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On Continuous Capacities 
M. Brzezina 

Abstract. Let (X, W) be a balayage space, 7 a Choquet capacity on X, 13(E) the essential 
base of E C X and, for a compact set K C X, a(K) = 7(13(K)). Then some properties of 
the set function a are investigated. In particular, it is shown when a is the Choquet capacity. 
Further, some relation a to the so-called continuous capacity deduced from a kernel on X is 
given. At last, some open problems from the book [1] by G. Anger are solved. 
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0. Introduction 

The negligible (or small) sets play an important role in potential theory. In this note, 
we will investigate semipolar sets and some set functions describing them. 

All our consideration will be done in a balayage space (X, W) (for its definition, 
basic properties and notions used below we recommend the monograph by J. Bliedtner 
and W. Hansen [4]). We introduce the notion of a-capacity and study some of its 
properties. Especially, we give the relation to Borel semipolar sets (see Definition 2.1 
and Corollary 2.3). In Theorem 2.1, we solve the problem when an a-capacity is a 
capacity in Choquet's sense. In Section 3 we deal with a continuous capacity introduced 
by G. Anger in [1] and we discuss its relation to a-capacities. At last, in Section 4 we 
solve some open problems from the book by G. Anger [1]. 

1. Essential base 

In this part we recall the notion of essential base and we give some basic properties 
needed in the following. 

Definition 1.1. Let E C X and z E X. Then E is said to be sernipolar at z if 
there exists a fine neighbourhood V of z such that the set E fl V is semipolar. The set 
/3(E) of all points z E X such that E is not semipolar at z is called the essential base 
of E. 

M. Brzezina: Techn. Univ. Liberec, Dep. Num. AppI. Math., Halkova 6, 461 17 Liberec 1, 
Czech Republic - and Univ. Erlangen- Nürnberg, Mat. Inst., Bismarckstr. 1 1/2, D - 91054 
Erlangen. 
Financial support by the Konferenz der Deutschen Akademie der Wissenschaften is gratefully 
acknowledged. 

ISSN 0232-2064 / $ 2.50 ® Ileldermann Verlag



214	M. Brzezina 

The following lemma is an easy consequence of Definition 1.1. 

Lemma 1.1. Let A,BCX. Then 

(i) if A C B, then /3( A ) C /3(B) 
(ii) ,i3(A U B) = /3(A) U 13(B) 

(iii) /3(A n B) c ,8(A) n 13(B). 

Remark 1.1. The notion of essential base was introduced (into potential theory) 
by J. Bliedtner and W. Hansen in [3]. 

Proposition 1.1 (see [4: p. 296]). Let E C X. The essential base 6(E) is the 
smallest finely closed set F C X such that E \ F is semipolar. 

Lemma 1.2. Let E be an arbitrary subset of X. Then 

(i) if E is finely closed, then /3(E) C E 
(ii) if E is finely open, then E C /3(E) 
(iii) if E is finely open and A C X, then /3(A) fl E C /3(A fl E). 

In particular, for a compact set L C X, intL C /3(L) C L. 

The proof is an easy consequence of Proposition 1.1. 

Proposition 1.2. Let B be a Borel subset of X. Then there exists a sequence 
(K) 1 of compact subsets of B such that 

00	 00 

/3(B)=/3(UK)=/3(K0) 1  

where, for a set E C X, the symbol Pf denotes the fine closure of E. 

Proof. From [4: p. 3011 there follows the existence of a sequence (K0 ) 1 of com- 
pact subsets of B such that 6(U 1 K) = /3(B). The second equality of the assertion 
follows from [4: p. 297] U 

Proposition 1.3. Let (X, W) be a balayage space, 1 E W and B a Borel subset of 
X. Then

R9=sup{pP: pi onX and C(p)CB}	 (1) 

where the set of functions on the right-hand side is upward directed. In particular, 

= .R(B)	and	C( R'3 ) C 

where, for u E W, C(u) denotes the superharrnonic carrier of u. 

Proof. The first part of the assertion follows from [8: p. 5021. Since the function 
on the right-hand side of (1) is lower semicontinuous it follows that R1$(B) = RO(B). By 
[4: p. 2521, C(R) C /3(B), i.e. C(R) C /3(B) U



On Continuous Capacities	215 

2. a-capacity 

In this section, we introduce the notion of a-capacity and derive some its properties. 

Definition 2.1. Let AC denote the set of all compact subsets of X. A set function 
-y : AC - [0, ool is said to be a Choquet capacity on X if it satisfies the following 
conditions: 

(i) Monotonicity: y(K) -y(L) whenever K, L E AC with K C L. 

