline{A_{1}(1 / \bar{z}, t)} z^{2}+2 \overline{Q(1 / \bar{z}, t)} z^{3}
\end{array}\right. \\
A_{0}(1 / \bar{z}, t)|z|^{4}\end{cases} \\
& \tilde{Q}= \begin{cases}Q(z, t) & \tilde{A}_{j}=\left\{\begin{array}{l}
A_{j}(z, t) \\
(-1)^{j} A_{j}(1 / \bar{z}, t)
\end{array} \quad(j=2,3)\right.\end{cases}
\end{aligned}
$$

for $(z, t) \in G$ and $(z, t) \in \tilde{G}$, respectively. It is not difficult to see that equation (2.8) satisfies conditions similar to Condition (C). Therefore similarly to (2.7), we can derive estimates of \tilde{U} and u in the neighbourhood

$$
\widehat{G}_{2}=\left\{(z, t) \in G \cup \tilde{G}_{2}: \operatorname{dist}\left((z, t), \partial G_{2} \backslash \tilde{G}_{2}\right) \geq \varepsilon^{*}\right\}
$$

of \widetilde{G}_{2}, namely

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}\left[u, \widehat{G}_{2}\right] \leq M_{7} \quad \text { and } \quad\|u\|_{W_{2}^{2,1}\left(\widehat{G}_{2}\right)} \leq M_{7} \tag{2.9}
\end{equation*}
$$

where $M_{7}=M_{7}\left(\delta, q_{0}, \alpha, k_{0}, p, \varepsilon, \varepsilon^{*}, G\right)$.
Secondly, if there exists a surface

$$
G_{3}=\left\{(z, t) \in \partial G_{2}: a_{1}(z, t)>0, \nu=n\right\} \supset \partial G_{2}
$$

then we can find a harmonic function $\sigma=\sigma(z, t)$ of z in G such that σ satisfies the boundary condition $\frac{\partial \sigma}{\partial n}=\frac{a_{2}}{a_{1}}$ on G_{3}. Thus the function V defined by $V(z, t)=u(z, t) e^{\sigma(z, t)}$ satisfies the boundary condition $\frac{\partial V}{\partial n}=\frac{a_{3}}{a_{1}} e^{\sigma}$, i.e.

$$
\begin{equation*}
a_{1} \frac{\partial u}{\partial n}+a_{2} u=a_{3} \quad \text { on } G_{3} \tag{2.10}
\end{equation*}
$$

Noting that

$$
\begin{aligned}
u_{z} & =e^{-\sigma}\left[V_{z}-\sigma_{z} V\right], \quad u_{t}=e^{-\sigma}\left(V_{t}-\sigma_{t} V\right) \\
u_{z z} & =e^{-\sigma}\left(V_{z z}-2 \sigma_{z} V_{z}-\left(\sigma_{z z}-\sigma_{z}^{2}\right) V\right) \\
u_{z \bar{z}} & =e^{-\sigma}\left(V_{z \bar{z}}-\operatorname{Re}\left(\sigma_{\bar{z}} V_{z}\right)+\left|\sigma_{\bar{z}}\right|^{2} V\right)
\end{aligned}
$$

it is easy to see that the function V satisfies the equation

$$
\begin{equation*}
A_{0} V_{z \bar{z}}-\operatorname{Re}\left(Q V_{z z}+B_{1} V_{z}\right)-B_{2} V-H V_{t}=B_{3} \quad \text { in } G \tag{2.11}
\end{equation*}
$$

where the coefficients satisfy conditions similar to those in Condition (C). Now, we find a harmonic function $V_{0}=V_{0}(z, t)$ of z in G satisfying the boundary condition (2.10). Moreover, the function \tilde{V} defined by

$$
\tilde{V}(z, t)= \begin{cases}V(z, t)-V_{0}(z, t) & \text { for }(z, t) \in G \cup G_{3} \\ V(1 / \bar{z}, t)-V_{0}(1 / \bar{z}, t) & \text { for }(z, t) \in \widetilde{G}\end{cases}
$$

satisfies the equation

$$
\tilde{A}_{0} \tilde{V}_{z \bar{z}}-\operatorname{Re}\left(\tilde{Q} \tilde{V}_{z z}+\widetilde{B}_{1} \tilde{V}_{z}\right)-\widetilde{B}_{2} \tilde{V}-H \tilde{V}_{t}=\tilde{B}_{3} \quad \text { in } G \cup G_{3} \cup \widetilde{G}
$$

where the coefficients satisfy conditions similar to Condition (C). Hence by using the method as stated in [1], [3] or [4: Chapter 3/Theorem 4.8], it can be derived that u satisfies the estimates

