Generalized Euler-Frobenius Polynomials

L. Berg

Abstract

An initial value problem for the two-dimensional difference equation $a_{n+1, \nu+1}=$ $a_{n+1, \nu}+(1-z) a_{n \nu}$ is solved by means of the generating function and their functional equation. Special values of the solution are the well known Euler-Frobenius polynomials.

Keywords: Euler-Frobenius polynomials, difference equations, functional equations \vdots.
AMS subject classification: 39 A 10, 39 B 22, 26 A 09

Let k be an arbitrary but fixed non-negative integer. We start from the two-dimensional difference equation

$$
\begin{equation*}
a_{n+1, \nu+1}=a_{n+1, \nu}+(1-z) a_{n \nu} \tag{1}
\end{equation*}
$$

for $0 \leq k \leq n$ and $0 \leq \nu \leq n$ with $n, k, \nu \in \boldsymbol{Z}$, a real parameter z, and the initial conditions

$$
\begin{equation*}
a_{k 0}=a_{k 1}=\ldots=a_{k k}=1 \tag{2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
a_{n+1,0}=z \sum_{\nu=0}^{n} a_{n \nu} \tag{3}
\end{equation*}
$$

for $n \geq k$. Obviously, the solutions of this initial value problem are uniquely determined polynomials $a_{n \nu}=a_{n \nu}(z)$ of order $n-k$, in particular

$$
\begin{equation*}
a_{k+1, \nu}(z)=\nu+(k+1-\nu) z \tag{4}
\end{equation*}
$$

for $\nu=0, \ldots, k+1$. The general solution is given by
Theorem 1: For $0 \leq k \leq n$ and $0 \leq \nu \leq n$, the difference equation (1) with the initial conditions (2) and (3) has the solution

$$
\begin{equation*}
a_{n \nu}(z)=(1-z)^{n-k+1} \sum_{m=0}^{\infty} z^{m} \sum_{\mu=0}^{\nu}\binom{\nu}{\mu}\binom{n-\nu}{k-\mu}(m+1)^{\nu-\mu} m^{n+\mu-k-\nu} . \tag{5}
\end{equation*}
$$

Note that the binomial coefficients $\binom{n-\nu}{k-\mu}$ vanish for $k<\mu$. For the proof of this theorem we need some preliminaries.
L. Berg: Universität Rostock, FB Mathematik, D - 18051 Rostock

Lemma 1: For $n \geq k+1$, we have

$$
\begin{equation*}
a_{n 0}(z)=z a_{n n}(z) \tag{6}
\end{equation*}
$$

Proof: By summation, (1) implies

$$
a_{n+1, n+1}-a_{n+1,0}=(1-z) \sum_{\nu=0}^{n} a_{n \nu}
$$

for $n \geq k$, and by (3) we obtain

$$
z a_{n+1, n+1}-z a_{n+1,0}=(1-z) a_{n+1,0},
$$

i.e. (6)

Next, we introduce the generating function of $a_{n \nu}$ by the formal power series

$$
\begin{equation*}
F(x, y, z)=\sum_{n=k}^{\infty} \sum_{\nu=0}^{n} a_{n \nu}(z) y^{\nu} x^{n} . \tag{7}
\end{equation*}
$$

From (1), we obtain

$$
\sum_{n=k+1}^{\infty} \sum_{\nu=1}^{n} a_{n \nu}(z) y^{\nu-1} x^{n-1}=\sum_{n=k+1}^{\infty} \sum_{\nu=0}^{n-1} a_{n \nu}(z) y^{\nu} x^{n-1}+(1-z) F(x, y, z) .
$$

In view of (2), the left-hand side is equal to

$$
\frac{1}{x y}\left(F(x, y, z)-F(x, 0, z)-\sum_{\nu=1}^{k} y^{\nu} x^{k}\right)
$$

and the sum on the right-hand side equals to

$$
\frac{1}{x}\left(F(x, y, z)-\sum_{n=k+1}^{\infty} a_{n n}(z) y^{n} x^{n}-\sum_{\nu=0}^{k} y^{\nu} x^{k}\right)
$$

where (6) implies

$$
\sum_{n=k+1}^{\infty} a_{n n}(z) y^{n} x^{n}=\frac{1}{z}\left(F(x y, 0, z)-y^{k} x^{k}\right)
$$

Using the abbreviations $F=F(x, y, z)$ and $F(x)=F(x, 0, z)$, we obtain the equation

$$
F-F(x)-\sum_{\nu=1}^{k} y^{\nu} x^{k}=y\left(F-\frac{1}{z}\left(F(x y)-y^{k} x^{k}\right)-\sum_{\nu=0}^{k} y^{\nu} x^{k}\right)+x y(1-z) F,
$$

and finally, the functional equation

$$
\begin{equation*}
(1-y-x y(1-z)) F=F(x)-\frac{y}{z} F(x y)+y^{k+1} x^{k}\left(\frac{1}{z}-1\right) \tag{8}
\end{equation*}
$$