(ii) Strong .subadditivity: -y(K fl L) + (K U L) <(K) + y(L) whenever K, L E AC. 
(iii) Right - continuity: lim..7(K) = -y(K) whenever (K).. 1 is a decreasing 

sequence of compact sets with intersection K, i.e. if Kn I K. 

For an arbitrary set E, we define the inner capacity y by 

= sup {(K): K c E, Kcompact} 

and the outer capacity y by 

r(E)=inf{r*(U): ECU, Uopen}. 

We say that E C X is capacitable if y(E) = -y(E) (for details see, e.g., [4, 5, 10]). In 
what follows, -y denotes a Choquet capacity. 

Lemma 2.1 (see [5: p. 72]). Every Borel subset of X is capacitable. 

Lemma 2.2 (see [5: p. 70]). Let 'Mflin= °° 1 be an increasing sequence of subsets of .  
X with (J1 Mn = M. Then lim n .. . 00 -y(Mn ) = 

Remark 2.1. It follows from Definition 2.1 that y(K) = .(K), whenever K is a 
compact subset of X. We can extend the set function 'y which is defined for compact 
sets only to capacitable sets E C X by defining -y(E) = -y(E). In particular, we write 
-y(E) instead of -y.(E) and 1*(E), whenever E is capacitable. 

Definition 2.2. Let K C X be a compact set. The a-capacity of K is defined as 

a(K) = 1(13(K)). 

If E C X is an arbitrary set, then 

a. (E) = sup {a(K): K c E, K compact} 

is called the inner a-capacity of E. 

Remark 2.2. It follows from [4: pp. 272 and 297] that 8(K) is a Borel set. 
Consequently, the set function a is well defined.
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Remark 2.3. It follows from Definition 2.2 that a.(K) = a(K), whenever K C X 
is a compact set. Further, for an arbitrary subset A C X, the inequality a.(A) < -y.(A) 
holds (indeed, if K C A is a compact set, then it follows from Lemma 1.2 that $(K) C K 
an the rest follows easily from the definition of a and the monotonicity of y.). The set 
function a is clearly increasing. 

Lemma 2.3. Let K, K1 , K2 be compact subsets of X. Then for an a-capacity the 
following assertions are true: 

(i) 0 <a(K) <(K). 
(II) Monotonicity: if K 1 C K2 , then a(Ki ) a(K2). 
(iii) Strong subadditivity: a(K i UK2 ) + a(Ki fl K2 ) < a(Ki ) + a(K2). 

Proof. The assertion (i) follows from Lemma 1.2 and the monotonicity of -y. The 
monotonicity of the set operator 6 and of -y gives assertion (ii). From Lemma 1.11(u) 
and (iii) and the strong subadditivity of -y the assertion (iii) follows U 

Remark 2.4. In Lemma 2.3, we did not prove the right continuity of an a-capacity 
on compact sets. The following example shows that this is not true in general: 

Consider the potential theory for the heat operator in .IR x R. Let K = [0, 11 x {0) 
and K, C JR x JR (j E I!\T) be compact sets such that K, 1 C mt Kj and K = fl1 K,. 
Let further a- 5 cap denote the a-capacity deduced from the heat capacity 'cap. Then 
obviously a-" cap(K) = 0, since the set K is semipolar. By Lemma 1.2, K C mt K, C 
/3(K,) (j E JT'J). Consequently, h cap(K) 'cap(/3(K,)) := a-'cap(K,) (j E iN). But 
the heat capacity ofK is equal to the Lebesgue measure of K, i.e. h cap(K) = .\'(K) = 1 
(see, e.g., [12]), and hence the a-capacity ahcap is not right continuous on compact 
sets.

It is natural to ask when the a-capacity is a Choquet capacity and when both 
notions are identical, i.e., when the equation -y = a holds. Theorem 2.1 give us an 
answer to this question. 

Theorem 2.1. Let (X, W) be a balayage space and -y a Choquet capacity on X. 
Assume that the condition 

(P) A compact set K C X is polar if and only if (K) = 0 
holds. Then the following conditions are equivalent: 

(1) a is a Choquet capacity on X 
(ii) a = -y 
(iii) (X, W) satisfies the axiom of polarity, i.e. the semipolar sets in X are polar. 

