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A .Convergence Rate Result 
for a Steepest Descent Method

and a Minimal Error Method for the
Solution of Nonlinear Ill—Posed' Problems 

A. Neubauer and 0. Scherzer 

Abstract. Recently, convergence and stability of the steepest descent method for the solution 
of nonlinear ill-posed operator equations have been proven. The same results also hold for 
the minimal error method. Since for ill-posed problems the convergence of iterative methods 
may be arbitrarily slow, it is of practical interest to guarantee convergence rates of the iterates 
under reasonable assumptions. The main emphasis of this paper is to present a convergence 
rate result in a uniform manner for the steepest descent and the minimal error method for the 
noise free case. 
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1. Introduction 

In this paper the solution of nonlinear operator equations 

F(x) = y
	 (1.1) 

by a steepest descent method and a minimal error method is considered. Here F 
V(F) - Y with domain V(F) C X, X and Y denote Hilbert spaces with inner products 
(',.) and norms , respectively, which can always be identified from the context in 
which they appear. Throughout this paper we assume attainability of the data y, i.e. 
it is assumed that equation (1.1) has a solution x (which need not be unique). We 
are mainly interested in problems of the form (1.1) for which the solution x does not 
depend continuously on the right-hand side data y. Such ill-posed problems need to be 
regularized to obtain reasonable approximations to x•. 
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For linear problems the steepest descent method is known to be a regularization 
method (cf. [5, 6]). 

There are several ways of generalizing the steepest descent iteration to nonlinear 
operator equations (1.1). The one considered in [7] requires a Lipschitz continuous 
Fréchet derivative F'() of F in a neighbourhood of x 0 , which we assume in the sequel, 
and it is defined as follows: 

	

X k+1 =Xk+k S k	(k=0,1,2,...) 

S k =	(xk) (F(xk) - y )	 ( 1.2)
118k 112 

Clk 
= IIF'(xk)skI12 

where TO is an initial guess which may incorporate a priori knowledge of an exact 
solution x,.. It was shown in [7] that this method is a generalization of the well-known 
steepest descent iteration for the solution of linear ill-posed operator equations: for 
linear operators F, the Fréchet derivative is given by F'(x k ) = F. Therefore, the 
coefficient aj minimizes the norm of the residuum II F ( x k + a k s k) - yll along the search-
direction sk. If, alternatively, one chooses a k. to minimize II x k + a k 5 k - x ,II, one obtains 
ak = II F ( x ) - y112/lIsk 11 2 . The obvious generalization of this minimal error method to 
the solution of nonlinear problems then yields 

	

X k+1 = Xk + a k s k	(k = 0,1,2,...) 

Sk = —F'(xk)(F(xk) - 1/)	 (1.3) 
II F(xk) - y112 

ak=  
118k 112 

If the iteration processes (1.2) and (1.3) are applied to the perturbed problem with 
y6 instead of y, where

II	- !JlI 

then we write x 6 for the iterates instead of xk. If Y 6 does not belong to the range of the 
operator F, then the iterates xt cannot converge but still allow a stable approximation 
of x provided the iteration is stopped after an appropriate. number of steps. It was 
shown in [7] that the steepest descent method (1.2) is convergent, if F satisfies the local 
property

	

lF(x) - F() - F'(x)(x - ) M	IF(x) - F()Il	(
77 < 

for all x,	B,,(xo) c V(F) and if the iteration is stopped after k. = k(6) iterations
according to the generalized discrepancy principle 

I F( xt.) -	<rS < F( xt) -	(o < k < k,; 2 < 2_1 + 
1 - 277 

A detailed interpretation of the assumption above and several examples fulfilling it can 
be found in [1, 4, 8]. These papers deal with Landweber iteration as a method to
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regularize nonlinear ill-posed problems (1.1). A careful inspection of the proofs in [7] 
shows that all results proven there are also valid for the minimal error method (1.3). 

