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Abstract. In this article a contribution to the so-called limit point bifurcation is given. In 
the paper [4] by Decker and Keller a bifurcation or branching phenomenon which they call 
multiple limit point bifurcation has been shown for equations T(A,x) = 0 with real parameter 
A. If one has a solution (A*, x') of equation T(A,x) = 0, then one speaks from a limit point 
if the Fréchet derivative T(A°,x°) is singular and TA(A°,x°) is not in the range ofT(A°,x°). 
Here a method will be given, which generalizes the notion of limit point to that what is called 
(c,n)-limit point. This makes it possible to handle equations of the form T(u,x) = 0 which may 
have u as a Banach space valued parameter. This equation with singular operator T(u°,x°) 
may be "embedded" in a larger system with a linearization, which is non-singular and hence 
to which an implicit function theorem can apply. An estimation for the number of branching 
solutions of this new system is given. 

Keywords: Bifurcation theory, limit point bifurcation, branching solutions, resultant, Ham-
merstein equation 
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1. Introductory remarks 

A constructive method for determining paths or arcs of solutions around a bifurcation 
element of a general operator equation, say T(u, x) = 0 (see (2.1)), operating in a 
Banach space is studied. Often it is possible to interpret x as a variable characterizing 
the state of a system and u as a control. 

In bifurcation theory one is trying to answer the following question as completely 
as possible: Let (u 0 , x0) be a solution of the equation T(u, x) 0. Which states x 
are possible, if the parameter u varies in any neighbourhood of u°? Two different cases 
are considered: Either there is exactly one solution element (u, x) close to (u 0 , x0) for 
all u belonging to a sufficiently small neighbourhood of u ° or not. 

In the last case, the Ljapunov- Schmidtreduction can be applied for solving such 
problems. Historically (see [12]) this procedure was used to reduce certain infinite-
dimensional problems to one of solving finitely many non-linear equations with finitely 
many real or complex variables. 

Today this is a useful tool in analyzing non-linear equations depending upon a pa-
rameter. An example is given by the rotation of a viscous fluid between concentric 
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cylinders, where critical rotation speeds lead to the formation of so-called Taylor vor-
tices. This is a bifurcation problem for the Navier-Stokes differential equation. Other 
sources of bifurcation problems are encountered in determining the critical forces for the 
deformation of rods, plates and shells and in investigating the critical velocities at which 
traveling waves arise in fluids. Chemical reactions involve bifurcation phenomena, such 
as those leading to sudden color changes. 

Solving these so-called branching equations, which contain all informations about 
the behaviour of solutions of the original equation is a difficult problem in general. It can 
involve for example the methods of function theory (Puiseux expansions, Weierstrass 
preparation theorem), of algebra (elimination theory), of algebraic geometry (Bezout 
theorem, generalized Morse lemma) and of differential topology (singularities of maps, 
transversality theory). 

• In the paper of Decker and Keller [4) the branching of solutions of an equation of 
the form

T(A,x)=O	 (1.1) 
with A E .1R, x E B2 and T(A,x) E B3 is studied in Banach spaces. Here (A 0 , x 0 ) is a 
solution element of equation (1.1) and T. (A 0 , x°) is a Fredholm operator of index zero 
and dim N(T(A°,x°)) m> 0, where N(A) denotes the kernel of an operator A. 

In [4) a solution element (A°, x°) of equation (1.1) is called limit point, if TA(A°, x°) 
R(T(A°, x0)), where R(A) denotes the kernel of an operator A. In order to prove the 
existence of solutions of equation T(A, x) = 0 in a neighbourhood of (A°, x°) a so-called 
limit point bifurcation equation, which consist of equations of the form 

	

A(e)e+id=0	 .	(1.2) 

	

eTe = 1	 (1.3) 

must be studied. Here

A(e) = (A 1, (e)) = ( aijk ek) 

with
ak = aiik = ( k Tzz" ("° x ° )(, 92j)) 

where	E N(T(A°,x°)) (i,j = 1,... ,m), ej E R, 

d	(d1 ,. . . ,dyn )T with d1	(O i 	V17 E N(T(A°,x°)) 

and ,ç E JR is fixed. 
In the case that (e0, r°) is an isolated solution of system (1.2) and (1.3), that is if the 

Jacobian matrix of the system, evaluated at (e0, no), is non-singular, there is a solution 
arc of equation (1.1) through (A°, x0). The proof is an application of the blowing-up 
technique in combination with the implicit function theorem. The equations (1.2) are 
m equations in (m + 1) unknowns and if one puts ij = (2, then the equations (1.2) are 
homogeneous of degree two and thus admit rays of solutions. To avoid this and to fix 
a definition of a parameter c one adjoints the normalization equation (1.3). Then the 
Bezout theorem (see [13/Vol.II: Sec. 89]) tells that the equations (1.2) and (1.3) can
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have at most 2 isolated real roots. Each such isolated root of equations (1.2) and (1.3) 
generates a locally unique solution arc. 

Here, under some other conditions concerning the operator T, a generalization of a 
method due to Decker and Keller [4] is considered. Also, this method partially includes 
equations which are mainly investigated numerically by Böhmer and Mei (see [1, 10]). 
This generalization also gives the possibility of representing all solutions in a neighbour-
hood of a so-called (cr, n)-limit point as a one-parameter family, where the parameter is 
a new Banach space parameter, called v E B1. 

In Section 2 basic facts concerning the (ct, n)-limit point are given. The parameter 
space B 1 (a Banach space) may have a dimension dim B 1 2 1. For the special parameter 
space B1 = JR and B2 = B3 it will be shown that the definitions of limit point and 
(, n)-limit point are in correspondence. 

In Section 3 it will be shown.that for a (0,n)-limit point (u0,x0) of equation (2.1) 
there exists a solution branch through (u0, x°). A representation of the solution branch 
is given. The proof uses a further equation, which will be added to the equation (2.1) 
such that the implicit function theorem works. 

