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under Perturbations of 

Linear Delay Impulsive Differential Equations 
L. Berezansky and E. Braverman 

Abstract. Exponential stability of an impulsive functional-differential equation under per-
turbations is studied by means of a new method. . We transform a differential equation into 
an operator equation. The method is based on the equivalence of exponential stability and 
solvability of the operator equation in certain function spaces. 
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1. Introduction 
The paper deals with the preservation of the exponential stability under small pertur-
bations for the equation 

±(i) + E Ak(t)x[hk(i)] = f(t)	(t E [0, ), x(t) E	
(1) 

x() = ()	( <0) 

satisfying the impulsive conditions 

x(r3 ) = Bx(r3 —0)	 (2) 

with lim_ r = 00. 
We consider perturbations of equation (1), precisely, of the functions Ak and h.k 

and caused by addition of new terms containing delay in the left-hand side of (1). It 
turns out that the changing of parameters of problem (1),(2) on any finite segment does 
not affect its exponential stability. In particular, the removal or the addition of a finite 
number of impulses does not influence the stability. 
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The stability preservation under various perturbations is one of the central problems 
in stability. According to R. Bellman [4] the stability theory is a theory studying whether 
properties of an equation preserve under perturbations. The basic, instrument in the 
investigation of the stability preservation is the developed theory of differential and 
integral inequalities (see ' [4, 10, 19]) as well as the method of Lyapunov functions and 
functionals (see [8, 15 - 17, 20])..	 S 

If the functions hk in equation (1) change, then the application of the above meth-
ods is not so efficient. The , rnethod we proposehere is quite different. It is based on 
the Bohl-Perron theorem (see 11, 6]) for impulsive delay differential equations. This 
theorem connects the exponential stability and the solvability of the equation in certain 
function spaces. So the preservation of the exponential stability can be reduced to the 
preservation of the solvability of a linear equation. This problem is standard for linear 
analysis. It may be reduced to the estimation of the norm of the difference of corre-
sponding operators. In' fact it is better to estimate the norm not of differential but of 
transformed integral operators. This method for the stability investigation for differen-
tial equations without impulses is developed in [5]. It is to be emphasized that results 
obtained by the method in the present work are new for delay differential equations 
without impulses as well.  

In conclusion we note the growing role of different solution representations in sta-
bility theory (see [3, 9]). We use the solution representation formula obtained in [1]. 

2. Preliminaries 

Let .1R'1 be the space of n-dimensional column vectors x = Col (x i ,. .. , x,) with the 
norm II x II = max i << x (by the same symbol II II we shall denote the corresponding 
matrix norm), IE the n x n unit matrix and x : [0,co) -p JR the characteristic function 
of the set e: Xe(t) = lift E e and Xe(t) = 0 otherwise. 

We consider the problem (1), (2) under the following assumptions: 

(al) 0 = TO <i1 <r2 <... are fixed points with	7-3 = 00 

(a2) f and columns of A k (k = 1,. . . , rn) are integrable on each interval [0, b] 

(a3) hk: [0, oo) - JR are Lebesgue measurable with hk(t) t (k = 1,... , m) 
(a4) : 

00, 0) - JR'1 is Borel measurable and bounded 
(a5) B = sup, ' II B II <.00	,,	S	 S 

(a6) K i(t,$) > i} <	 S 

In hypothesis (a6) i(t, .$) is a number of points i-3 belonging to the interval (s, t). 
Hypothesis (a6) is satisfied, for instance, if r31 - r3 p > 0. Denote M = max {B, 1) 
and l=max{K,1}:	SS 

The solution of the problem (1), (2) is a function x '= x(t) absolutely continuous on 
the interval [rj _'j , T3 ), right continuous , in the' points r, satisfying equation (1) almost 
everywhere and satisfying the impulsive conditions (2).
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By Li] under the hypotheses (al) - (a6) the problem (i),(2) with x(Q) = a has one 
and only, one solution that . can be presented as 

	

X(t) X(t, O)x(0) + / X(t, s)f (s)ds - f X(t, s)	Ak(s)[hk(s)]ds' 

where o() = 0 if ( > 0. The matrix X(t,$) is said to be a fundamental matrix of 
the equation (1). For fixed s the matrix X(t,$) as a function of tis a solution of the 
problem  

(t) +> Ak(t)x[hk(t)].= 0	 (t > s, X(t) 

( < s;x(s) =E) 

x(r,) = B3 x(r, - 0)	(r, > s). 