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}\left[u, \widehat{G}_{3}\right] \leq M_{8} \quad \text { and } \quad\|u\|_{W_{2}^{2,1}(\widehat{G})} \leq M_{8} \tag{2.12}
\end{equation*}
$$

where

$$
\widehat{G}_{3}=\left\{(z, t) \in G \cup G_{3}: \ddot{\operatorname{dist}}\left((z, t), \partial G_{2} \backslash G_{3}\right) \geq \varepsilon^{*}\right\}
$$

and $M_{8}=M_{8}\left(\delta, q_{0}, \alpha, k_{0}, p, \varepsilon, \varepsilon^{*}, G\right)$.

Finally, we discuss the surface

$$
G_{4}=\left\{(z, t) \in \partial G_{2}: a_{1}(z, t)>0, \nu \not \equiv n\right\} .
$$

By using a similar method as before, we can transform the boundary condition (1.5) into a homogeneous boundary condition $\frac{\partial V^{*}}{\partial \nu}=0$ on G_{4} where the function $V^{*}=V^{*}(z, t)$ satisfies the equation

$$
A_{0} V_{x \bar{z}}^{*}-\operatorname{Re}\left(Q V_{z z}^{*}+B_{1} V_{z}^{*}\right)-B_{2} V^{*}-H V_{t}^{*}=B_{3} \quad \text { in } G
$$

Without loss of generality, we may assume that G lies in the lower half-plane $\operatorname{Im}<0$ and $(0, t) \in G_{4}$, because through a conformal mapping this requirement can be realized. Setting $b_{1}=\cos (\nu, x)$ and $b_{2}=\cos (\nu, y)$, and making a transformation

$$
\begin{equation*}
z=\frac{1}{2}\left(1+b_{1}+i b_{2}\right) \zeta+\frac{1}{2}\left(-1+b_{1}+i b_{2}\right) \bar{\zeta} \quad(\zeta=\xi+i \eta) \tag{2.13}
\end{equation*}
$$

it is obvious that (2.13) is a homeomorphism $\zeta=\zeta(z, t)$ in a neighbourhood of $\zeta=0$, which maps the surface G_{4} in the ζ-plane onto a surface H_{4} on the imaginary axis in the z-plane. Denote by $z=z(\zeta, t)$ the inverse function of $\zeta=\zeta(z, t)$. Thus the function $\widetilde{V}(\zeta, t)=V^{*}(z(\zeta, t), t)$ satisfies the equation and boundary condition

$$
\begin{aligned}
\tilde{A}_{0} \tilde{V}_{\zeta \bar{\zeta}}-\operatorname{Re}\left(\tilde{Q}_{\bar{V}}^{\zeta \zeta}+\widetilde{B}_{1} \tilde{V}_{\zeta}\right)-\widetilde{B}_{2} \tilde{V}-H \tilde{V}_{t} & =\widetilde{B}_{3} & \text { in } \zeta(G) \\
\frac{\partial \tilde{V}}{\partial n} & =0 & \text { in } H_{4}=\zeta\left(G_{4}\right)
\end{aligned}
$$

Furthermore, by applying the method used for deriving the estimate (2.12), we can obtain the estimates of \tilde{V}, V^{*} and u, i.e.

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}\left[u, \tilde{G}_{4}\right] \leq M_{9} \quad \text { and } \quad\|u\|_{W_{2}^{2,1}\left(\widetilde{G}_{4}\right)} \leq M_{9} \tag{2.14}
\end{equation*}
$$

where

$$
\widetilde{G}_{4}=\left\{(z, t) \in G \cup G_{4}: \operatorname{dist}\left((z, t), \partial G_{2} \backslash G_{4}\right) \geq \varepsilon^{*}\right\}
$$

and $M_{9}=M_{9}\left(\delta, q_{0}, \alpha, k_{0}, p, \varepsilon, \varepsilon^{*}, G\right)$. Combining (2.7), (2.9), (2.12) and (2.14), the estimates in (2.6) are derived

3. The solvability of the initial-mixed boundary value problem

In this section, we use the estimates of solutions in Theorem 2.2 and the compactness principle of solutions to prove the solvability of Problem (M) for equation (1.2).

Theorem 3.1: If equation (1.2) satisfies Condition (C), then Problem (M) for equation (1.2) has a solution $u=u(z, t)$.