In Sections 4 and 5 the main results are presented and bounds on the number of 
solution arcs through the (0, n)-limit point (u°, x0) of equation (2.1) are given for the 
cases n = 1 and n = 2. For n = 1 an application of the classical Morse lemma is used 
and for n = 2 a discussion of the number-of solutions is carried out by means of the 
resultant theory. 

Section 6 contains an example of a Hammerstein equation, which under certain 
conditions has only a (0, 1)-limit point (u0, x°) of equation (2.1'). 

2. Assumptions and definitions 

Let B2 (i = 1,2,3) be Banach spaces over K, the set of real or complex numbers. The 
equation considered is

T(u,x)=0	'	 '	 (2.1) 

where T : B 1 x B2	B3 . Throughout the paper let (U 0 , X°) e B 1 x B2 be a solution
element of equation (2.1), that means T(u°, x0) = 0. 

lithe Fréchet derivative Tz(uo,x0) is invertible, that is T (u0,x0) E L(B3,B2) 
where L(B3 , B2 ) means the space of all linear continuous operators from B3 into B2, 
then by the implicit function theorem equation (2.1) can be solved uniquely for x in a 
neighbourhood of (u 0 , X0) (see Definition 2.1). If on the other hand dim N(T(u°, x0)) ^! 
1, then it is possible that there is a bifurcation at (u°, x0) (see Definition 2.2), if u passes 
no.

The following two definitions are adapted to the niethods, which are used in this 
paper.	 0 

Definition 2.1': Suppose f D 1 C B 1	B 1 x B2 is a map with (open) set D 1 0.
The map f is called a solution arc or a continuation to the solution element (u 0 , x0) if 

T(R(f)) = 0	with R(f) = {f(v) = (u(v),z(v)) E B1 x B21 v E D1}
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and
(u(v),x(v)) — (u°,x°)	as v - v0 and v° E D1 

(including the map v '—p (v,x(v)) with u(v) v). 

Definition 2.2: A solution element (u0,x0) of equation (2.1) is said to be a bi-
furcation clement if there are sequences (u, x,,), (Un,yn) C Bi x B2 for which the 
conditions 

(i) T(u n, xn) =T(u n, yn) =O , x ,,yn for all nEW 

(ii) (u, x)	(u", x') and (Un,yn) — (u ' , x ' ) as n — 00 

are satisfied. 

This last definition contains the notion of perpendicular bifurcation. A solution 
element (u 0 , x0) of equation (2.1) is said to be a perpendicular bifurcation element if 
there is a sequence (x) C B2 ,x 54 x° tending to x°, such that T(u°,x) = 0 for all n 
(set u,, = u°, x,, X°,Yn 0 x° for all n E .&?V with y,, — x° in Definition 2.2). In order 
to prove that a solution element (u°, x°) is a bifurcation element it is sufficient to show 
that (at least) two distinct sequences with properties (i) and (ii) exist. 

.From now on, the following assumptions on T are made to investigate the previous 
questions concerning the bifurcation behaviour of equation (2.1). 

(Al) T E Cc[u0,x0] where k = 1,2,..., k = 00 or k = w, i.e. T is k-times Fréchet 
differentiable and the kth derivative is continuous in a neighbourhood of (u°, x0), 
T is Fréchet differentiable of any order or T is analytical, respectively. 

Analyticity means that T is represented as an absolutely convergent power series in the 
variables u and x in a neighbourhood of the point (u 0 , x0). 

Definition 2.3: Let B2 and B3 be Banach spaces over K. An operator U: B2 '—p 
B3 is called a linear Fredhoim operator if U is linear and continuous and both the 
dimensions of the kernel dim N(U) and of the range codim R(U) are finite. The number 
md U = dim N(U) - codim R(U) is called the index of U. 

For (°, x°) to be a bifurcation element of the equation T(u, x) = 0, it is necessary 
that the partial Fréchet derivative of T (at (u°, x0) with respect to x) denoted by 
T = T(u°,x°) E L(B2 ,B3 ) does not possess a continuous inverse defined on B3. 
Therefore we make the following assumption. 

(A2) T E L(B2 ,B3 ) is a Fredholm operator with index indT1 = 0. 

Let the elements p1,... ,Pn E B2 be such that N(T) = span {pzl i = 1,... ,n} and let 
the elements q,.. . , E B (the dual space to B3 ) be such that N(T) = span { q fl i = 
1,... ,n} with t E L(B, Bfl. According to the Hahn-Banach theorem, it is possible to 
complete the systems of basis elements pi and q (i, j = 1,.. . , n) to two biorthonormal 
systems, i.e. we can choose elements P*k E B and qi E B3 such that 

(Pi,P) = 5ik	and	(qjqj*) =
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for all z,j,k,l_— 1,...,n. 
In the next section, a procedure called parametrization method will be developed. 

After transition from the equation (2.1) to a system of equations . including a new pa-
rameter, it is possible to characterize all continuations in a neigbourhood of a special 
kind of generalized limit points. For this, one needs the following explanation. Set 

a dim (N(!'.') fl N(T))	with	L(B,B) and t: e L(B,Bfl 

where 7',. = T,.(u°,x°) denotes again the partial Fréchet derivative at the point (u', x') 
with respect to u and T,. E L(B,B) the adjoint operator to T. E L(B 1 ,B3 ). Because 
of assumption (A2), it holds 0 a <n since N(T,.)flN(Tfl c N(T:) and dim N(T) = 
72.

Definition 2.4: Let Tr be a Fredholm operator with index zero and n 1. Then 
the solution element W, x') of equation (2.1) is called (a,n)-limit point if 0 a < n — i. 

The following lemma describes the special case of (0, n)-limit point and the case 
a = 72. 

Lemma 2.5: Let T E Cc[u0,x0], k 2 1 and let assumption (A2) be fulfilled. Then 
the following statements are true: 

(1) The solution element (u0, x°) of equation (2.1) is a (0, n)-limit point if and only 
if the elements T,.*q (j = 1,.. . ,n) are linearly independent. 