Definition: Problem (1), (2) is said to be exponentially stable if there exist positive 
constants No and 8 such that for any solution x of the corresponding homogeneous 
problem  

±(t) +	A(t)x[h(t)] =0	 '(t > 0) 

x()= ()	 ( <0) 

x(Ti ) Bx(rj 0)	(j E IN) 

the estimate

11x(t)II	No exp(—/30 t)( sup II(s )II + II x(0 )II )	 (4)
\s<0  

holds. 
In the sequel we use the following function spaces on the half-line: 

L (1' p oo) is the Banach space of Lebesgue-meaurable functions x: (0, oo) - IRn 
such that x' is integrable (x is essentially bounded on [0, oo) for p = oo) on the 
semi-axis with the usual norm. The same notation will be used for matrix-valued 
functions. 

D (i p oo) is the space of functions absolutely continuous on the interval [r,_1, 
right continuous in the points r3 satisfying (2) and satisfying the inclusions x E L 
and 1 E L. This is a Banach space with the norm jj x jjD, = IIIIL + II X IIL, (see 
[1, 6]). 

Consider the following semi-homogeneous problem of problem (1), (2): 
Tn 

(t) +	k(t)x[hk()]	1(t)	(t E [0,	), x(t) E	) 

(<0;x(0)=0) , 

x(T)=B,x(r-0).
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Theorem 1 (see [1, 6]): Suppose the hypotheses (al) - (a6) hold and there exists a 
number 6 > 0 such that t — h k( t ) < 8. If there exists a number p, 1 <p < oO, such that 
for each function f E L the solution x of problem (5) is in D, then the fundamental 
matrix of problem (1), (2) has the exponential estimate 

II X(t , $ ) II 5 Nexp [ — 3(t - s)]	 (6) 

with positive constants N and 8. 

Conversely, the condition t — h,(t) < 8 and the inequality (6) imply exponential 
stability of the problem (1), (2) (see [1, 6]). 

We also need the following result from the papers [1, 61 . Consider the problem 

	

±(t) + ax(t) = z(t)
	

(t E [0,00), x(t) E lie) 

X(0) = 0
	

(7) 
x(r,) = B,x(r, — 0). 

Lemma 1 (see [i, 6]): Suppose the hypotheseá (aS) and (a6) hold and v = a - 
I in M > 0. Then for any function z E L the solution x = x(t) of the problem (7) is in 
D and can be presented as 

x(t) = (Wz)(t) = J exp [— a(t - s)] JJ B, z(s) ds	 (8) 
o	s<r,<t 

(we assume fJ9<. < t B, = En if the interval (s, t] does not contain points Ti). Besides, 
the fundamental matrix X(t, s) of problem (7) has the estimate (6) with N = 1 and 
/3=11. 

3. Perturbation on a finite interval or addition of new terms 

Suppose the parameters of problem (1), (2) change on a finite interval. We consider the 
problem

	

(t) + >jAk(t)x[k(t)] = f(t)
	

(t E [0,00), x(t) E lEt") 

	

x() =()
	

(e<°)	
(9) 

= E(f, - 0). 

Theorem 2: Suppose there exists a number b> 0 such that 

a) hk is measurable and hk(t) = hk(t) for t E (b, co) 

b) Ak is integrable on [0, b] and Ak(t) = A t (t) for t € [b, oo)
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c)=r and B=B, for r,>b. 

Let the hypotheses (al) - (a6) hold and let exist a number 6 > 0 such that t - hk( t ) < 6. 
If the fundamental function X(t, s) of the problem (1), (2) has the exponential esti-

mate (6), then the fundamental function X(t, .$) of the problem (9) has a similar estimate 
with positive constants N and 3 

Proof: Let s < b. The matrix )(t, s) as a function of t for fixed s is a solution of 
the problem 

±(t) +	Ak(t)x[k(t)] = 0	 (t E [s, no), x(t) e ffflXfl) 

(<s; (s)=En)	 (10) 

= E3 (F, —0)	(, > s). 