In [4] convergence rates have been proven for Landweber iteration in the noise free 
and the perturbed data case, if the operator F satisfies 

F'(x)	R1 FI (x t )	(x E !3(x 0 ))	 (1.4) 

where {R : x E 8(x O )} is a family of bounded linear operators R : Y - Y with 

ll R - I ll < C li x( - x t [	(x E !3(xo))	 (1.5) 

and C is a positive constant, and if the source condition 

Xt	
( -

	= (F1(xt)*F1(xt))	o < V < 1- 
- 21 

is satisfied; here x t denotes the solution of minimal distance to x0, which exists due to 
(1.4) and (1.5) (compare [4: Proposition 2.1]). Again interpretations of these conditions 
and examples for which they are true can be found in [1, 41. We wl1 show in the next 
section that the rate

Irk - x tI1 = O(k"2) 

is obtained for the steepest descent method and the minimal error method in the noise 
free case, provided that F is Lipschitz continuously differentiable and that the conditions 
(1.4) and (1.5) and the source condition 

Xt - x 0 = F'(xt)v	 (1.6) 

are satisfied; this corresponds to v = . However, we have not succeeded in proving 
convergence rates for the case 0 < v < ; note that there are corresponding results for 
linear ill-posed problems. In the case of given perturbed data, not even in the special 
situation of linear operators a convergence rate result is known. Finally, in Section 3 
we illustrate conditions (1.4) - ( 1.6) for a parameter estimation problem. 

2. A convergence rate result 

In [3] a-processes for the solution of linear operator equations have been considered. 
For fixed a > —1 an a-process is defined by 

= Xckk 	(krO,1,2,...) 

Sk = F* (F( X k) - 

((FF)°'sk, 5k) 
ak = ((F*F)Qsk,F*Fsk) 

For a = 0 and a = —1 these methods correspond to the steepest descent method 
(1.2) and the minimal error method (1.3), respectively. The essential idea in proving
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convergence rates of a-processes in [3] was to verify that (FF)(x - x t ) is bounded 
if X t satisfies the source condition 1t -	= (F*F)&v. 

For the steepest descent method and the minimal error method this idea can be 
carried over to nonlinear problems: we will prove that 

(F'(xt)*F'(xt)) -112(xk - xt) 

is bounded for both methods, if the source condition (1.6) and the conditions (1.4) and 
(1.5) are satisfied. Then we proceed with analogous arguments as used in [ 3] to prove 
the rate

IIXk -	= O(kI2). 

In the next proposition we show that II X k - xjI is monotonically decreasing and 
that

ak II F() - y 11 2 = O(IIxk - xfII2) 

if Cp is sufficiently small. 

Proposition 2.1. Let conditions (1.4) and (1.5) hold and assume that Cp < 
Moreover, assume that xk is obtained either by the steepest descent method (1.2) or by 
the minimal error method (1.3) and that x e B12(x0). Them xk E B 12 (x t ) and 

IIXk+1 - xtjI2 + 
4 - 7Cpc

ikII F(xk) - y 11 2 : Ikk - x1II2 
4— Cp 

for all k E No. Moreover,

cc
ak II F(xk) - y 11 2 <. 

Proof. Let us assume that xk E 8 12 (xt). Since x t E 8 12 (x 0 ), we then have the 
inclusion xk e B(x0) and thus relations (1.4) and (1.5) are applicable. Hence we obtain 

IIF(xk) - F(x t ) - F'(xk)(xk - rt) 

= J(F'(z t ) - F'(xk))(xk - x t ) dt

(2.1) 

= /	
- I + I - Rzk )F1 (x t )(x k - xt)11 dt 

C Fl (x t )(x k - zt)11 IIxk - 

where z1 = txk + (1 - t)xt (0 t 1). Analogously one verifies that 

I F(x k) - F(x t ) - F'(x t )(x k - x t )1 < CMFl (x t )(x k - X t )jj JjXk - x 11	(2.2)
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holds. This implies 

(i - CIIxk - tii) I F' (xt )(x k -	II() - F(x t )Il = II F(x ,,) - y II .	(2.3) 

Together with (2.1) this yields 

IIF(x,,) - F(xt) - F'(xk)(xk - x t )II < 3Cp 
II F( x ,,) - II _4— Cp 

Thus, we obtain 

IIx,,+i - X 111 - lix,, - xtll2 

= 2(x,, - X t ,Xk+ l - X/C ) + ii x ,,+i - Xk112 

= —2a k (x k - xt,F'(x,,)(F(x,,) -y))+alF'(xk)(F(xk)-y)II2 

= ak (2(F(x) - y - F'(xk)(xk - x i ), F(xk) - I!) - liF(x,,) - y112) 

+ a (ak IIF'(x,,)' (F(xk) - ) 11 2 - IIF(xk) - y112) 

7Cp - 4
a, II F( x ,,) - y 1I 2 + ak (a,, IIF'(xk)* (F(x,,) -	lI - 1IF(x,,) - y112). 4— Cp

It remains to be shown that 

ak IF'(-k). (F(x,,) - i) 12	1I F( x ,,) - y 11 2	 (2.4) 

to obtain the asserted estimate. Since Cp < , this estimate implies that lix,, - x 11 is 
monotonically decreasing. Together with the inclusion assumption xt E L3 12 (xo), an 
induction argument shows that xk remains in 8 12 (xt) and that 

CO

akIi F( xk) - 112 <oc. 