Proof. Let condition (iii) be satisfied and K be a compact subset of X. By Propo-
sition 1.1 1 the set K \,3(K) is semipolar. Using condition (P) we obtain 

a(K) <(K) <(K \ /3(K)) + 7(13(K)) 

i.e. a = -y (from the validity of condition (P) for compact sets that for Borel subsets of 
X follows). The implication (ii) =. (i) is obvious. Assume that a is a Choquet capacity
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on X and that in (X, W) the axiom of polarity does not hold, i.e. there exists a non-
polar semipolar set S C X. According to [4: p. 285] there exists a Borel semipolar set 
5' such that S' D S. By [4: p. 284] there exists a non-polar compact set K C S'. Let 
(K,,).. 1 be a sequence of compact sets in X such that 

K,, 1 C intK,, (n E V)	and	flK,, = K. 

According to Lemma 1.2, K C intK,, C 13(K,,) for all n E iN. Consequently, a(K,,) > 
-y(K) > 0 (n E IN) since the set K is non-polar. From the assumption that a is a 
Choquet capacity on X it follows that a(K) > 0. This is a contradiction since the set 
K is semipolar • 

Remark 2.5. Let (X, W) be a balayage space and y a Choquet capacity on. X 
satisfying condition (F) from Theorem 2.1. For a compact set K C X, let K \,6(K) 
be polar. Then the a-capacity a is right continuous on K, i.e. lim,,_ a(K,,) a(K) 
whenever (K,,) 1 isa sequence of compact subsets of X such that K,, I K. Indeed, 
from assumption (P) of Theorem 2.1 it follows that 7(K) = 7(fl(K)) . According to 
Lemma 1.2,,8(K,,) C K,, (n E iN). Consequently, 

a(K) <a(K,,) = 7(,3(K,,)) <7(K,,)	(n E IN). 

Since is a Choquet capacity, the relations 

a(K) <lim a(K,,) < 7(K) = -y(f3(K)) = a(K) 

hold. Now for a non-polar semipolar set K, the a-capacity a is not right continuous on 
K.

Theorem 2.2. Let be a Choquet capacity on X satisfying the condition 

(R) If A is a relatively compact Borel subset of X, then 7(A) = -y(A) 

Further, let B be a Borel subset of X. Then a(B) = 

Proof. First let a.(B) =oo. Choose arbitrary 0 <s E lii. Then there exists a 
compact set K C B such that s < a(K). Consequently, S < -y(3(B)) and a. (B) = 
-y(13(B)) since s is arbitrary. 

Let now a. (B) < oo and B be a relatively compact set. Further, let (K,,).. 1 (K,, c; 
B) as in Proposition 1.2. By Definition 2.2, there exist compact sets L,, C B such 
that a.(B) < a(L,,) + for every n EW. It follows from Proposition 1.2 and the 
monotonicity of the operator 6 that	 . 

	

_	 I	 • 

	

j i3(L U K,,)	/3(B).	 S	
. () 

We can assume that K,, C K,,+1 and L. C L ,,+1 for every n E IN. Further,

	

a.(B) a(L,, UK,,) +	and	a(L,, U K,,) <a.(B).
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This together with Definition 2.2 yields 

a. (B) y(/3(K	
1 

U L)) + - a. (B) + -
1 

for every n E IN. By Lemma 2.2, relation (2) and assumption (R), we obtain 

=

 (

Co	 CO	 1 
u 3(K U Lu )) = (u /3(K U La )) = 

i.e. the desired equality. 
Let a,(B) < oo and B be an arbitrary Borel set. Further, let (U) 1 be a sequence 

of open relatively compact subsets of X such that U, I X. As proved above, 
-y(/3(B fl U,)) = a. (B fl U,,) <a,(B)	(ri E liv). 

By the monotonicity of -yand Lemma 1.2/(iii) it follows that 7(/3(B)flU,,) <a.(B) for 
all n e IN. Since /3(B) fl U,, 1/3(B), we get according to Lemma 2.2 -y ( 3 ( B)) < a.(B). 
The converse inequality follows easily from Definition 2.2 I 

Corollary 2.1. Let -y be a Choquet capacity on X satisfying condition (R) from 
Theorem 2.2. Further, let B be a Borel subset of X and S C X a seinipolar set. Then 
a. (B) = a. (B \ 5). 