Let t > b > s. Then the problem (10) under the hypotheses ofthe theorem can be 
rewritten as 

(t) +	Ak(t)x( hk( t )) = -	A(t)i(h(t))	(t € [b, )) 

	

x() = 0	.	.	(. < b; x(b) =(b)) 

x(-,) = B(r3 — 0)	 (r, > b) 

where is a solution of the problem (10) for t	b and i() = 0 if e > b (here i is 
treated as initial function). The solution of this problem can be presented as 

X(t) = X(t, b)(b) - J X(t, s)	Ak(3)(hk(s)) ds 

where X(t, s) is the fundamental function of problem (1), (2). Since [h k (t)] = 0, for 
t>b+8,then	

b+6	 . . 

11x(t)II 	QIIX ( t , b)II + j IIX ( t , s )IQ ds 

where

Q = sup II(t)II 1 + sup	IIAk(t)II 
\	tE[b,b+6J 

By applying the estimate (6) of X(t, s) we obtain 
6+6 

II x ( t )II <QN exp { - a(t — b)] + QN J exp [— f3(t — s)] ds 

< QNexp {_13(t_b)] +	exp [—fl(t—b)]{exp(fTh) —1) 

= Qi exp [— f3(t — b)] 

<Q2exp[_fi(t_s)]
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with Q2 = Q 1 &sb , where the constant Q2 does not depend on t and .s. Thus for I > b 
and s < b we have the estimate 

(t,$)II	Q2 exp [- /3(t— s)]

Let now s < b and t < b. Denote 

11 = sup ii k ( t , s )II exp [8(t - s)]. 
O< i ' s <b 

Then

	

IIX(t,$)II	Nexp [- 3(t - .$)] 

for 0 < t,s < b. Finally, let i,s > b. Then X(t,$) is a solution of the problem (10) 
for s > b. Thus in (10) Ak = Ak, hk = hk, = Tk and B, = B,. Therefore 
X(i, s) = X(t, s), i.e. (6) is the exponential estimate of X(t, s) as well. U 

Consider the following perturbation of the problem (1), (2): 

(t) +Ak(t)x[hk(t)]	A(t)x[(t)] = f(t)	(t E [0, oo), x(t) E	) 

	

x (e) =,()	(<0)	
(11) 

±(-j= B,X(T, - 0). 

We suppose that the hypotheses (al) - (a6) hold, the columns of Ak are integrable on 
each interval [0, b] (b > 0), the functions h k are Lebesgue measurable, hk(t) < t and 
there exists a number S > 0 such that I - hk( t ) < S. By X(t,$) we again denote a 
fundamental matrix of the perturbed problem (11). 

Theorem 3: Suppose that in addition to the above assumptions for the fundamental 
matrix X(t, s) of the problem (1), (2) the estimate (6) is valid. There exists a number 
77> 0 such that if

r 

	

limsupf	ILA (s )II ds <ii,	 (1.2) 

then the fundamental matrix (t,$) of the perturbed problem (11) has an exponential 
estimate of the form (6), with certain constants N >0 and fi> 0. 

Proof: For a fixed s the function X( . , s) is a solution of the problem 

(t) +	4k(t)x[hk(t)]	Ak(t)x[hk(t)]	(t E (0,	), x(t) E	flXfl) 

x() = 0	 ( < s; x(s)= E) 

x(r,) = B,x(r —0)	. (rj > s).
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By applying the solution representation (3) of problem (1), (2) with s being an initial 
point, we obtain

(t, s)	X(t, s) - I X(t, )	Ak(r) [k(r ), s] dr. 

Therefore the estimate (6) gives 

II .. ( t , s )II ^ N exp [ - fi(t - s)1

r 

+ NJ exp [ -	- r)]E IIAk(r)II r 
max II( s )II dr. 

-6< 
S 

Hence 

max II X (e, $)II Nexp [- 0(t - . -

r

max II . (e, s )II dr. + NJeXP [-	- T - (5)] i IIAkTII r-6<<r 

If we denote y(t) maxj_6<<t II x (e, $ )II, then we obtain the inequality 

y(t) N exp(/9(5)exp [ - f3(t - s)] 

+ N exp(flS)J exp [- (t - r)]	II Ak(r )II y( r ) dr. 

