Zeitschrift für Analysis und ihre Anwendungen Journal for Analysis and its Applications Volume 13 (1994), No. 3, 377–385

L_{φ} -Spaces and some Related Sequence Spaces

J. Boos, K.-G. Grosse-Erdmann and T. Leiger

Abstract. In view of closed graph theorems in case of maps defined by operator-valued matrices L_{φ} -spaces were recently introduced by two of the present authors as a generalization of separable FK(X)-spaces. In this paper we study the class of L_{φ} -spaces and a few closely related classes of sequence spaces. It is shown that an analogue of Kalton's closed graph theorem holds for matrix mappings if we consider L_{φ} -spaces as range spaces, and paralleling a result of Qiu we prove that the class of L_{φ} -spaces is the best-possible choice here. As a consequence we show that for any L_{φ} -space E every matrix domain E_A is again an L_{φ} -space.

Keywords: Matrix mappings, closed graph theorems, L_{φ} -spaces, L_{τ} -spaces

AMS subject classification: 46A45, 46A30, 40H05

1. Introduction

Let E and F be locally convex spaces and suppose that E is a Mackey space, the space $(E', \sigma(E', E))$ is sequentially complete and F is separable and B_r -complete. Then Kalton's closed graph theorem [10] states that every closed linear map $T: E \longrightarrow F$ is continuous. Subsequently, Qiu [11] has identified the maximal class of range spaces F in this result, calling its elements L_r -spaces.

Kalton's theorem was successfully applied in classical summability theory to obtain inclusion theorems for K-spaces that are important in connection with Mazur-Orlicztype theorems (cf. [2 - 4]). In these applications F is a convergence domain c_A of some matrix A, which is always a separable Fréchet space. However, if one tries to extend these results to operator-valued matrices one encounters the problem that convergence domains are no longer separable in general. In fact, they need not even be L_r -spaces [8: Example 3.13/(b)].

ISSN 0232-2064 / \$ 2.50 ©Heldermann Verlag Berlin

J. Boos: Fernuniv. - Gesamthochschule, FB Math., Lützowstr. 125, D-58084 Hagen

K.-G. Grosse-Erdmann: Fernuniv. - Gesamthochschule, FB Math., Lützowstr. 125, D-58084 Hagen T. Leiger: Tartu Ülikool, Puhta Matemaatika Instituut, EE 2400 Tartu, Eesti

378 J. Boos, K.-G. Grosse-Erdmann, T. Leiger

Thus a new idea was needed. Now, in summability theory one usually deals with matrix mappings between sequence spaces, which ordinarily are particular closed mappings. In a recent paper two of the present authors were able to show that if we only consider matrix mappings, then a Kalton-type result obtains for all spaces F from a new class of spaces, which they call L_{φ} -spaces (see [8: Theorem 4.2]). As desired, this class is large enough to contain all convergence domains of operator-valued matrices, so that one can now deduce inclusion theorems for such matrices [8: Theorem 4.4].

In this paper we study the class of L_{φ} -spaces and a few closely related classes of sequence spaces. We show that, indeed, Kalton's theorem and Qiu's characterization hold for L_{φ} -spaces if closed mappings are replaced by matrix mappings. It is also shown that for every L_{φ} -space E any matrix domain E_A is again an L_{φ} -space, answering a question in [8]. Similar results are proved for the other classes of sequence spaces considered here. For further investigations into L_{φ} -spaces see [6].