Theorem 2: Equation (8) has the solution

$$
\begin{align*}
F(x, y, z)= & (1-z) x^{k} \sum_{m=0}^{\infty} z^{m} \\
& \times \sum_{\mu=0}^{k}(1-(m+1) x y(1-z))^{-\mu-1}(1-m x(1-z))^{\mu-k-1} y^{\mu} \tag{9}
\end{align*}
$$

for $|z|<1$ and $x(1-z) \neq \frac{1}{n}, x y(1-z) \neq \frac{1}{n} \quad(n \in N)$.
Proof: In order to solve (8), it is necessary to determine $F(x)$. The easiest way would be to put $y=0$ in (8), however, then we get an identity. Hence, we introduce a new variable u with $u(1-z) \neq \frac{1}{n} \quad(n \in \mathbb{N})$, and choose

$$
x=\frac{u}{1-u(1-z)} \quad \text { and } \quad y=1-u(1-z)
$$

Then $1-y-x y(1-z)=0$, and (8) turns into

$$
\begin{equation*}
F(u)=(1-z) u^{k}+\frac{z}{1-u(1-z)} F\left(\frac{u}{1-u(1-z)}\right) . \tag{10}
\end{equation*}
$$

By iteration, we find the series

$$
\begin{equation*}
F(u)=(1-z) u^{k} \sum_{m=0}^{\infty} \frac{z^{m}}{(1-m u(1-z))^{k+1}} \tag{11}
\end{equation*}
$$

which converges for $|z|<1$. Since

$$
F\left(\frac{u}{1-u(1-z)}\right)=(1-z) u^{k} \sum_{m=0}^{\infty} \frac{z^{m}(1-u(1-z))}{(1-(m+1) u(1-z))^{k+1}}
$$

we see that (11) is indeed a solution of (10).
Now, the right-hand side of (8) can be written as

$$
\begin{aligned}
& (1-z) x^{k}\left(\sum_{m=0}^{\infty} \frac{z^{m}}{(1-m x(1-z))^{k+1}}-\sum_{m=1}^{\infty} \frac{z^{m-1} y^{k+1}}{(1-m x y(1-z))^{k+1}}\right) \\
& \quad=(1-z) x^{k} \sum_{m=0}^{\infty} \frac{(1-(m+1) x y(1-z))^{k+1}-(y-m x y(1-z))^{k+1}}{\left((1-m x(1-z))(1-(m+1) x y(1-z))^{k+1}\right.} z^{m}
\end{aligned}
$$

and after division by $1-y-x y(1-z)$, we easily find (9)

Corollary: For $k=0$, (9) simplifies to

$$
\begin{equation*}
F(x, y, z)=(1-z) \sum_{m=0}^{\infty} \frac{z^{m}}{(1-m x(1-z))(1-(m+1) x y(1-z))} . \tag{12}
\end{equation*}
$$

Proof of Theorem 1: By means of binomial series and

$$
(-1)^{i}\binom{-\mu-1}{i}=\binom{\mu+i}{i} \quad \text { and } \quad(-1)^{j}\binom{\mu-k-1}{j}=\binom{k+j-\mu}{j}
$$

we obtain from (9) the formal power series

$$
\begin{aligned}
F(x, y, z)= & \sum_{m=0}^{\infty} z^{m} \sum_{\mu=0}^{k} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\binom{\mu+i}{i} \\
& \times(m+1)^{i}\binom{k+j-\mu}{j} m^{j}(1-z)^{i+j+1} y^{\mu+i} x^{i+j+k}
\end{aligned}
$$

Choosing $n=i+j+k$ and $\nu=\mu+i$, we find by comparison with (7) that equation (5) holds

In particular, for $\nu=0$ we have

$$
\begin{equation*}
a_{n 0}(z)=(1-z)^{n-k+1}\binom{n}{k} \sum_{m=0}^{\infty} m^{n-k} z^{m} \tag{13}
\end{equation*}
$$

For $n>k$, these functions can be expressed by the Euler-Frobenius polynomials

$$
E_{n}(z)=(1-z)^{n+1} \sum_{m=1}^{\infty} m^{n} z^{m-1}=\sum_{m=0}^{n-1} \sum_{\nu=0}^{m}\binom{n+1}{\nu}(-1)^{\nu}(m+1-\nu)^{n} z^{m}
$$

of degree $n-1$ for $n \geq 1$ (cf. Chui [2] and Schoenberg [3]), namely

$$
a_{n 0}(z)=\binom{n}{k} z E_{n-k}(z)
$$

The polynomial character of (13) implies that the functions (5) are also polynomials, which we call generalized Euler-Frobenius polynomials.

By means of the notation $D=z \frac{d}{d z}$, the polynomials E_{n} have the representation

$$
E_{n}(z)=\frac{1}{z}(1-z)^{n+1} D^{n}(1-z)^{-1}
$$

which can be generalized in the following way.