We will now show that (2.4) holds if Xk is obtained by (1.2) and (1.3), respectively. 
In case of the steepest descent method (1.2) we obtain

2 
2 = (F'(x,,)s,,, F(x,,) - 11)	

il F(x ,,) - 1/112 aklIF(xk) (F(x,,) -	II	
iiF'(x,,)s,,ii2 

and in case of the minimal error method (1.3) 

a IF'(x,,) (F(x,,) - ) 12 = iiF(x,,) - 1/112. 

Thus the statement is proved I 

In order to simplify the notation, we will use the abbreviation 

A = F1(xt)*Ft(xt) 

in the sequel.
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Lemma 2.2. Let conditions (1.4) and (1.5) hold and assume Cp . Moreover, 
assume that zk as obtained either by the steepest descent method (1.2) or by the minimal 
error method (1.3) and that x t E 13 12 (xo). If the source condition (1.6) is satisfied, 
them A 1/2 (x k - xt) is bounded. 

Proof. Due to conditions (1.4) and (1.6), an induction argument shows that x k - 
x t E R.(A' /2 ) for all k E 1/Va. Therefore, we can apply the operator A— 1/2 both to (1.2) 
and (1.3) to obtain 

11A"2(xk+1 - x t
)11 2 - A 1 /2 (x k - X' ) 1 1 

2 

= 2(A_ h/2 (x k - x),A' 12 (xk+l - X k)) + I A/2 (xk+l - Xk)M 

= _2ak(A_h/2(xk - x),A'/2F'(xk)(F(xk) - 

+ ak Ah/2F(xk)*(F(xk) - 

= —2a (A 1/2 ( x k - x t ) , A l t2 F'(x' )* (F(xk) - 

	

- 2a (A_ h/2 (x k - x t ) , A—' /2 (F'(x k )- - F'(x t )*) (F(x k ) -	
(2.5) 

+ a A_I/2F1(xk)*(F(xk) - 

= —2a k (F'(x t )A(x k - x t ),F(xk) - F(x t ) - F(x t )(x k - xt)) 

- 2a k (A_ 2 (x k - x t ) , A h/2 F 1 (x t ) * ( R k - I)(F(xk) - 

+ a A 1/2 F'(x k )(F(x k ) - y ) - 2caJx - xfII2. 

The following estimates will be needed to estimate the right-hand side of (2.5). It follows 
from estimates (2.2) and (2.3), the inclusion xk E B 12 (x t ) and the inequality Cp 
that

(F1(xt )A (xk - x t ),F(xk) - F(x t ) - F'(x)(x k - 

< F'(x)A'(x, - xt)11 F( x k) - F(1 t ) - Fl (x t )(x k - x t )M	(2.6) 
10 

^	CA''2 (x, - x )M lIxk - x f II II F( xk) - yII. 

Condition (1.5) implies 
(•1/2	- xt), A /2 F1 (x t )*(R k - n(F(xk) - 

<C 11A"2(xk - xt )M 1A1/2F1(xt)*	t1	() -	(2.7)

= C A''2 ( xk - x t )I Ikk - xI II F( xk) - yII• 
Proposition 2.1, conditions (1.4) and (1.5), and inequality Cp	imply 

a2 IA /2 F1 (x k )* (F(xk) -	12 = a IA_ II2 F 1 (x t )*R; k (F(xk) .-	12 

	

(1 + CIIxk - xflI)2a II F( xk) - y 11 2	(2.8) 
23 < — ak II x k - xtII2. 

- 13
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Setting zk	1A"2 (x k - x )II, we now obtain with (2.5) - (2.8) 

Z+ 1 - ZJ	 IIxk - X t il II F(x k) - YII zk -	IIxt - Xt112. 
19	 13 

Using the inequality

	

2aba2+b2	(a,bEIR) 

with

a
 = V
329 L3 
T^;-Zak - x 11	and	b = C fkIIF( x k) - yIIzk

this implies
Z . 1	(i + 11C2	 Y 11 2IIF(xk) - yII2)z 

and hence by induction

. n- 1 

: 

(i + 11C 2 ak IIF(xk) - y112). 

The assertion is proven, if we can show 

fi(i + 11C2ck IIF(xk) - y112) 

It is an analysis exercise to show that this is equivalent to 

k II F( xk) - II 2 < 

Hence the assertion followsfrom Proposition 2.1 I 
Now we can prove the main result of this paper. 