By applying the inequality (2.5) from [101 we obtain the estimate 

	

y(t) Nexp($6)exp [- $(t - s)] exP(NexP(5)JE I l Ak( T )II.dr) .	(13) 

$ k=I 

Let (12) be satisfied. Then, for a certain b > 0, 

r 

sup >i: II A ( r )II dr <,.	 (14) 

By Theorem 2 the functions Ak may be changed on the egment [0, b] and it does not 
influence the existence of the exponential estimate for X(t, a). Therefore we assume 
that insteadof (14) we have the inequality	. 

r

iiAr ii dT	 (15)
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Then (13) and (15) imply the estimate 

Nexp[5 + N?l exp(fTh)] exp{_[fl - Niexp()](t - s)}. 

Therefore if 0 < i < I exp(—j95), then the fundamental matrix X- ( t, s) of the problem 
(11) has an exponential estimate of type (6) with the constants 

N = N exp [ + Nij exp(S)]	and	= 0 - N exp(8. 

The proof of the theorem is complete. I 
Remark: The scheme of the proof is similar to the proofs of the same assertions 

for delay differential equations without impulses (see, for example, [14]). 

Theorem 3 immediately implies the following two assertions. 
Corollary 1: There exists a number i > 0 such that if the inequality 

	

limsup	II A k( t )II < 
k=1 

holds, then the estimate (6) for the fundamental function of problem (1), (2) implies a 
similar estimate for the problem (11). 

Corollary 2: Suppose that at least one of the conditions 

lim sup	 II Ak( t )II =0	and	JEIAkTIIdT <00 
k=1	 k=1 

hold. Then an estimate of type (6) is valid either for both the fundamental matrices of 
problem (1), (2) and problem (11) or for none of them. 

4. Stability, with respect to perturbations of delay 
In this section we apply Theorem 1 using the following scheme. An original and a 
perturbed equation are transformed into operator equations Tz = f and Tz = f in 
L 1 , respectively. Here if the original equation is exponentially stable, then the operator 
T: L 1 -+ L 1 is invertible. Then for the norm IT - T II being small enough the operator 
T L 1 .-* L 1 is also invertible. If T is invertible, then Theorem 1 gives exponential 
stability of the perturbed equation. 

Consider the following perturbation of the problem (1), (2): 

±(t) +	A k(t )x k(t)] = f(t)	(t E [0,00), x(t) E	) 

(e<o)
	 (16)

x(7-3 ) = B,x(73 - 0).
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We assume that the parameters of the problem (16) also satisfy the hypotheses (al) - 
(a6).

Further we need a function that is often used when investigating equations with 
compositions x[h(t)] (see [2, 7, 11 - 13, 18]). Let h : [O,) — JR be a Lebesgue 
measurable function. We assume that for any c > 0 

sup nies h'(e) 
eC[Oc]	mes e 

where mes e is the Lebesgue measure of the set e, mes e > 0. We define a set function 
pc(e) = mes {h 1 (e) fl [O,c]} for a Lebesgue measurable set e C [0,c]. The measure 

(e) is absolutely continuous [13] with respect to the Lebesgue measure, therefore by 
the Radon-Nikodm theorem there exists a function a',, E L 1 [0, c) such that 

= j(s)ds. 

Let e = [0,t] C [0,c]. Then 

mes{h'[O,t]fl[O,c]} = J(s)ds. 

Consequently,
=	mes { h' [O, t] fl [0,c]}.	 (17) 

dt 

The basic property of this function is expressed in the following substitution formula 
(see [11 - 13]) valid for x e L(0, c): 

J
x(h(s))ds = I x (s),u c (s) ds	for all e C [0, C]. 

h — ' (e)fl[O,c]	 e 

If h is a monotone function, then the function ' is easily calculated and coincides 
with the derivative of the inverse function h. Properties of the function and its 
application to the investigation of delay differential equations are presented in the works 
of M. Drakhlin [11, 121. 

Denote
4,(t) =	mes{hj1[0,t]}. 

Theorem 4: Suppose that for the problems (1), (2) and (16) the hypotheses (al) — 
(A). hold, Ak E L, II B,II ^: b; > 0 and there exist numbers cp,6 > 0. such that 

p<rj —rj_ i .<a, .	t—.h(t)8, . t—ht(t)<5 

and
it' = naxlim sup p',(t) <00. 

k	i>o
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There exists a number L > 0 such that if 

max urn sup lI Ak (t ) - 4k(t )M < A and max lim sup I hk( t ) - hk(t) <Lx, 

then the exponential estimate (6) for the fundamental function of the problem (1), (2) 
implies a similar estimate for the fundamental function X(t, s) of the problem (16). 