2. Notations and preliminaries

Throughout this paper we assume that (X, τ_X) and (Y, τ_Y) are (locally convex) Fréchet spaces. A sequence space (over X) is a subspace of the space $\omega(X)$ of all sequences $x = (x_k)$ in X. In particular, c(X) and $\varphi(X)$ denote the spaces of convergent and finite sequences in X, respectively. The β -dual E^{β} of a sequence space E over X is defined as

$$E^{\beta} = \left\{ \left. (A_k) \in \omega(X') \right| \ \forall (x_k) \in E : \sum_k A_k(x_k) \text{ converges} \right\}.$$

Now suppose that the sequence space E over X is endowed with a locally convex topology τ . Then E is called a K(X)-space if the inclusion map $i: E \longrightarrow \omega(X)$ is continuous, where $\omega(X)$ carries the product topology. If, in addition, (E,τ) is a Fréchet (Banach) space, then E is called an FK(X)-space (BK(X)-space). A K(X)-space E is called an AK-space (SAK-space) if $(x_1, ..., x_n, 0, ...) \longrightarrow x$ (weakly) in E as $n \longrightarrow \infty$ for all $x = (x_k) \in E$. If E is a K(X)-space, then every element $(A_k) \in E^{\beta}$ defines a linear functional on E via $(x_k) \longrightarrow \sum_k A_k(x_k)$. Hence, as usual, we can consider E^{β} as a subspace of E^{\bullet} , the algebraic dual of E. In particular we have $\varphi(X') \subset E^{\bullet}$.

Let $A = (A_{nk})$ be a matrix with entries $A_{nk} \in B(X, Y)$, i.e., continuous linear operators $A_{nk} : X \longrightarrow Y$. A is called row-finite if each sequence $(A_{nk})_k$ $(n \in \mathbb{N})$ is finite. For a sequence space E over Y the matrix domain E_A is defined as

$$E_A = \left\{ \left. x \in \omega(X) \right| \ orall n \in \mathbb{N} : \sum_k A_{nk}(x_k) \ ext{ converges and } \left(\sum_k A_{nk}(x_k) \right)_n \in E
ight\}.$$

Here, the convergence of $\sum_k A_{nk}(x_k)$ is taken in the topology τ_Y . If, instead, we only require convergence with respect to $\sigma(Y, Y')$, then the corresponding sequence space is called a *weak matrix domain*, denoted by E_{A_w} . For any $x \in E_{A_w}$ we put $Ax := (\sum_k A_{nk}(x_k))_n$. If F is a sequence space over X with $F \subset E_A$ ($F \subset E_{A_w}$), then the

mapping $A: F \longrightarrow E, x \longrightarrow Ax$, is called a *(weak) matrix mapping*. The space $\omega(Y)_A$ is an FK(X)-space by [5: Theorem 2.14], and the matrix domain E_A becomes an FK(X)space when it is endowed with the strongest topology that makes the matrix mappings $A: E_A \longrightarrow E, x \longrightarrow Ax$ and $i: E_A \longrightarrow \omega(Y)_A, x \longrightarrow x$ continuous [1: Proposition 2.4].

The terminology from the theory of locally convex spaces is standard. We follow Wilansky [12]. For the theory of FK(X)-spaces and operator-valued matrix domains we refer to [1] and [5].

3. L_{φ} -K-spaces and some related K-spaces

Let (E, τ) be a locally convex space with topological dual E' and algebraic dual E^* . For any subspace S of E^* , $S < E^*$, we use the notations

$$\begin{aligned}
\overline{S} &:= \left\{ g \in E^* \mid \exists (g_n) \text{ in } S : g_n \longrightarrow g \left(\sigma(E^*, E) \right) \right\} \\
\overline{S} &:= \bigcap \left\{ V < E^* \mid S \subset V = \overline{V} \right\} \\
\overline{S}^1 &:= \overline{S \cap E'} \quad \text{and} \quad \overline{S}^{j+1} &:= \overline{S}^j = \overline{S' \cap E'} \quad (j \in \mathsf{IN})
\end{aligned}$$

Following J. Qiu [11] we define E to be an L_r -space if $E' \subset S'$ for any $\sigma(E', E)$ -dense subspace S of E'.

In case of K(X)-spaces E we note that $\varphi(X')$ is $\sigma(E', E)$ -dense in E' [8: Theorem 3.4] and introduce the following notations (see also [8]).