Proof. First let S be a Borel semipolar set. Obviously, /3(B) = 3(B \ 5). Conse-
quently

= y(/3(B)) = (/3( B \ S)) = a,(B \ 5). 
If S is an arbitrary semipolar subset of X, then there exists a Borel semipolar set 5' 
such that S C 5' (see [4: p. 285]). It follows from the monotonicity of a, that 

a.(B \ 5') <a,(B \ 5) <a,(B).	 (3) 
As proved above, a,(B) = a.(B \ 5'). This together with (3) yields the desired equal-
ity I 

Corollary 2.2. Let be a Choquet capacity on X satisfying condition (R) from 
Theorem 2.2 and B a Borel subset of X. Then there exists a Borel sernipolar set S such 
that a,(B) = 7(B \ S). 

Proof; Let S = B \ /3(B). It follows from [4: pp. 297, 272 and 271] that S 
is a Borel semipolar set. Further, B \ S C /3(B). From the monotonicity of and 
Theorem 2.2 we obtain -y(B \ 5) a,(B). According to Corollary 2.1 and Remark 2.3 
a * (B) <-y(B \ 5) •	- 

Corollary 2.3. Let be a Choquet capacity on X satisfying the condition 

(C) If, for a compact set K C X, (K) 0, then K is polar. 

Further, let B be a Borel subset of X. Then B is semipolar if and only if a,(B) = 0. 
Proof. Let B be a Borel set and a,(B) = 0. For a compact set K C B, a.(K) = 

(/3(K)) = 0. Since /3(K) is a Borel set, it follows from the assumption and [4: p. 248] 
that the set 6(K) is polar. But K = (K \ /3(K)) U /3( K ) . According to Proposition 1.1 
the set K \,3(K) is semipolar. Consequently, every compact set K C B is semipolar. 
By [4: p. 301] it follows that B is semipolar. The rest of the assertion is an easy 
consequence of the definition of a, I
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Corollary 2.4. Let -y be a Choquet capacity on X satisfying condition (R) from 
Theorem 2.2 and let B 1 and .82 be Borel subsets of X. Then 

a(Bi UB2 )+a.(Bi flB2 ) <a.(Bi)+a(Bj). 

Proof. The assertion follows from Lemma 1.1, Theorem 2.2 and the strong subad-
ditivity and monotonicity of -y U 

Remark 2.6. As the following example shows, the assumption in Corollary 2.3 
that B is a Borel set can not be omitted. 

Consider the potential theory for the heat operator in JR x R. Let T be a set of 
Berstein type (see, e.g., 111: p. 24] for its existence), S 1 = JR x T and S2 = JR x CT (CA 
denotes the complement of a set A), and let K be an arbitrary compact subset of Si. 
Then K C JR x L for a suitable countable set L c T. Consequently, JR x L is semipolar. 
Let a- 'cap denote the inner a-capacity deduced from the heat capacity hcap (the 
condition from Corollary 2.3 is of course fulfilled). From the monotonicity and the 
definition of a- 'cap it follows that a-"cap(K) = 0. Consequently, a-"cap (S 1 ) = 0. 
Similarly, a h cap, (S2 ) = 0. Sine S 1 U S = JR x JR, at least one of the sets-Si (i = 1,2) 
is not semipolar. Consequently, there exists a non-semipolar set A C JR x JR such that 
a h cap(A) = 0. By Corollary 2.3, this set cannot be a Borel set. 

The sets Si and S2 are an example of sets for which the assertion of Corollary 2.4 
does not hold. 

Remark 2.7. Let y be a Choquet capacity on X satisfying condition (R) of The-
orem 2.2. For a compact set K C X, put 

&(K) = inf {.(K \ S): S C X, S semipolar}. 

Then a(K) = &(K). Indeed, since SK = K\fi(K) is semipolar (see Proposition 1.1), we 
have &(K) 7.(K\SK) y(/3(K)) = a(K). Let S C X be an arbitrary semipolar set. 
According to Corollary 2.1 and Remark 2.3 a(K) = a.(K) a.(K \ S) .(K \ S). 
Taking infimum with respect to S C X, S semipolar, we get a(K) < &(K). The proof 
above shows that the infimum in the definition of & is actually attained. 

3. Continuous capacities 

In [6], we have investigated the so called K-capacity. We recall the basic definitions (cf. 
[6]).

In the following let X be a locally compact Haussdorff space with a countable base 
and M+ the set of all non-negative Radon measures on X. For a set E C X, let us 
denote by M+(E) the collection of all non-negative Radon measures on X with compact 
support in E (the support of a measure is denoted by supp). A lower semicontinuous 
function K: X x X - [0,] is called a kernel on X. The K-potential of.a measure 

E M is defined as

K(x) =
	

K(x,y)4dy)	(x E X).
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For a compact set L C X, the K-capacity (corresponding to the kernel K) is defined by

caP(L)= sup {p(X): jEM(L),K1.<1 onX}. 