Proof: Without loss of generality we can assume that rn = 1 and, by Theorem 2, 

	

IlA(t)-A(t)I< A	and	h(t)—(t) I < A S 

for any t E [0,). Let ii = a - 1mM > 0. We substitute x = Wz, where the operator 
W is defined by (8), in the semi-homogeneous problem (5) and the corresponding semi-
homogeneous problem (16) ( 0 and x(0) = 0). After denoting by £ and £ the 
left-hand sides of the equations (5) and (16), respectively, we obtain (see Lemma 1) 

(/Wz)(t) = z(i) - a J exp [- a(t - s)] II Bz(s) ds o	3<TI<t 
h(t)	 (18) 

+ A(t) f exp { - a(h(t) - s)]	JJ B1z(s)ds 
o	 s<r,<h(t) 

and

(LWz)(t) = z(t) - a J exp [- a(t - s)] fi Bi z(s) ds o	3<r<t 
5 5	

0	 (19) 

+ A(t) f exp [- a(i(t) - s)J H Bz(s)ds 
o 

where a+ max {a,0}. 
Consider the operator Hz = (LW—IW)z; By Lemma 1 the operator W: L 1 - D? 

is invertible, where D? = {x E D 1	'x(0) = 01. The exponential estimate of the 
fundamental function X(t,$) of problem (1), (2) implies that the operator £ : D? - 
is invertible (see [6]). Therefore the operator LW L 1 - L is also invertible. Thus it 
is sufficient to prove that

lirnIIHIIL,....L, =0
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for obtaining the invertibility of the operator LW: L 1 —+ L for small A. To this end 

(Hz)(i) = A(t) f ( exp [- a(h(t) — s)] fl B1 - exp [- a(iz(t) - s)] [I B1 ) z(s) ds 
,<r<h(t) 

h+(t) 

• A(t) f exp [- a(i(t) - s)] fl B1z(s)ds 
i<r<ii(t) 

h(i) 

• [A(t) - A(t)] J exp [ - a(h(t) - s)]	JJ Bi z(s) ds. 

a 
The operator H can be written as sum 

H. H1 + H2 + H3 

and we will evaluate the norms of the summands H 1 , H2 and H3 in L1. 

Step 1: For H1 we have 

oo h(t) 

II H 1 Z IIL,	IIAII	f	f exp [- a(h(t) - s))] fi B1 
o	o s<r<h(t) 

- exp [- a((t) - s)}	fJ	B1II z (s )II dsdt 
s(r, <h(t) 

IIAII	f) exp [- a(h(t) — s)] fl B1 
o	a ,<r,<h(i) 

- exp [- a((t) —s)]	fi	BjII z ( s )II dsdt. 
s<r,(1(i) 

By inverting the order of integrating we obtain 

II H I Z IIL,	IlAIl	f ( f exp [- a(h(t) — s)J	fl	B1 
o 

ex	[- a((t) — s)]	H	B1di II z ( s )U ds.. 
/

Let

(s) =	èxp [- a(h(i) - s)] H B1 - exp [- a((t) — s)] H B1dt. 
•	s<r,<h(t) 
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We assume A < p. Denote

r1_1 < h(t) < r, 

e= tE[s,00) and 

r1 _1 < h(t) <r 

<h(t) < r <h(t) < r+i 

e'= 

I t E [S' 

00) or 

r_1 <h(t) <r < h(i) < rj1 

Denote e' = Ue and e" = U 1 e. Then mes {e'fle"} = 0 and A < p implies mes {[s, )\ 
e' U e"} = 0. Hence 

If t E e', then

therefore by Lemma 1

(s)=f+J. 

fl B= fi B, 
s<r,<h(t)	s<r,<h(t) 

	

Jf 
exp [- a(h(t) - s)J - exp [- a((t) - s)]	H Bdt 

.<r.<h(t) 
CO 

<fexp [ah(t)_ h(t)I] -1 1exp [- a(h(t) - s)]	fi Bdt 
3 

[exp(a) - 1] fexp[ - v(h(i) -	dt
	 (20) 

[exp(a) - 11 Jexp [- zi(t— s)] exp [v(t - h(t))] dt 

exp(S)[exp(aL) —1]. 