Proof: We are free to choose a positive integer m and to consider Problem (M_{m}) for equation (1.2) with the initial and boundary conditions

$$
\begin{aligned}
u(z, 0) & =g(z)+g_{m}(z, 0) & & \text { on } D \\
\left(a_{1}+\frac{1}{m}\right) \frac{\partial u}{\partial \nu}+a_{2} u & =a_{3} & & \text { on } \partial G_{2}
\end{aligned}
$$

where $g_{m}=g_{m}(z, t)$ is an appropriate solution of the oblique derivative problem for the homogeneous equation (1.6) with the boundary condition

$$
\left(a_{1}+\frac{1}{m}\right) \frac{\partial g_{m}}{\partial \nu}+a_{2} g_{m}=-\frac{1}{m} \frac{\partial g}{\partial \nu} \quad \text { on } \quad \partial G_{2}
$$

such that g_{m} satisfies estimates similar to (2.6) and $g_{m} \rightarrow 0$ as $m \rightarrow \infty$. According to the following Theorem 3.2, we know that g_{m} exists and Problem (M_{m}) has a solution $u_{m}(m=1,2, \ldots)$ which satisfies the estimates (2.6). Hence from the sequence $\left\{u_{m}\right\}$ we can select a subsequence $\left\{u_{m_{k}}\right\}$, which uniformly converges to a solution $u_{0}=u_{0}(z, t)$ of equation (1.2) in any closed subset $G_{*} \subset \bar{G} \backslash \partial G_{2}^{*}$, and u_{0} satisfies the initial condition (1.4) and boundary condition

$$
a_{1} \frac{\partial u_{0}}{\partial \nu}+a_{2} u_{0}=a_{3} \quad \text { on } \quad \partial G_{2} \backslash \partial G_{2}^{*}
$$

It remains to prove that u_{0} is continuous on \bar{G} and satisfies the boundary condition (1.5). We select an arbitrary point $p^{*}=\left(z^{*}, t^{*}\right) \in \partial G_{2}^{*}$ (it can be replaced by any surface $S \subset G_{2}^{*}$), and denote by G_{β} the point set $\left\{\left|z-z^{*}\right|^{2}+\left|t-t^{*}\right|<\beta\right\} \cap \partial G_{2}$ where β is a sufficiently small positive number. We construct a real continuous function $f=f(z, t)$ as follows:

$$
\begin{gathered}
f(z, t)= \begin{cases}M_{10}+1 & \text { for }(z, t) \in \partial G_{2} \backslash G_{\beta / 2} \\
\eta>0 & \text { for }(z, t) \in G_{\beta / 4}\end{cases} \\
\eta \leq f(z, t) \leq M_{10}+1 \text { for }(z, t) \in G_{\beta / 2} \backslash G_{\beta / 4}
\end{gathered}
$$

where M_{10} is an undetermined positive number. The function f satisfies the estimate

$$
C_{\mu-\varepsilon}^{1,0}\left[f, \partial G_{2}\right] \leq \frac{M_{11}}{\beta^{1+\mu-\varepsilon}} \quad\left(\frac{1}{2}<\mu-\varepsilon<1\right)
$$

where ε is a sufficintly small positive constant and $M_{11}=M_{11}\left(M_{10}, \partial G_{2}\right)$. Let \hat{u}_{m} be a solution of the homogeneous equation (1.6) satisfying the boundary condition $\hat{u}_{m}=f$
on ∂G_{2}. It is not difficult to see that \hat{u}_{m} satisfies the estimate $C^{1,0}\left[\hat{u}_{m}(z, t), \bar{G}\right] \leq$ $M_{12} / \beta^{1+\mu-\varepsilon}$, where $M_{12}=M_{12}\left(\delta, q_{0}, \alpha, k_{0}, G\right)$. Now, we extend a_{2} from G_{2}^{*} to ∂G_{2}, such that we have a new function $a^{*} \in C_{\alpha, \alpha / 2}^{1,0}\left(\partial G_{2}\right), a_{2}^{*}(z, t)>0$ and $a^{*}=a_{2}$ on $G_{\beta / 2}$. Moreover, a solution u^{*} of equation (1.2) can be found satisfying the boundary condition $u_{m}^{*}=a_{3} / a_{2}^{*}$ on ∂G_{2}. Setting $\tilde{u}_{ \pm}= \pm \hat{u}_{m}-u_{m}+u_{m}^{*}$ it is easily seen that $\tilde{u}_{ \pm}$ are solutions of the equation $\mathcal{L} u=0$. In the following, we verity that

$$
\tilde{u}_{+}(z, t) \geq 0 \quad \text { and } \quad \tilde{u}_{-}(z, t) \leq 0 \quad((z, t) \in \bar{G})
$$