(2) The condition a = 72 is fulfilled if and only if t,.*q,* = 0 (i = 1,.. . , n). 

Proof: Statement (1): Let a = 0. Suppose the elements i',q (j = 1,... ,n) 
are linearly dependent. Then the equation	c3T,.q' = 0 is satiesfied with c3 such 

that >' 1c1 > 0. Because >' c,T,.q = 0 it follows that	cjq) = 0 and
therefore Fn I cjq E N(T,). The linear independence of the elements q,  

yield 0 $	ciq, E N(T). Therefore >' cq E N(t,) fl N(t). That means
a 2 1 which is inconsistent with a = 0. 

Let now the elements St.* q (j = 1,. . . , n) be linearly independent. Suppose a 2 1. 
Then there is an element q E N(i',) fl N(t) with q	0 and q,*, =	d,q, 

where d3 > 0. Because q,*, E N(T,fl it follows 0 =	= >'= t; and
d, = 0 (j =1, . . . , n), that is q,*, = 0. This is a contradiction. 

	

Statement (2): Let a = n. Then there are n linearly independent elements	(j = 
1,... ,n) with span { q ,I j = 1,... ,n} = N(t,.)flN(i'). From	=dq (j = 
1,. . . , n) with det (d3 k) 5k 0 it follows that q, =	dk1q	(i = 1,... , n) and therefore

= 0 (j = 1,... ,n). 
Let T,.'q, = 0 (j = 1,...,n). Then it follows that q e N(T,fl fl N(Tfl (, = 

1,... ,n), that is a n. On the other hand there is always a <n U 

Remark 2.6: Equivalently a (0,n)-limit point is described by dim span {T,q j = 
1,...,n}=ri,n2l. It holds a=n if and only if Tq0 for jl,...,n. 

Now the question stands on a relation between the two given definitions limit point 
and (a, n)- limit point. The following lemma gives the answer.
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Lemma 2.7: Let B 1 = JR and B2 = B3 , and let the assumptions (Al) and (A2) 
be satisfied. Then the condition T0 (1) V R(T) is fulfilled if and only if the solution 
element (u 0 , x0) of equation (2.1) is an (a, n) -limit point. 

Proof: The condition T(i) R(T) is sufficient, since there exists an index j° E 
{1,. . . ,n} with (T(1),q 0 )	0. This means that Tq,!0	0 and therefore q0 
N(i':)nN(t:), that is a n — i. 

Conversely, let (u 0 , x0) be an (a, n)-limit point, that is a n - 1. Then there exists 
again an index j° E {1,.. . ,n} with Tq,!,, 0 0 and Tq 0 = 0. Since B 1 = JR it follows 
0 0 (1,q3 ,)	(t(1),q 0 ). This means that T0 (1) R(T) I 

For this reason it is clear that the notion of limit point used here generalizes the 
notion of limit point in [4] to parameter spaces of any dimensions. 

3. Construction of a continuation at a (O,n)-limit point 
For the following investigation let the assumption 

(A3) (0, x ' ) is a (0,n)-limit point of equation (2.1) 

be fulfilled. 
Now, all examinations of the equation (2.1) are done near a (0, n)-limit point. The 

existence of smooth solution arcs through (u0, x°) will be guaranteed by an application 
of the implicit function theorem. This is a common approach in bifurcation theory, 
the only problem being that of setting up an appropriate equation to which the implicit 
function theorem can apply. The choice here is motivated by the definition of the notion 
(a, n)-limit point and the special choice of the Schmidt operator U (see (3.2) below). 

To the linearly independent elements t.* q,* E B (j = 1,... ,n) the biorthonormal 
elements ü 1 E B 1 (i = 1,.. . ,n) can be selected. Any biorthonormal element system 
can be chosen. Then the relations 

	

(, i:q;) = bij(i,j = 1,.. . ,n)	 (3.1) 

are true again. Since the elements tfi i are biorthonormal to the elements q,* the 
Schmidt operator U can be set up in the form 

U = —7 +	 (3.2) 

It can be shown that the linear continuous operator U is continuously invertible (see, 
e.g., [15: p. 377] or [9: Chapter 6.2)). 

Now it is possible to derive a system of equations which describes all continuations 
of the equation (2.1) to the solution element (u°, x°). One considers an operator S 
B 1 x B1 x B2 - 113 x B which is defined as 

S(v,u,x)= {	 T(u,x) -	
}	

(3.3) —v + U - U° +	1(x x0,p,)u2
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together with the equation
S(v,u,x) = 0. (3.4) 

Here an equation of the form (2.1) with singular operator t1 will be "embedded" in a 
larger system with S whose linearization S( 0 ,) is non-singular and hence to which an 
implicit function theorem can apply. Therefore this gives all solutions of the equation 
(3.4). The second term in (3.3) is different from one in [4: p. 423/Formula (3.3)]. The 
connection of the solution elements of equation (2.1) with those of equation (3.4) is as 
follows. 

Lemma 3.1: Suppose that the map T is of type Ck with k > 1 and the assumptions 
(A2) and (A3) are fulfilled. Then the following statements are true: 

(1) Every solution element (u', x') of equation T(u,x) = 0 generates with v' = 
-	. u I —u 0 + fl,1(x, —x ,p 1 )u j a solution element of equation S(v,u,x) = 0 and (u', x ) - 

(u 0 , x0) implies (v', u', x') - (0, u°, x0). 

(2) Conversely, every solution element W, u', x') of equation S(v,u,x) = 0 generates 
a solution element (u', x') of equation T(u,x) = 0 and (v',u',x') -+ (0 , u0 , xo ) implies 
(u', x') -^ (u°, x0). 

The proof of the lemma is a straightforward calculation. Properties of the operator 
S will be summarized in the next lemma. 

Lemma 3.2: The operator S defined in (3.3) has the following properties: 

(1) Suppose that the map T is of class C k [u 0 , x 0 ] . Then S is in C k [0 , u0 , x0 ] with 
k>1.