If t E e, then the products [J3<r<h(t) B, and fl,< . < h(j) B may differ by one 
factor only, precisely, by Bk . Denote 

p(i) = max [h(t), h(t)]	and	(t) = mm {h(t), (t)] 

I Bk	if h(t) > h(t)	 -	ET,	if h(t) > 
Ck . S	 and	ck=S 

I. E	if h(t) < h(t)	 I Bk	if h(t)	h(t).
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Then 

fexp(as) f exp [- ah(t)] ff B - exp [- aii(i)} ff B, dt 
s<r.(h(g) 

<exp(as) f exp ( - ap(t)) exp [a(p(t) -

	

•	(21) 

	

- exp [a(p(t) -	 [f Bidt 
3<r(5(t) 

	

<(B+ 1)ex(as)exp(aL)fexp[_ap(i)]	fl Bdt. 
s<rj^13(t) 

The set e can be written as 

Ik = It e [s,00) (t) <Tk < h(t) or h(t) <Tk <i(t)}. 

Since the inequality Ih(t) - h(t) < A implies h(t) > h(t) - A and h(t) > h(t) - A, we 
have

e c {t E [s,) h(t) - L <Tk < h(t) or h(t) < Tk <h(t) + 

= {t E [s,) h(t) - A <r < h(t) +}	 (22) 

= {t E [s, 01) Tk - A < h(t) < Tk + 

The formulas (21) and (22) give 

J (B + 

x Jexp [—ap(i)1X[rk_A,rk+A)(h(t))	H Bdt
3	 ^^ .<r<(t)	 (23) 

(B + 1) max {B }exp(as)exp(a) 

C 

X u rn fexp [ - ah(t)]X(Tk_,T+AJ(h(t))	fl BMdt. c—.00

	

3	 3<7, <h(1)	II 

where X(,3] is the characteristic function of the segment [t, s]. By applying the Radon-
Nikodm theorem to the integral on the right-hand side of (23) and by Lemma 1 we
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obtain (we recall that 4 is defined by (17)) 

f<(B+1) max {B}ex(as)exP(ai) 

X urn f exp(—at)1,	 fi B d 
h(3,c)fl(O,cl

	

	
3<rj 

Tk + ' 
<'(B+1) max {Bflexp(aA) J éxp(—a(t_s))M fl BMdt 

	

rk II s<r,<i	II 
rk 

<p'(B + 1)max {B fl exp(a) I exp(—v(t - s)) di 
rk 

<1(B + 1)max {B, I exp(vs)exp(a) exp( —vrk)[exp(v) - exp(_v)J. 

Therefore

J'(B+1) max {B} 

x exp(ai) 1 [exp(vL) —exp(—vL)j exp(vs)	exp(—vrj). 
7• , >3 

The inequality T - 7- _1 ^! p implies (T, - s) - (r_ 1 - s) ^: p, hence r - s > (i - k)p, 
where Tk_I < S <Ti. Thus 

exp(—v7-1 ) = exp(—vs)	exp [- u(7- - s)] 
Tj>S

exp(—vs) Eexp [- vp(i - k)] 

1 
= exp(—VS)1 - 

exp(—vp) 

Hence

< '(B + 1)max{B, 1} exp(az)[exp(iiL) - exp(_vL)]
(24) -.	 - exp(—vp)] 

ell 

By comparing (20) and (24) we obtain IIIIL - 0 as A —* 0. Since 1H111L1..L1 
II A IILj I(I IIL,, then lirn....0 II H1IIL1_Lj = 0.
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Step 2: Now we estimate the norm of the operators H2 . To this end 

h(i) 

IIH2zIIL1	f IIA(i)II	f exp [ — a((i) — s)J	H	B Jz(s)II ds di 
0	 1^ s<r,<h(t) 

II A II 7)exp [— a((t) —	 H Bdsdi 
0 0	 3<T,<h(i) ^^ 

where the functions P and p are defined above. By inverting the order of integrating we 
obtain 

II H2 Z IIL1	II AIILJ(f exP[ — a((t) — s)]x((L)(j))(s)	fi Bi dt) II z ( s )II ds. 
0	s	 [<ri <h(t) 

Denote

(s) = Jexp [— a((t) —	 fi Bdt. 
s<r<h(t) 

As Ti(i) — h(i)I < A, then [(t),p(t)] C [h(i) — A, h(t) + ]. Therefore 

X[(t),(t)](8)	X[h(c)-A,h(t)-4-1(.S) = X[_3^A)(h(t)). 