In fact, obviously $\tilde{u}_{+}(z, t) \geq M_{10}+1-M_{10}>0$ on $\partial G_{2} \backslash G_{\beta / 2}$ where

$$
M_{10}=M+\max _{\partial G_{2}} \frac{a_{3}(z, t)}{a_{2}^{*}(z, t)}>0 \quad \text { with } \quad M=\max _{\bar{G}}\left|u_{m}(z, t)\right|
$$

with a constant M being similar to M_{1} in (2.1). If \tilde{u}_{+}takes a negative minimum in \bar{G}, then there exists a point $p^{\prime}=\left(z^{\prime}, t^{\prime}\right) \in G_{\beta / 2}$ such that $\tilde{u}_{+}\left(z^{\prime}, t^{\prime}\right) \leq \min _{\bar{G}} \tilde{u}_{+}(z, t)$. However we have

$$
\begin{aligned}
& \left(a_{1}(z, t)+\frac{1}{m}\right) \frac{\partial \tilde{u}_{+}}{\partial \nu}+a_{2}(z, t) \tilde{u}_{+}(z, t) \\
& \quad=\left(a_{1}(z, t)+\frac{1}{m}\right) \frac{\partial \hat{u}_{m}}{\partial \nu}+a_{2}(z, t) \hat{u}_{m}(z, t)+\left(a_{1}(z, t)+\frac{1}{m}\right) \frac{\partial u_{m}^{*}}{\partial \nu} \\
& \quad>M_{13} \eta-\max _{G_{\rho / 2}} a_{1}(z, t) \frac{M_{14}}{\beta^{1+\mu-\varepsilon}}-\frac{M_{14}}{m \beta^{1+\mu-\varepsilon}}+\left(a_{1}(z, t)+\frac{1}{m}\right) \frac{\partial u_{m}^{*}}{\partial \nu}
\end{aligned}
$$

for all $(z, t) \in G_{\beta / 2}$, where $M_{13}=\min _{G_{\beta / 2}} a_{2}(z, t)$ and $M_{14}=M_{14}\left(M_{12}, \partial G_{2}\right)$. Due to $a_{1} \leq M_{15} \beta^{1+\mu}$ on $G_{\beta / 2}$ with a positive constant M_{15}, we first choose β small enough, and then select m large enough, such that

$$
\beta^{e} M_{14} M_{15}, \quad \frac{M_{14}}{m \beta^{1+\mu-\varepsilon}}, \quad\left|a_{1}(z, t) \frac{\partial u_{m}^{*}}{\partial \nu}\right|, \quad\left|\frac{1}{m} \frac{\partial u_{m}^{*}}{\partial \nu}\right|
$$

are less than $\frac{1}{4} M_{13} \eta$ for all $(z, t) \in G_{\beta / 2}$. So

$$
\left(a_{1}+\frac{1}{m}\right) \frac{\partial \tilde{u}_{+}}{\partial \nu}+a_{2} \tilde{u}_{+}>0 \quad \text { on } \quad G_{\beta / 2}
$$

This shows that \tilde{u}_{+}cannot take a negative minimum on $G_{\beta / 2}$. On the basis of the maximin principle of solutions of equation $\mathcal{L} u_{n}=0, \tilde{u}_{+}(z, t)=\hat{u}_{m}(z, t)-u_{m}(z, t)+$ $u_{m}^{*}(z, t) \geq 0$, i.e. $u_{m}-u_{m}^{*} \leq \hat{u}_{m}$ in \bar{G} can be obtained. By the same reasoning, we have $\tilde{u}_{-}(z, t) \leq 0$, i.e. $u_{m}-u_{m}^{*} \geq-\hat{u}_{m}$ in \bar{G}. From $\left|\hat{u}_{m}\right| \leq \eta$ on $G_{\beta / 4}$ it follows that $\left|u_{m}-u_{m}^{*}\right|<\eta$ on $G_{\beta / 4}$. By the equicontinuity of the sequence $\left\{\hat{u}_{m}\right\}$ in \bar{G},

$$
\left|u_{m}(z, t)-u_{m}^{*}(z, t)\right| \leq\left|\hat{u}_{m}(z, t)\right| \leq 2 \eta
$$

is seen for all (z, t) of a neighbourhood of $\left(z^{*}, t^{*}\right)$ in \bar{G}. Denote by \tilde{u}_{0} the limit function of $\left\{u_{m}-u_{m}^{*}\right\}$ in G. It is clear that $\left|\tilde{u}_{0}(z, t)\right| \leq 2 \eta$. Noting that η is an arbitrary positive number, it is seen that \tilde{u}_{0} at $p^{*}=\left(z^{*}, t^{*}\right)$ is continuous, and $\tilde{u}_{0}\left(z^{*}, t^{*}\right)=0$. Hence $u_{0}=\tilde{u}_{0}+u_{0}^{*}$ at $\left(z^{*}, t^{*}\right)$ is also continuous, where u_{0}^{*} is a limit function of a subsequence of $\left\{u_{m}^{*}\right\}$. This completes the proof