(2) Suppose that the assumptions (Al), (A2) and (A3) are fulfilled. Then the oper-
ator S()(0,u°,x°) E L(B i x B2 , B3 x B 1 ) has a continuous inverse. 

Proof: Statement (1): This is immediately clear because the operator (v,u,x) 
- is —v + u - u 0 + , 1 (x - x0 , p1• ) u1 l and continuous and therefore of class C k 

k > 1. The map T is in accordance with assumption (Al) of class Cc. This means 
SE Ck[0,u0,x0]. 

Statement (2): The operator S(,)(0,u°,x°) is injective and maps B1 x B2 onto 
B3 x B 1 . This can be seen as follows. Let the element (z, w) E B3 x B 1 be fixed. The 
system

T 

	

00--\	 u+T±) 1	zi 
(ux) ,U ,X u,x) 

= u+E(Puj =	 .5 

where i and t stand for the corresponding increments has the unique solution 

	

u = w +	(y - tw,q)ü	 (3.6) 

= U'(T,w - y)	 (3.7) 

where U is the inverse Schmidt operator. Therefore S)(0, u ° , x) is calculated 
and by means of the Banach inverse mapping theorem, the operatorS X) (0,u 0 ,x 0 ) is 
continuous again U
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Now all preparations for the application of the implicit function theorem are com-
plete. Using Lemma 3.2 all continuations of (3.4) in a neighbourhood of (0,u0,x0) can 
be computed. In the following K8, (0, r 1 ) stands for the open ball in B 1 with centre in 
zero and radius r 1 , the meaning of K81 xB2((u0,x0),r2) is analogous. 

Theorem 3.3: If the assumptions (A1)-(A3) are fulfilled, then in a neighbourhood 
of (0, u°, x0) the equation (3.4) is uniquely solvable with respect to u and x as functions 
Of v. More precisely: There are positive numbers r 1 and r2 and uniquely determined 
maps w: K, (0, r 1 ) - Bi and	K81 (0, r1	B2 with the following properties: 

i) 0 E Ck[oj, k > 1. 

ii) w(0) = u° and (0) = x°. 

iii) T(ço(v),b(v)) = 0 and _v+(v)_u0+	b(v)x0,p)u = O for v E KB1(0,rl). 

iv) ((v), (v)) E KB, xB 2 ((u°, x0), r2 ) for v fi K81 (0, r1). 
Proof: The point (0, -a°, x°) is a solution element of equation (3.4). In conjunction 

with Lemma 3.2 all conditions for the application of the implicit function theorem (see, 
e.g., [15: p.1501) to equation (3.4) are verified. The results are the statements i) - iv) I 

Consequently, all solution elements of equation (2.1) can be constructed as solutions 
of system (3.4). 

Theorem 3.4: Let the assumptions (Al) - (A3) be fulfilled. Then for the operators 
W and 0 from Theorem 3.3 the representations 

(v) = u° + V -	(v,q)üj -
	

+ (R(v)),q) ü	(3.9) 

(v) = x ° + Uv + 'U -1  (W(v, v) + U(R(v)))	 (3.10) 

with
 n	 ) 2 

W(v,v) = i' (( - 

/ 
+ 2T ( -	(v,tq)ü,	

(3.11) 

i=I 

+ 

and
R : KB, (0,r3 ) - B2,	JJ R (v )IJ = o(11 v 11 2 ) for V -40 

are valid.

Proof: The representations (3.9) and (3.10) follow from the Taylor formula for the 
maps V and b in connection with the statement of Theorem 3.3/iii). The derivatives 
p v (0),i,b v (0),ço(0) and (0) are calculated from (3.8) by differentiation to v. For 
details see [9: Chapter 6.2] I
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The Fredhoim property of T transfers to the operator (0) E L(B 1 , B 1 ) in the 
sense that W,, (0)(_) = I -	(. , Tq7)ü is a Fredhoim operator with index zero. 

Corollary 3.5: The operator (0) E L(B 1 ,B 1 ) is a Fredhoirn operator with index 
zero, N(p(0)) = span {u}.. 1 and N((0)) = span {Tq}1. 

Remark 3.6: To eliminate the parameter v, the equation u = p(v) must be solvable 
for v since one looks for a representation of the solution x as a function of u. 

Remark 3.7: If one considers the equation 

c(u,v) = 0	 (3.12) 

with
: B1 x B 1 - B1 ,	'XU, V ) = u - co(v), 

then the implicit function theorem does not work for this equation since (0) (n 2 1) is 
• Fredhoim operator with index zero. For this reason, the equation (3.12) is to be called 
• bifurcation equation. Unfortunately, in opposite to the Ljapunov- Schmidt reduction 
(3.12) is also an infinite-dimensional equation. But in many practical cases, where the 
parameter space B 1 is n-dimensional, the branching equation consists of n non-linear 
C'-equations in n variables over K. This justifies the expression bifurcation equation 
also in case of infinite dimension. 

In the following, the solution behaviour of the equation (3.4) as well as the equation 
(2.1) are investigated in a neighbourhood of the limit point (u', x'). 

4. Bifurcation statements at a (0,1)-limit point 

In this section, let a = 0 and n = 1. A bifurcation of solution at a (0, 1)-limit point 
under the assumptions (Al) - (A3) with respect to the line v = ttz (t E JR) will be 
shown by application of the Morse lemma. The abbreviations p = Pi, p* = p, q = qi,... 
are chosen. 

For the special selection of the parameter v = ill, the equation (3.9) reads as 

U = (tü	
i 

) = u° - —((p,p), q*)t2 + (U(R(t)), q)] ü.	(4.1) 
12 

With
g(t) = (j(p,p),q*)t2 + (UR(tü),q)	 (4.2) 

equation (4.1) changes to
u = (tü) = u° - g(t)ü.	 (4.3) 

Under the assumption 

(A4) (1(p,p),q*)	0 

the Morse lemma is applicable and therefore solution bifurcation at (u°, x0) can be 
proved.
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Lemma 4.1 (see [6: p. 63]): Let C : KR(0,d) - 1R, x G(x) (d > 0) be a 
map with the properties G E C 2 [0], G'(0) 0 and C"(0) 54 0. Then there exists a local 
C' -diffeomorphism 

KR(0, di) - KR(0,d),	y i.- 4 ( y ) (d 1 ,d >0),	'(0) 0 0

such that
G(4(y)) - G(0) = Gu(0)y2 

for every Y  KR(0,d,). 