The adjoint kernel K of a kernel K is defined by K(x,y) = K(y,x) (z,y E X). 
Corresponding notions will be noted by a tilde. 

By an easy modification of this definition we obtain the notion of a continuous 
capacity. 

Definition 3.1. Let K be a kernel on X. A set function a : K: -p [O,] defined 
by

a(L) = sup {,(X): i E M+(L) , K 1. < 1 and continuous K - potential on x} 

is called continuous K-capacity (corresponding to the kernel K) on X. For E C X, we 
define an inner continuous K-capacity by 

a(E) = sup {a(ii): K CE, K compact }. 

Remark 3.1. The continuous capacity was.first introduced into potential theory 
by G. Anger (see [1: p. 49]). As we will see in Remark 3.3, the continuous capacity 
is not a Choquet capacity in general. The notation "continuous capacity" is deduced 
from the requirement of continuity of K-potentials in Definition 3.1. 

The following lemma is an easy consequence of Definition 3.1. 
Lemma 3.1. Let c and a denote the K-capacity and the continuous K-capacity on 

X, respectively, and let K, L E K:. Then: 

(i) 0 <a(L) <c(L) <oc 
(ii) K C L implies a(K) a(L) 
(iii) a(K U L) <a(K) + a(L). 

The question of the relation between a continuous K-capacity and an a-capacity 
deduced from a K-capacity is natural. Because a-capacity is defined by using the 
structure of a balayage space and a continuous capacity does not, the kernel K on X 
must be in some relation with a balayage space. 

From now, we will consider a balayage space (X, W) and a kernel K on X for which 
there exists a balayage space (X, W) with the following properties: 

. 1 E W n W 

• For every p E P(X) there exists exactly one measure p E M+ such that K 1. = p 
and suppp = C(p). 

• Ifp E M and {K 1. < oo} =X, then K 1. EP(X). 
• For every P E P(X) there exists exactly one measure p E M+ such that K 1. = 

and suppp = C() (K is the adjoint kernel of the kernel K).
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• If ju E M and {K <oo} = X, then K. E 2(X). 

Here and in the following 2(X) and 2(X) stand for the set of all potentials (with 
respect to 	and W, respectively) on X, C(u) and C(ii) denote the carrier of u E W
and i E W, respectively. 

The following theorem deals with the question formulated above. 
Theorem 3.1. Let y be a K-capacity on X, a a continuous K-capacity on X(both 

corresponding to the kernel K) and a the a-capacity deduced from the capacity -y. Then, 
for every compact set L C X, o(L) = a(L). 

Proof. Let L E C. According to Proposition 1.3,	=	and C(R') C 
fl(L). By Lemma 1.2,,3(L) C L. Consequently, /3(L) C L. From here and Remark 2.2 
it follows that /3( L ) is a relatively compact Borel set. Let z E M+(/3(L)) be a measure 
(which existence follows from [6: p. 97]) with the properties 

	

K 1Aand	7(/3(L)) =,u(X)  = a(L). 
Further, let U C X be an open, relatively compact set, L C U. The existence of a 
measure v E M(U) such that 

K,, = 1 on a neighbourhood of L	 (4)
follows from [6: p. 91]. Using the Fubini theorem, we get 

a(L) = 

	

Ix K,, d =	K. dv =	I3(L) dv. 

By Proposition 1.3 and [5: p. 7] we obtain 

a(L) 
= JX 

sup {K : i ' E M+(L) , K	1 and continuous on X} dv 

	

= sup 
f J 

K A, dv	' E M(L); K, < 1 and continuous on x}. 

Using the Fubini theorem and equality (4), we get 

	

a(L) = sup {,i'(L):	E M(L), K,A' 1 and continuous on X} 

and hence a(L) = a(L) what we wanted to prove I 

Remark 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Then condition (R) 
of Theorem 2.2 is satisfied. Indeed, let B be a Borel relatively compact subset of X. 
Then, by [4: p. 2731, R = Re'. It follows from this and [6: p. 97] that -y(B) = 

Remark 3.3. From Theorem 3.1 and Theorem 2.1 it follows that a continuous 
capacity is a Choquet capacity if and only if the corresponding balayage space satisfies 
the axiom of polarity. It is known that the balayage space generated by the heat 
operator does not satisfy this axiom. Consequently, the continuous heat capacity is not 
a Choquet capacity. 