Definition and Remarks 3.1. Let E be a K(X)-space and $j \in \mathbb{N}$. E is called an

 $L_{\varphi}\text{-space if } E' \subset \overleftarrow{\varphi(X')}$ $L_{\varphi}(j)\text{-space if } E' \subset \overleftarrow{\varphi(X')}^{j}$ $L_{\beta}(j)\text{-space if } E' \subset \overleftarrow{E^{\beta}}^{j}.$

In [8] $L_{\varphi}(1)$ -spaces and $L_{\beta}(1)$ -spaces are called spaces having φ -sequentially dense dual and β -sequentially dense dual, respectively.

E is an L_{φ} -space if and only if $E' \subset E^{\beta}$ since $E^{\beta} \subset \varphi(X')$. In fact, we even have $E^{\beta} \subset \varphi(X')$.

The above definitions depend only on the dual pair (E, E') and not on the particular topology compatible with this dual pair. Obviously, for each $j \in IN$ we have

$$L_{\varphi}(j)$$
-space $\Rightarrow L_{\beta}(j)$ -space $\Rightarrow L_{\varphi}(j+1)$ -space $\Rightarrow L_{\varphi}$ -space $\Leftarrow L_{\tau}$ -space.

Remarks 3.2. Let *E* be any sequence space over *X* and let *H* with $\varphi(X') < H < E^{\beta}$ be given.

(a) Then $(E, \tau(E, H))$ is an L_{φ} -space. (The proof of the Inclusion Theorem in [7] shows us that we may be interested in L_{φ} -spaces $(E, \tau(E, H))$ where H is a very small subspace of E^{β} containing $\varphi(X')$.)

(b) The statement in (a) remains true for any topology τ (instead of $\tau(E, H)$) that is compatible with the dual pair (E, H).

(c) Obviously, $\tau(E, E^{\vec{\beta}})$ is the strongest locally convex topology τ such that (E, τ) is an L_{φ} -space.

(d) If $j \in \mathbb{N}$ and τ is any topology that is compatible with the dual pair (E, H) such that (E, τ) is an $L_{\varphi}(j)$ -space $(L_{\beta}(j)$ -space), then $(E, \tau(E, H))$ is an $L_{\varphi}(j+1)$ -space $(L_{\beta}(j+1)$ -space).

Examples 3.3. (a) Each separable FK(X)-space, more generally each subWCG-FK(X)-space, is an L_{φ} -space (see [8: Theorem 3.3]). Here, a subWCG-space is a (topological) subspace of a weakly compactly generated locally convex space.

(b) Every SAK-K(X)-space, in particular every AK-K(X)-space, is an $L_{\varphi}(1)$ -space.

(c) The BK(m)-space c(m) is an $L_{\varphi}(1)$ -space, however, in general it is not separable and no L_r -space. (See [8: Example 3.13/(b)].)

(d) Based on an example of P. Erdös and G. Piranian [9] in [8: Example 3.12] a regular (real-valued) matrix A is given such that the domain c_A is an $L_{\beta}(1)$ -space but no $L_{\varphi}(1)$ -space. In Remark 4.2 below we will give an example of an $L_{\varphi}(2)$ -space that is no $L_{\beta}(1)$ -space. We do not know if the $L_{\beta}(2)$ -spaces and the $L_{\varphi}(2)$ -spaces coincide.

The following result will be needed in the next section. For sake of brevity we put $\overline{S}^{0} = S$ (not to be confused with the polar of \overline{S}).

Proposition 3.4. Let E and F be locally convex spaces, $U < E^*$, $S < F^*$ and $i, j \in \mathbb{N}_0$. Let $T: E \longrightarrow F$ be a continuous linear mapping such that

 $f \circ T \in \overline{U}$ whenever $f \in \overline{S}^{0}$.

Then

$$g \circ T \in \overline{U}^{i+j}$$
 whenever $g \in \overline{S}^{j}$.