Applying this lemma to the function g in (4.2), one gets with the assumptions (Al) 
- (A4) that g E C2 [0], g(0) = 0,g'(0) = 0 and g"(0) = (i'(p,p),q)	0. Therefore,
Lemma 4.1 is applicable: There exists a local C'-diffeomorphism : r - 4(r) = 
and (4.2) can be transformed to 

g((r)) =	f1(pp)q*)r2	 (4.4)

With this preliminary examination, the following bifurcation result can be proved. 
Theorem 4.2: Let the assumptions (Al) - (A4) be satisfied. Then (u 0 , x 0 ) is a 

bifurcation element of equation (2.1), which in no case is a perpendicular bifurcation 
element. 

Proof: According to Definition 2.2, there must be found sequences (Um,x) (i.= 
1,2) with the stated properties. Let ( S m) C IR,Sm 54 0,Sm - 0 for in - be a 
sequence which lies in the range of g, for all in E JIV. Then one gets the equation 

Sm = g((rm)) 

which has the solutions	 ________________ 
= ±J2sm(Tzx(p,p),q*)_1 

for all m  .IIV. Thus one has t T = $(r) (i = 1,2) with t	t
M for all in E iN.

The sequences (t) give rise to sequences (x): 

= 7/)(tu) = x° + tp +	W(tI, tü) + R(tü)	(i = 1, 2).	(4.5) 

Because of this construction these sequences have the properties T(um,x) = 0 and 
(um,x)	(u°,x°) as in - - (i = 1, 2). It remains to show that x	x for all
in > m 0 , or equivalently, if il and t" are sufficiently small with t' t", then it 

for

 
'(t'ü) 54 t,b(t"Iz). Assume the opposite, i.e. t4'(t'ü) = t,b(t"I) for t' 54 t". Then one gets 

(t' - t")p = T,l' i ( t" fl) - 'i (t'ü)	 (4.6) 

with
1(ti) = UW(tü,tü) + R(ii) = UT(p,p)t2 + R(tü).
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The application of the mean value theorem of differential calculus (see [15: p. 76]) at 
h(t) = th( tu ) yields 

Il h ( t") - h(t')II < It" - t 'I sup II h'(i ' + (t" - t '))II .	 (4.7) 
pE(O,1) 

Passing to the norm in (4.6) and applying (4.7) one gets the strong positiveness of the 
supremum

0 < IIV	sup II h '( t ' + &(t" - t'))II. 
OE(0,1) 

This is a contradiction since the derivative h' is continuous in a neighbourhood of zero 
with h'(0) = 0. An analogous argument shows that (u0, x°) is not a perpendicular 
bifurcation element I 

Remark 4.3: In proving that (u0, x°) is a bifurcation element for equation (2.1) 
the assumption (A4) is mainly used. Theorem 4.2 also follows from [3: Theorem 6.2.1/p. 
218]. There a direct application of the Ljapunov-Schmidt bifurcation equation is made 
while here the discussion of the number of solution of equation (2.1) is based on the 
Morse lemma. 

Remark 4.4: An other opportunity for the investigation of equation (2.1) is given 
through [15: Theorem 8A or Theorem 8Bj. But a comparison is not possible, since 
these theorems use a non-vanishing mixed second derivative term which does not occur 
in assumptions (A3) and (A4). 

The Morse lemma has another advantage: one can handle the case (T(p,p), q*) = 
0, that is the case when assumption (A4) is violated. For that purpose one can make 
use of an extension of the Morse lemma (see (6] again). 

Lemma 4.5: Let f : 1R - IR have the properties 

1)1 ECk[0] 

2) f(0)	f'(0) = ... = f('-'(o) = 0 and f ( '(o) 0 0 for 2 < 1 < k. 

Then there exists a local C'-diffeomorphzsm 'I' : (- 6 , 6 ) -* (-62,62) ( 51, 52 > 0) with 
%F(0) = 0 and 'P'(0) 54 0 such that

f(W(r)) = 

for all  E (-6',5). 

This Lemma is applicable to the bifurcation function cp(u, v) = u - cp(v). For the 
selected direction v = iii (0 t € 1R) one can prove the following result. 

Theorem 4.6: Let assumptions (Al) - (A3) be fulfilled and let have the repre-
sentation

U	(tt) = u° +§(t)ft 

with
(t) = alt' + R I (t) (0 54 at € JR)	and	R1 (t) = o(I t I') (1 > 2).
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Then concerning the direction ü the following statements are true: 

i) For every even number I > 2, (u0,x0) is a bifurcation element of the equation 

ii) For every odd number 1 ? 3 there is exactly one continuation to the solution 
element W, x ' ) of equation (2.1) (in that direction u). 

Proof: All assumptions for application of Lemma 4.3 are fulfilled. With the diffeo-
morphism 'F for j one gets ('F(r)) = ai r' for r in a neighbourhood of zero. Now the 
equation

air1 = s	(s	0)	 (4.8) 

is investigated again. The following two cases are possible: 
a) For every even 1, 1 > 2 and signs = sign al equation (4.8) has exactly two different 

real solutions, which yield two different continuations near the solution element (u0, x°) 
(conclusions analogous to Theorem 4.2). 

b) For odd 1, 1 > 3 equation (4.8) possesses precisely one continuation to the solution 
element (u 0 , x0) of equation (2.1) I 

Remark 4.7: In the case b) one can only say that bifurcation does not occur in the 
direction ü. Here, further investigations in other directions are necessary and deserve 
separate considerations. 