Theorem 3.2: Under the Condition (C), Problem (O) for equation (1.2) has a solution $u=u(z, t)$ satisfying the estimates

$$
\begin{equation*}
C_{\beta, \beta / 2}^{1,0}[u, \bar{G}] \leq M_{16} \quad \text { and } \quad\|u\|_{W_{2}^{2,1}(G)} \leq M_{16} \tag{3.1}
\end{equation*}
$$

where $\beta(0<\beta<\alpha)$ and $M_{16}=M_{16}\left(\delta, q_{0}, \alpha, k_{0}, p, G\right)$ are non-negative constants.
Proof: The estimate (3.1) can be derived from Theorem 2.1. In the following, we shall prove the existence of solutions of Problem (O) for equation (1.2). The boundary condition of Problem (O) can be written in the form $\frac{\partial u}{\partial \nu}+a_{2}(z, t) u=a_{3}(z, t)$, i.e.

$$
\cos (\nu, n) \frac{\partial u}{\partial n}+\cos (\nu, s) \frac{\partial u}{\partial s}+a_{2} u=a_{3} \quad \text { on } \quad \partial G_{2}
$$

where s is the tangent vector at every point $(z, t) \in \partial G_{2}$. In order to use the method of parameter extension, we consider the initial and boundary conditions with the parameter $\tau \in[0,1]$:

$$
\begin{aligned}
u(z, 0) & =g(z)+g_{\tau}(z, 0) & & \text { on } D \\
\cos (\nu, n) \frac{\partial u}{\partial n}+\tau \cos (\nu, s) \frac{\partial u}{\partial s}+a_{2} u & =a & & \text { on } \partial G_{2}
\end{aligned}
$$

where a is any function in the space $C_{\beta, \beta / 2}^{1,0}(\bar{G})$ and g_{τ} is an appropriate solution of the oblique derivative problem for equation (1.6) with the boundary condition

$$
\cos (\nu, n) \frac{\partial g_{\tau}}{\partial n}+\tau \cos (\nu, s) \frac{\partial g_{\tau}}{\partial s}+a_{2} g_{\tau}=a-a_{3}+(1-\tau) \cos (\nu, s) \frac{\partial g}{\partial s} \quad \text { on } \quad \partial G_{2}
$$

where $g_{1}(z, t)=0$ on \bar{G} if $a=a_{3}$ on ∂G_{z}. By using the method as stated in [4: Chapter 2/Proof of Theorem 3.3] and the result in [3], there exists a solution u_{0} of Problem (O) with $\tau=0$ for equation (1.2) and $u_{0} \in C_{\beta, \beta / 2}^{1,0}(\bar{G})$. By the method in [3] and [4: Chapter $1 /$ Proof of Theorem 2.5], we can prove that there exists a number $\varepsilon>0$ such that for $\tau=\varepsilon, 2 \varepsilon, \ldots,\left[\frac{1}{e}\right] \varepsilon, 1$ Problem (O) for equation (1.2) is solvable. In particular, when $\tau=1$ and $a=a_{3}$, then Problem (O) for equation (1.2), i.e. Problem (M) for equation (1.2) has a solution u ■

References

[1] Alkhutov, Yu. A. and I. T. Mamedov: The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients. Math. USSR Sbornik 59 (1988), 471-495.
[2] Ladyzhenskaya, O. A., Solonnikov, V. A. and N. N. Ural'ceva: Linear and Quasilinear Equations of Parabolic Type. Providence (R.I.): Amer. Math. Soc. 1968.
[3] Wen, Guo Chun: Two boundary value problems for second order nonlinear parabolic equations with measurable coefficients (in Chinese). J. Yantai Univ. (Natur. Sci. Engin.) (1993)1, 1 - 8.
[4] Wen, Guo Chun and H. Begehr: Boundary Value Problems for Elliptic Equations and Systems. Harlow: Longman Sci. \& Techn. 1986.

Received 18.11.1994; in revised form 19.04.1995

[^0]: Guo Chun Wen: Peking Univ., Dep. Math., Beijing 100871, P.R. China