Proof. We can assume j > 0. Let $g \in S'$. Then there are elements $f_{\nu_{i+1},\dots,\nu_{i+j}} \in S \cap F'$ for $\nu_{i+1},\dots,\nu_{i+j} \in \mathbb{N}$ such that:

(a) For $i+1 \leq \rho < i+j$ and all $\nu_{\rho+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ the mappings

$$y \longrightarrow \lim_{\nu_{\rho}} \dots \lim_{\nu_{i+1}} f_{\nu_{i+1} \dots \nu_{i+j}}(y) \qquad (y \in F)$$

exist and belong to F'.

(b) For all $y \in F$ we have

$$g(y) = \lim_{\nu_{i+j}} \ldots \lim_{\nu_{i+1}} f_{\nu_{i+1} \ldots \nu_{i+j}}(y).$$

From our assumption we know that $f_{\nu_{i+1},\ldots,\nu_{i+j}} \circ T \in U^*$ for each $\nu_{i+1},\ldots,\nu_{i+j} \in \mathbb{N}$. This implies that there are elements $g_{\nu_1,\ldots,\nu_{i+j}} \in U \cap E'$ for $\nu_1,\ldots,\nu_{i+j} \in \mathbb{N}$ such that:

(c) For $1 \leq \sigma < i$ and all $\nu_{\sigma+1}, \ldots, \nu_i, \nu_{i+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ the mappings

$$x \longrightarrow \lim_{\nu_{\sigma}} \ldots \lim_{\nu_{1}} g_{\nu_{1} \ldots \nu_{i} \nu_{i+1} \ldots \nu_{i+j}}(x) \qquad (x \in E)$$

exist and belong to E'.

(d) For all $x \in E$ and $\nu_{i+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ we have

$$\left(f_{\nu_{i+1}\ldots\nu_{i+j}}\circ T\right)(x)=\lim_{\nu_i}\ldots\lim_{\nu_j}g_{\nu_1\ldots\nu_i\nu_{i+1}\ldots\nu_{i+j}}(x)$$

We thus have found elements $g_{\nu_1...\nu_{i+j}} \in U \cap E'$ for $\nu_1, \ldots, \nu_{i+j} \in \mathbb{N}$ with the following properties:

(a') For $1 \le \rho < i + j$ and all $\nu_{\rho+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ the mappings

$$x \longrightarrow \lim_{\nu_{\rho}} \dots \lim_{\nu_{1}} g_{\nu_{1} \dots \nu_{i+j}}(x) \qquad (x \in E)$$

exist and belong to E' (this is just (c) in case $\rho < i$; for $\rho = i$ it follows from (d) and for $\rho > i$ from (a) if we note that T is continuous).

(b') For all $x \in E$ we have

$$(g \circ T)(x) = \lim_{\nu_{i+j}} \dots \lim_{\nu_1} g_{\nu_1 \dots \nu_{i+j}}(x)$$

(this follows from (b) and (d)).

But (a') and (b') together imply that $g \circ T \in U^{r+1}$

Remark 3.5. Using the adjoint $T': F' \longrightarrow E'$ of the mapping T, the assertion of the proposition can be put more concisely as

$$T'\left(\overline{S}^{p}\right)\subset\overline{U}^{p}$$
 implies $T'\left(\overline{S}^{p}\right)\subset\overline{U}^{p+j}$.

4. Domains of operator-valued matrices

From [8: Theorems 3.9 and 3.10] it is known that the domain $c(Y)_A$ of an operator-valued matrix A is an $L_{\beta}(1)$ -space, and that E_A is an L_{φ} -space whenever E is an $L_{\beta}(1)$ -space. Here we are going to improve these results.

Theorem 4.1. Let E be a K(Y)-space, $A = (A_{nk})$ a matrix with $A_{nk} \in B(X, Y)$ and let $j \in \mathbb{N}$.

(a) If E is an $L_{\varphi}(j)$ -space, then E_A is an $L_{\beta}(j)$ -space.

(b) If E is an $L_{\beta}(j)$ -space, then E_A is an $L_{\beta}(j+1)$ -space.