Corollary 3.1. Let the assumptions of Theorem 3.1 be fulfilled. If K, L e K, then 
a(K U L) + a(K fl L) <a(K) + a(L). 

Proof. The assertion follows from Theorem 3.1 and Lemma 2.3/(iii) •



222	M. Brzezina 

Corollary 3.2. For all L E K:, let C() c L and C("R) C L. For all x X, let 
the set {x} be W- and V'-totally thin, and let a and & denote the continuous K-capacity 
and the continuous K-capacity on X, respectively. Then, for all L e K:, a(L) = 

Proof. Let P,2, S and S denote the system of all W-polar, W-polar, W-semipolar 
and I'V-semipolar subsets in X, respectively. Further, denote by c and E the K-capacity 
and K-capacity on X, respectively. By [6: p. 97], 7' = 2. According to [9: p. 510] it 
follows that S = S. Now, by [6: p. 92] and Remark 2.7 it follows that, for L E K:, 

a(L) = inf {c,(L\S): SE S}	and	&(L)= inf{,(L\S): SE

By 16: p. 92] c = Z. From this and above the desired equality follows U 
Corollary 3.3. Let the assumptions of Corollary 3.2 be fulfilled. Further let S be 

a Borel subset of X. Then the following conditions are equivalent: 

(i) S is W-semipolar 
(ii) a.(S) = 0 
(iii) S is 3'V-semipolar 
(iv) &.(S) = 0. 
Proof. The equivalence (ii)	(iv) follows from Corollary 3.2, the equivalence 

(i)	(iii) from [9: p. 5101, and the equivalence (i) <' (ii) from Corollary 2.3 I 

4. Some open problems 
In this final section we will give partial answers to some unsolved problems from the 
book [1: pp.. 94 and 95]. The numbers associated to these problems are those of [1]. 

Let c and a denote the K-capacity and the continuous K-capacity (corresponding 
to the kernel K on X), respectively, and let the assumptions of Theorem 3.1 be fulfilled. 

Problem 19. Which kernels on X satisfy the C-maximum principle? 

Recall that a kernel K on X is defined to satisfy the C-maximum principle, if the 
implication 

it E M+(X) K a continuous K - poten-) 	
K<MonX 

tial on X, K	M on suppp (M E JR) J	- 
is true. In the considered situation all kernels satisfies the C-maximum principle (see 
[4: p. 116]). 

Problem 21. For which compact sets L C X a continuous K-capacity or is right 
continuous on L? 

Let K: 1 be the system of all compact subsets of X such that the implication 
LEK:I,LII EK: (nEiN) and LL ==	a(L)—* a(L) for n--3.00

is true. From Remark 2.5 we get the inclusions 

{ L E K:: L\ fl(L) polar } C K: 1 C C 
I 

L  E K:: L non-polar semipolar}. 

These inclusions solve partially our problem.
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Problem 22. For which kernel  the continuous K-capacity or is right continuous? 

A full answer to this question is given by Theorem 2.1. The continuous K-capacities 
a are right continuous only for kernels K on X for which the corresponding balayage 
space satisfies the axiom of polarity. 

Problem 23. Does there exist a kernel  on JR such that the continuous K-capacity 
a is right continuous? 

The Riesz kernels N,, (0 < a < 1) on JR have by Theorem 2.1 the desired property. 

Problem 29. Which relation between a continuous K-capacity and a continuous 
K-capacity holds? 

An answer to this problem is given by Corollary 3.2. 

Problem 30. Which sets B C X are a-capacitable? 

Recall that a set B C X is a-capacitable if 

a. (B) = inf {a.(U): U D B, U open } =: a * (B). 

If P C X is polar, then by [6: p. 971 c(P) = 0. Further, 

0 <cr.(P) <a(P) <c*(P) 0. 

Hence, polar sets are a-capacitable. Set 

E={LUP: LEA,PCX,PandL\19(L) polar } 

and let A = L U P E E. Further, let 

)C (n E IV) with L L and L c intL (n e IV). 

Then

o(L U P) <a(L) + a*(P) <a(intL) <a(L,,) = c(/3(L)) <c(L). 

Since c is a Choquet capacity, a(L U F) <c(L). Further, 

a(L UP) <a*(L U P) <c(L) = c(fi(L)) = a(L) = a(L) <cx.(L U P) 

The sets A E E are hence a-capacitable. Further, non-polar semipolar sets are not 
a-capacitable (see Remark 2.5).
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