5. Bifurcation results at a (0,2)-limit point 

In this section, under several assumptions bifurcation at a (0,2)-limit point is proved. 
The investigations will be carried out using a theorem by Buchner, Marsden and Schecter 
(see [2]). 

Let X and Y be Banach spaces and B : X' - Y (1 > 1) an 1-linear continuous 
operator. Let the map Q : X —+ Y be defined as Q(x) = * B(x ') . The operator Q is 
Fréchet differentiable at every point x° and its derivative is given by 

1 
=	B 

(1 — 1)! 
((x0)1_1 , 

for all r E X. 

Definition 5.1: The map Q is called 
1) regular at x° if Q1 (x°) E L(X, Y) is surjective. 
2) regular on the set Q'(0) if Q is regular for all x E Q'(0) \ {0} (remark that 

Q 1 (0) \ {0} = 0 is admissible). 
Theorem 5.2 (see [2: p. 409]): Let l,k E iN and g : JR'1 — JR" with 2 1< k 

and g E Ck[0], g(0) = 0, Dg(0) = 0,..., D''g(0) = 0. Then the following statements 
are true: 

i) If Q, Q() = D'g(0)' is regular on Q'(0), then there exist neighbourhoods 
U1, U2 C IR" containing zero and a C'-diffeomorphism 'I' with the properties 'F(Q(0)n 
U1 ) = g'(0) fl U2 and 11(0) = 0, D'I'(0) = I.
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ii) If Q, Q() = Vg(0)±' is regular for all i,	0, then according to statement i)
the diffeomorphism 'I' can be selected such that g(J!(x)) = Q(x) for all z E U1. 

Remark 5.3: The proof of Theorem 5.2 is based on typical arguments of alge-
braic geometry, the Zariski topology on algebraic varieties, and the main theorem of 
elimination theory, which can be found in the monograph of Mumford [11]. 

Remark 5.4: Conclusion i) of Theorem 5.2 implies that g and Q have homeo-
morphic zero sets. The diffeomorphism 'I' is close to the identity map near zero. From 
conclusion ii) of Theorem 5.2 notice that if Q(v) = 0, where v 54 0, then the line 1(t) = iv 
in Q'(0) is mapped by 'I' into the C 1 -curve 'P(l(t)) in the zero set of g, which is also 
tangent to v at t = 0. One thus speaks of each v e Q'(0), v 54 0, as a direction of 
bifurcation. For m = 1, 1 = 2 and Q regular on its zero set, Theorem 5.2 follows from 
the Morse lemma. 

The following preparations are necessary in order to derive the announced bifurca-
tion result by means of Theorem 5.2/u). For the special direction v = i 1 ü 1 + 12112 (t = 
( t 1 ,1 2 ) e 1R2 ,(t 1 ,t 2 ) 54 (0,0)) the bifurcation equation 0 (u, v) = u - (v) 0 (take 
(3.9) into consideration) is 

u=(tIul+i2u2)=u0 W(.,.)+UR(.),q)11j. 

Here W( . , .) stands for W(t j ü i +t2ü2,titi +t 2 11 2 ), the meaning of R( . ) is analogous. 
With the abbreviations 

g'(t) = (W( 	+ (UR( . ) , q)	(i = 1,2)	 (5.1)

the latter equation can be written as 

	

= u° -	g(t)ü 1 .	.	 (5.2) 

	

This is the bifurcation equation. The terms (W( 	q) can be calculated from (3.11).
With the further abbreviations

	

(i)	(i) a3(i)	( = (t1p,pk),q',),	=a,, 

	

R( " (t) = (UR( ), q ' )	( i,j, k = 1,2) 

now one can write the g'(t) as 

g'(t) = 1 (a t2 + 2a] ut2 + a t) + R( ') (t) (i = 1,2). (5.3)22 2

To prove that (u°, x°) is a bifurcation element of equation (2.1), one must show that 
the system of equations

	

9 (t) = w,	(i = 1,2)	 (5.4)
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has several solutions.
Using the map

	

__	 t ) 

	

9: 1R2 •.	g(t1, t2) = [:
(2t : : t2)] 

Theorem 5.2/ii) can be applied to g. In accordance with Theorem 3.3 it follows that 
with T E C c [u 0 , x 0 ) one also gets W E C k [O] and 0 E C c [0] , k 3. Furthermore, g has 
the properties g(0,0) 0 and Dg(0,0) = 0. The function Q(t 1 ,t 2 ) = D2g(0,0)(ti,t2)2 
has the form

Q(t 1 , i2) =
	:	

with Q(I) : JR2 -.4 .11? 

and
Q)(t1 ) t 2 ) := a? t + 2a? t i t 2 + a] t	(i = 1, 2).	 (5.5) 

Lemma 5.5: The Q-form (5.5) has the following properties: 
(1) The derivative of Q is 

0	- 2a(I)to + 2a(I) t (l)2° 2at + 2at°	
5. 6 

	

Q(	2)- 12at' +2a )t° 2a,]t +2a2t	 ( ) 
11

(2) Q is regular for all (t1, t 2 ) 0 (0,0) if the coefficients fulfil the conditions A > 0 
and B >0 or A <0 and B> 0where 

(1)	(1) 
A	a 11	a12 

	

-	(2)	(2) a 11	a12 

	

(1) (2)	(1) (2)	, (1) (2)	(1) (2)	 (5.7) 

	

-	a 11 a 12 - a12 a 11	a11 a22 - a22 a11 

	

-	(1) (2)	(1) (2)	(1) (2)	(1) (2) a 11 a22 - a22 a 11 j	a 12 a22 -a22 a12 

Proof: Statement (1): Equation (5.6) follows by differentiation of Q with respect 
to ( t 1, t2). Statement (2): It must be shown that Qt(t o ) E L(1R2 ,1R2 ) is surjective for 
each to E 1R2,t0 54 0. Therefore one has to investigate the linear equation Qj (t°)x = 
Y (x,y e JR2 ). This equation has a solution for each y e JR2 ,y 0 0, if the conditions 
mentioned in assertion (2) are fulfilled I 

Now all preparations about the bifurcation equation (5.2) are met and one can apply 
Theorem 5.2 and gets the following 

Theorem 5.6: Let the assumptions (Al) (with k > 3), (A2) and (A3) be fulfilled 
and suppose that A > 0 and B > 0 or A < 0 and B > 0. Then there exist neighbourhoods 
U1 and U2 in JR2 containing zero and a C'-diffeomorphism 'I' : U i -+ U2 , s i-+ It(s) = t 
such that g(W(s)) = Q(s) holds for all s = (sI,S2) E U1. 