Hence

(s) max {B, fl exp(a) 

X iirnJexp [— a(h(i) —	 H Bdt. 
C100  

By applying the Radon-Nikodm theorem we obtain 

(s) max 
I 
B I exp(a) 

X lirn	f	exp [— a(i — s)] x(3—,s+A)(i)I1(i)I
L<ri<t

H B dt. 
h((s,c])fl[O,c]  

Consequently

s+A 

(s)	'max{B}exp(a) f exp [-v(t -s)] dt 

= max {B fl ! [exp(VA)_ exp(_v)] exp(a).
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Thus

II H2IIL1_Li	II A IIL' Max I
B
 I 

[exp() - exp(_)] exp(a). 

Hence lima- 0 II H2IIL,_.L, = 0. 

Step 3: Now we shall evaluate the norm of the operator H3 in L 1 . To this end by 
applying Lemma 1 

CO 

H3zIIL1	J A(i) - A(t) I I J exp [- a(i(t) - s)]	H	II B II II z ( s )II dsdt 
o	 o	 s<r<h(f) 

IA - AML J)exp [- v((t) - s)] Ilz(s)II dsdt 

00 t 

= IA - AIIL Jf exp [(t -	exp [- v(t - s)] II z ( s )II dsdt 

00 t 

	

cxp(6) I f exp [-	- s)] II z ( s )II dsdt 

= Aexp(vâ) J (Jex [-	- s)] dt) II z (s )II ds 
0	300 

—Lexp(Li)IIzIIL LI 

Hence IIH3IILI-.Li < Aexp(ii5) and therefore	11H3 IlL, - .L, = 0. 

Now the inequality 

II l' IIL,-. L,	II H1IIL1_.Li -+• II 1 21ILi-Li -f lI'3IILi-..L1 

implies
lim IIHIIL,_L1 = 0. —0 

Therefore for A being sufficiently small the operator LW : L i - L i is invertible. Thus 
for such i the equation £Wz = f has a solution z e L 1 , if f E L 1 . By Lemma 1 the 
solution of the semi-homogeneous problem (16) x = Wz is in D 1 . By Theorem 1 the 
fundamental matrix of problem (16) has an exponential estimate. U 

Consider two special cases of the problem (1), (2). First let (1) be an ordinary 
differential equation, i.e. m = 1 and h(t) = t. Since in this case = 1 Theorem 4 
implies the following assertion.
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Corollary 1: Consider the problems 

x(t) + A(t)x(t)	1(t)	(t e [0, co), x(t) E 1W1)
(25) 

x (r ) = B3 x(r, - 0) 

and

	

(t) + A(t)x[ii(t)] = f(t)	(t E [0, ), x(t) E liv) 

	

x (e) =,()	(e<o)	 (26) 

z(r,) = B3 x(r - 0). 

Suppose that for these problems the hypotheses (al) - (a6) hold, A E L, II B PI ^! b > 0 
and 0 < p <r3 - 73 _ 1 <o There exists a number A > 0 such that if 

lim sup II A ( t ) - A(t) M < A	and	lim sup (t - h(t)) < A. 
t-00	 t-00 

then the exponential estimate (6) for the fundamental function of problem (25) implies 
a similar estimate for the fundamental function of problem (26). 

The second special case is a delay differential equation without impulses. The result 
obtained is new for this equation. 

Corollary 2: Consider the problems

M 
±(t) + >j Ak( t )x [ h k( t )] = f(t)	(t E [0, oo), x(i) E 1R) 

k=i	 (27) 
x (e) = ()	(e<o) 

and
m 

	

(t) + >j A k( t )x [ ii k( t )1 = f(t)	(t E [0, ), x(t) e JR") 
k=1	 (28) 

	

x (e) = ()	( <0). 

Suppose that for these problems the hypotheses (a2) - (a4) are satisfied, A k E L, there 
exists a number 8 > 0 such that t - h k( t ) < S and t - h k( t ) < 8, and suppose th'at 
p' < oo, ' defined in Theorem .. There exists a number A > 0 such that if 

max lim sup II Ak ( t ) - Ak(t)M <A and max urn sup hk(t) - 4(t) <A, 

then the exponential estimate (6) for the fundamental function of problem (27) implies 
a similar estimate for the fundamental function of problem (28).
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