Lemma 2: The polynomials (5) have the representation.

$$
\begin{equation*}
a_{n \nu}(z)=(1-z)^{n-k+1} \sum_{j=0}^{n}\binom{n-\nu}{j}\binom{\nu}{n-k-j} D^{j}(1+D)^{n-k-j}(1-z)^{-1} . \tag{14}
\end{equation*}
$$

Proof: If we use the equations

$$
(1+D)^{n-k-j}=\sum_{i=0}^{n-k-j}\binom{n-k-j}{i} D^{i} \quad \text { and } \quad D^{i+j}(1-z)^{-1}=\sum_{m=0}^{\infty} m^{i+j} z^{m}
$$

and the substitution $\mu=k+\nu+j-n$, we obtain

$$
\sum_{i=0}^{n-k-j}\binom{n-k-j}{i} m^{i}=(m+1)^{\nu-\mu}
$$

and (14) turns into (5)
Application: In [1], there appear (in different notations) the $((\nu+1) \times(\nu+1))$ matrices

$$
Y_{\nu}(z)=\left(\begin{array}{cccc}
1 & \ldots & \ldots & 1 \tag{15}\\
z & 1 & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
z & \ldots & z & 1
\end{array}\right)
$$

the direct sums $Y_{\nu}^{n}(z)=I_{n-\nu} \oplus Y_{\nu}(z)$ with

$$
I_{\mu} \oplus Y_{\nu}=\left(\begin{array}{cc}
I_{\mu} & O^{\top} \\
O & Y_{\nu}
\end{array}\right)
$$

where I_{μ} is the μ-dimensional unit matrix with dummy I_{0}, and the products

$$
\begin{equation*}
P_{n}(z)=Y_{1}^{n}(z) \cdots Y_{n}^{n}(z) \tag{16}
\end{equation*}
$$

with $n \geq 1$. For clearness, we denote the functions (5) more precisely by $a_{n \nu}^{k}(z)$. Then for the $((n+1) \times(n+1))$-dimensional matrices $P_{n}(z)$, we obtain

Lemma 3: The entries of $P_{n}(z)$ are the polynomials $a_{n j}^{n-i}(z)(i, j=0, \ldots, n)$, where i is the row index and j the column index.

Proof: The matrices (16) satisfy the recursion

$$
P_{n+1}(z)=\left(I_{1} \oplus P_{n}(z)\right) Y_{n+1}(z) .
$$

Denoting the entries of $P_{n}(z)$ by $a_{n j}^{n-i}$, this equation implies $a_{n+1, j}^{n+1}=1$ for $j=0, \ldots, n+$ 1, i.e. (2), and

$$
a_{n+1, j}^{n+1-i}=\sum_{\ell=0}^{j-1} a_{n \ell}^{n-(i-1)}+z \sum_{\ell=j}^{n} a_{n \ell}^{n-(i-1)}
$$

for $i=1, \ldots, n+1$. For $j=0$, the last equation equals to (3). For $j=0, \ldots, n$, we subtract it from

$$
a_{n+1, j+1}^{n+1-i}=\sum_{\ell=0}^{j} a_{n \ell}^{n+1-i}+z \sum_{\ell=j+1}^{n} a_{n \ell}^{n+1-i}
$$

and obtain

$$
a_{n+1, j+1}^{n+1-i}=a_{n+1, j}^{n+1-i}+(1-z) a_{n j}^{n+1-i},
$$

i.e. (1). In view of

$$
P_{1}(z)=Y_{1}(z)=\left(\begin{array}{ll}
1 & 1 \\
z & 1
\end{array}\right)
$$

or already $P_{0}(z)=(1)$, the lemma is proved by induction
Further examples are

$$
\begin{aligned}
& P_{2}(z)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 z & z+1 & 2 \\
z^{2}+z & 2 z & z+1
\end{array}\right), \\
& P_{3}(z)=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
3 z & 2 z+1 & z+2 & 3 \\
3 z^{2}+3 z & z^{2}+5 z & 5 z+1 & 3 z+3 \\
z^{3}+4 z^{2}+z & 4 z^{2}+2 z & 2 z^{2}+4 z & z^{2}+4 z+1
\end{array}\right) .
\end{aligned}
$$

Acknowledgement. I wish to thank the referee for drawing my attention to Lemma 2, and for further useful improvements.

References

[1] Berg, L. and G. Plonka: Refinement of vectors of Bernstein polynomials. Rostock. Math. Kolloq. (to appear).
[2] Chui, C. K.: An Introduction to Wavelets. Boston: Academic Press 1992.
[3] Schoenberg, I. J.: Selected Papers. Vol. 2 (ed.: C. de Boor). Boston: Birkhäuser Verlag 1988.

Received 16.12.1994; in revised form 31.03.1995