Proof: The assumptions (Al) - ( A3) ensure that the map g (see (5.3) has properties 
g E C c [0] (k > 3), g(0, 0) = 0, Dg(0, 0) = 0 and D2 g(0, 0)(t 2 ) = Q(t). The assumptions 
A > 0 and B > 0 or A < 0 and B > 0, respectively, guarantee the regularity of the 
Q-form for all t 0 0 (see Lemma 5.5). Theorem 5.2/ii) can be applied and the proof is 
finished 0
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Theorem 5.6 yields the nice conclusion that the search for solutions of the equation 
(5.4) is now reduced to the system 

Q(s i , s 2 ) = w	(i = 1, 2).	 (5.8) 

In the following, this system will be handled in the form 

	

(i)	(i) 

	

2a 12	a22 2 
i +ySiS2+ — S 2 -- = O	(i1,2)	 (5.9) 

	

a 11	a11	a11 

assuming a? 54 0, i.e. (t(pi,pi),q) 710. 
Now one can apply the resultant theory to the system (5.9). First of all it follows 

the definition and a result about the resultant. Consider the system of equations 

li(s) := b10 s Th + b 11 s'+... + b1 = 0	
(510) 

12(S) := b205' + l i sm +... + bm = 

where b10 0 and b20 0 and n and m are natural numbers. By the resultant R( fl , f2) 
of fj and 12 one means the determinant 

b 10	b11	..,	b1 
b10	b11 

R(f1,f2) b10	b11	•. . 

	

b20 b21 ...	b2m 

	

b20 b21	...	b2m 

b20	b21	 b2. I 

where the upper part of the matrix consists of m rows and the under one of n rows. 
The remaining elements are all zero. Now Ii and 12 have a common divisor of positive 
degree if and only if R(f1 ,f2) = 0. This result is shown, for example, by Krasnoselski 
[7: Theorem 21.11 or by Wainberg and Trenogin [14: Theorem 4.31. 

For (5.9) one can calculate the resultant and one gets (the variable s i being fixed) 

R(s2 ) := R(Q' - w i ,Q 2 w) = - 4B. - E
	1 
S 2 2 - D2 

a1	
(5.11) 

(1) a11 (2)) 2 1  

with 

C = aa -	D = a(I)W2 - aw 1 , E = A(a,]w2 - aw i ) - D. 

Lemma 5.7: Under the assumptions of Theorem 5.6 the resultant (5.11) has the 
following real zeroes:
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(1) In case D = 0 the zeroes of the resultant are 

412) =	 434) = 0 for (2) <o	1,2) = 0 for	> 0• 

(2) In case D 54 0 the zeros of the resultant are 

412) =E +	BD2.	 (5.12) V2B 
Proof: Solve the equation R(5 2 ) = 0 (see (5.11)) for the cases D = 0 and D 56 0. 

Take into account that D = 0 implies E = _A2 (w2 /a) and for D	0 only two 
solutions of (5.12) are real U 

Remark 5.8: The real numbers w 1 and w2 play the role of small parameters. 
Therefore, D can be zero for w2 = (a/a)wi only. The identical vanishing of D 11
would mean am = a = 0. This is a contradiction to A 54 0. 

Remark 5.9: In the case that one or both of the coefficients equal to zero one 
must work with (5.8) again. 

Remark 5.10: Every zero of the resultant produces a common divisor of degree 
one or two in (5.8). The degree determines the number of solutions of the system (5.9). 

Our aim is to prove bifurcation for the equation (2.1). So, properly, it is not neces-
sary to find out all solutions of (5.9). But the following lemma guarantees the existence 
of exactly two different real zeros of the system (5.9). 

Lemma 5.11: Let the assumptions of Theorem 5.6 be fulfilled and a?540 (i = 
1, 2). For D 0 and_w2 /a > 0 there are exactly two solutions of the system (5.9) of 

the form (— /w2/a 1 ,0) and (+ iJw2/41,o). 

Proof: If w2 /a > 0 in system (5.9), then the zeros 412) of the resultant (5.11) 
generate the common square divisor S2 - (w2/a) = 0 (since D = 0 means w i /a = 
w2/

(2) a11 ) U 

Remark 5.12: One can select w 1 and w2 such that D = 0 and wi/aW =w2 /a > 
0 and that w 1 and w2 lie in the range of Q(l) and Q (2) , respectively. 

Remark 5.13: As a conclusion from Lemma 5.11 in connection with Theorem 5.6 it follows that two different zeros of the system (5.9) produce, by means of C 1 -
diffeomorphism 'I', exactly two different real solutions of the system (5.4). 

With these results the following theorem is easily proved. 
Theorem 5.14: Let assumtions (Al) (k > 3), (A2) and (A3) be fulfilled and as-

sume A i4 0 and B > 0 (see(5.7)). Then there exist (at least) two different continuations 
( U m, X )mE1N (i = 1,2) for the equation T(u,x) = 0 to the solution element (u0,x0), 
i.e. (u*, x 0 ) is a bifurcation element. 