Theorem 2.3. Let conditions (1.4) and (1.5) hold and assume Cp < . Moreover, 
assume that xk is obtained either by the steepest descent method (1.2) or by the minimal 
error method (1.3) and that xt E B 12 (xo). If the source condition (1.6) is satisfied, 
then we obtain the rate

llxt - x' II = 0(k-' /2)_ 

Proof. Without loss of generality we can assume F'(xt) 76 0, since otherwise xt = 
xo and there were nothing to prove. We show that for both methods a k is bounded 
from below. Conditions (1.2) - (1.5) and inequality Cp	imply 

a	II F'(x t)11 2 > 121
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11(1.6) holds, this together with Proposition 2.1, estimate (2.3), inequality Cp	and 
the setting Wk = A /2 (xk - xt) and c =	llF 1 (x t )ll_ 2 implies 

II A ' 12w k11 2 -	Wk+1 

	

IA' '2	11 2 > 
4 - 7Cp	

II F(x k) - y112  - 4—Cp 
IIFl (x)(x - xt)[I2 

= e(A3/2 W k, A 1/2 Wk) . 

An application of Lemma 2 in [3] now yields

/k-I 

II x k - X	IlwkI12/3E1/2 (	I1wII_2I3) -1/2 

i=0 

Since, due to Lemma 2.2, II wkII is bounded, this implies the asserted rate U 

3. A parameter estimation problem 

In this section we illustrate conditions (1.4) - (1.6) for the following parameter estimation 
problem. We want to estimate c in 

—Au+cu=f in c
(3.1) 

u = g in aQ 

where Q is either a bounded domain in .1R2 or 1R3 with smooth boundary or a paral-
lelepiped, f E L2 () and g E H312(acl). 

The nonlinear operator F: V(F) c L 2 (1) - L2 (1) is defined as the parameter-
to-solution mapping

F(c) = u(c) 

where u(c) is the solution of problem (3.1). One can show (cf., e.g., [2]) the existence 
of a y > 0 such that F is well defined on 

D(F) = {c E L2 lI c -	<y for some ê with	0 a.e.}. 

It can be argued that the Fréchet derivative and its adjoint are given by 

F'(c)h = —A(c)'(hu(c)) 

Fl(c)*v = —u(c)A(c)—'v 

with A(c) : H2 fl H0' - L2 defined by 

A(c)u = —Au + cu.
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If u(c) ^!	(' > 0) for all c E Bp(co) (p -y), then one can show that 

F'(d) = Rd(c ) F'(d)	(c, d E Bp(co)) 

with
u 

[u(d) A(d)-1w] Rd(c)w = A(c)  

and
II Ra(c) - 1115 Cd - c li	(c, d E Bp(co)) 

where C is a positive constant independent of c and d. Thus conditions (1.4) and (1.5) 
are satisfied. Moreover, we see from the representation of F(c)* above that the source 
condition (1.6) is satisfied if and only if Cj E H2 fl H. 

References 

[1] Binder, A., Hanke, M. and and 0. Scherzer: On the Landvieber iteration for nonlinear 
ill-posed problems (submitted). 

[2) Colonius, F. and K. Kunisch: Stability for parameter estimation in two-point boundary 
value problems. J. Reine Angew. Math. 370 (1986), 1 - 29. 

[3] Gilyazov, S. F.: Iterative solution methods for inconsistent linear equations with nonself-
adjoint operators. Moscow Univ. Comp. Math, and Cyb. 1 (1977), 8 - 13. 

[4] Hanke, M., Neubauer, A. and 0. Scherzer: A convergence analysis of the Landweber 
iteration for nonlinear ill-posed problems. Numer. Math. (to appear). 

[5] Kammerer, W. J. and M. Z. Nashed: Steepest descent for singular linear operators with 
nonclosed range. Appl. Anal. 1 (1971), 143 - 159. 

[6] McCormick, S. F. and C. H. Rodrigue: A uniform approach to gradient methods for linear 
operator equations. J. Math. Anal. AppI. 49 (1975), 275 - 285. 

[7] Scherzer, 0.: A convergence analysis of a method of steepest descent and a two-step algo-
rithm for nonlinear ill-posed problems (submitted). 

[8) Scherzer, 0.: Convergence criteria of iterative methods based on Landweber iteration for 
solving nonlinear problems. J. Math. Anal. AppI. (to appear). 

J 
Received 07.09.1994; in revised form 21.12.1994