Proof: With some small modifications the proof can be carried out in the same 
way as for Theorem 4.2 1
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Remark 5.15: If one of the two square forms Q(')(t,,t2) (i . = 1,2) is positive 
definite or negative definite, then the assumptions A > 0 and B > 0 of Theorem 5.6 
are not fulfilled and Theorem 5.14 is not applicable. If Q(l) is positive definite, one can 
transform Q into

	

2	2 
/l( )-	I 

- A i s + .X2s 

with numbers A, and A 2 (A, 54 A 2 ) being the zeros of the equation 

- Aq))2,= , ,2 = 0. 

The map Q would be regular, if 

det 2s,	2s2	4s1s2(A2 - A,)	0	for all (81,32) E R2 \ {0}. 
\ 

GA ls, 2A2s2) =  

But this is not the case. 

Remark 5.16: For the case that Q(I) is positive definite, Lorenz has shown in [8], 
with the aid of Leray-Schauder mapping degree, that there exist at least four distinct 
real continuations of the equation (2.1) in the solution element (u0, x°) with respect to 
the same direction v = t,ü, + t 2 ü 2 . The requirement A 0 and B >0 could restrict 
the bifurcation possibilities at the solution element (u 0 , x0) (this is a conjecture!). 

6. An example 

Now the results of the previous section will be applied to the Hammerstein equation 

	

T(u,x) = x - g(u)KFx = 0	((u,.x) E B, x B2 ).	 (6.1) 

Here
g: B,—* K,	KEL(B,B2),	• F: B2—B 

and B, B,, B2 are Banach spaces again. The following assumptions about the operators 
g and F are met: 

(A6.1) g E C c [u 0 ] and F € Ck[x0] (k 2 1). 

(A6.2) T1 := I - g(u°)KF1(x°) € L(B2 , B2 ) is a Fredholm operator with index zero 
and dim N(T) = n 21. 

The question is now under which conditions on g and F the solution element (u0,z0) 
may be a (0, n)-limit point of equation (6.1). The answer will be given by the following
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Lemma 6.1: Let the assumptions (A6.1) and (A6.2) be fulfilled and let ri > 1, as 
well as (x°,q) 36 0 and g(u0) 0. Then for n = 1 the solution element (u0,x0) of 
equation (6.1) is a (0, 1)-limit point while for n > 1 it is not. 

Proof: First of all, the operators tu and T are calculated. The first one is 

= -(.,g(u°))KFx° =( o)(u(tL))x 
if g(u0)	0 (in the case g(u0) = 0 the operator T is the identity and therefore
N(T) = {O}). From 

( t,Lü,x) = g(o)(uu(u)) (x 0 ,x) =	(u,(x,x)gti(u)) 

=	.(xx)9u(u)) = (u,t,x*) 

it follows
= _ 7.1 ....(X0,.)g(Uo). 

This calculation shows that

=	(o)(xi)u(u) 

that is (u°, xc) is a (0,1)-limit point if n = 1. 
If n > 1, then the elements T,q (i = 1. . . , n) had to be linearly independent in 

order to qualify (u°, x°) as a limit point. But since 

Ail. qi=	g(u0)	
Aj(x0,q) 

there is always - an n-tupel (),. . . , A,) with >	A > 0 such that the sum is zero. 
Thus the elements T.* q (i = 1,. . . , n) are linearly dependent I 

To get a bifurcation result for a (0, 1)-limit ixint (u°, xc) of equation (6.1) and to 
apply Theorem 4.2 an additional condition on the second derivative on F is assumed. 

Theorem 6.2: Let the assumptions (A6.1) (with k > 2) and (A6.2) (with n = 1) 
be fulfilled and suppose (x°,q) 54 0, g(u ' ) 54 0 and (F(x°)(pi,pi),Kq) 54 0. Then 
(u', x') is a bifurcation element of equation (6.1) but not a perpendicular bifurcation 
element. 

Proof: The above conditions garantee assumptions (Al) - (A3), assumption (A4) 
is fulfilled because of

.) = —g(u°)KF1(x°)(.,.) 
and

(T(pi,pi),q) = (_g(uO)KF(xc)(p1,p1),q) 

= 

.54 0. 
Therefore Theorem 4.2 applies and the assertion is proved 0
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If (F 1 (x°)(p 1 ,p), K*q) = 0, then higher order derivations of  have to be used in 
order to gain statements about bifurcation at a solution element (u°, x0) and Theorem 
4.6 must be applied again. 

7. Concluding remarks 

In comparison with the Ljapunov-Schmidt reduction, the parametrization method pre-
sented here works with the additionally assumption of linear independence of the el-
ements Tq,* (j = 1,... , n). This makes it possible to represent all solutions in a 
neighbourhood of a (0, n)-limit point (u0, x°) of the equation T(u, x) = 0. 

With the aid of the operator S only continuations of solution elements (u0., x°).which 
are (0, n)-limit points of the equation T(u, x) = 0 can be obtained. 

It is an open question whether the treatment of (a, n)-limit points with a > 1 and 
n > 1 is possible by means of some other operator S. 

	

It is also unclear which bifurcation solutions can appear for the cases a	0 and 
n 3. Indeed the amount of calculations will increase rapidly. 

In contrast to the Ljapunov-Schmidt reduction the bifurcation equation ç(u, v) = 
U - W(v) = 0 used above is an infinite-dimensional equation, if the parameter space 
is infinite-dimensional. So, an infinite-dimensional equation had to be solved for v 
as a function of u, which is in general a difficult task. But in many practical cases 
the parameter space is finite-dimensional and we have a finite-dimensional bifurcation 
equation analogously to the Ljapunov-Schmidt reduction. 

Another important investigation method uses the finite-symmetry-group invariance, 
which frequently occurs, e.g., in the theory of crystals or in the theory of elasticity 
(buckling models). The discussion of the branching equations typically can be simpli-
fied substantially if the problem admits a symmetry group. Then one can apply purely 
group-theoretical considerations to show that many coefficients of the branching equa-
tions are zero. Among others this is done in the book by Golubitsky and Schaeffer [5] 
which is also a good introduction to this subject. 

All our investigation here are of local nature. Global aspects, mapping degree theory 
and symmetry group investigations are not applied to the equation (2.1). 
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