Suppose that in addition A is row-finite. Then:

(a') If E is an $L_{\varphi}(j)$ -space, then E_A is an $L_{\varphi}(j)$ -space.

(b') If E is an $L_{\beta}(j)$ -space, then E_A is an $L_{\varphi}(j+1)$ -space.

Special case (see [8: Theorem 3.9]): $c(Y)_A$ is an $L_{\beta}(1)$ -space, and even an $L_{\varphi}(1)$ -space if A is row-finite.

Remark 4.2. Example 3.3/(d) tells us that, in general, we cannot replace $L_{\beta}(j)$ -space' by $L_{\varphi}(j)$ -space' in statement (a). Assertion (a') is obviously best-possible, while in statement (b') we cannot replace $L_{\varphi}(j+1)$ -space' by $L_{\beta}(j)$ -space' in general: In [8: Example 3.14] there is an example of a (real-valued) row-finite matrix A and an $L_{\beta}(1)$ -space E such that the domain E_A is no $L_{\beta}(1)$ -space. (From statement (b') above we see that it is an $L_{\varphi}(2)$ -space.) We do not know if one can replace $L_{\beta}(j+1)$ -space' in statement (b) by $L_{\varphi}(j+1)$ -space'.

Proof of Theorem 4.1. Let E be a K(Y)-space, and let $f \in E'_A$ be given. Then we may choose elements $g \in E'$ and $h \in \omega(Y)^{\beta}_A = \omega(Y)'_A$ with $f = g \circ A + h$ (see [1: Proposition 2.10] and [5: Theorem 2.14/(b)]). Since $E_A \subset \omega(Y)_A$, we have $h \in E^{\beta}_A \subset \varphi(X')^{\nu} \subset E^{\beta}_A$ for all $j \in \mathbb{N}$. Hence in order to prove the various statements of the theorem we need only show that $g \circ A$ belongs to E^{β}_A , E^{β}_A , $\varphi(X')^{\nu}$ and $\varphi(X')^{\nu+1}$, respectively. To this end we apply Proposition 3.4 to the mapping $A: E_A \longrightarrow E$.

(a) Let E be an $L_{\varphi}(j)$ -space. Then $g \in E' \subset \varphi(Y')$. Here we choose $U = E_A^{\beta}$, $S = \varphi(Y')$ and i = 0. If $\Phi = (\Phi_n)_{n=1}^N \in \varphi(Y')$, then we have for $x \in E_A$

$$(\Phi \circ A)(x) = \sum_{n=1}^{N} \Phi_n \left(\sum_{k=1}^{\infty} A_{nk}(x_k) \right) = \sum_{k=1}^{\infty} \left(\sum_{n=1}^{N} \Phi_n \circ A_{nk} \right) (x_k)$$

so that $\Phi \circ A \in E_A^\beta$. Hence the hypothesis of Proposition 3.4 holds, so that $g \circ A \in E_A^\beta$, as desired.

(b) Let *E* be an $L_{\beta}(j)$ -space. Then $g \in E' \subset E^{\beta}$. Here we choose $U = E_A^{\beta}$, $S = E^{\beta}$ and i = 1. If $\Phi = (\Phi_n) \in E^{\beta}$, then we have for $x \in E_A$

$$(\Phi \circ A)(x) = \lim_{m \to \infty} \sum_{n=1}^{m} \Phi_n \left(\sum_{k=1}^{\infty} A_{nk}(x_k) \right) = \lim_{m \to \infty} \sum_{k=1}^{\infty} \left(\sum_{n=1}^{m} \Phi_n \circ A_{nk} \right) (x_k)$$

so that $\Phi \circ A \in \overline{E_A^{\beta}}^1$. Proposition 3.4 implies that $g \circ A \in \overline{E_A^{\beta}}^{\nu+1}$.

Now suppose that A is row-finite.

Ċ

(a') Let E be an $L_{\varphi}(j)$ -space. Then $g \in E' \subset \varphi(Y')$. Here we choose $U = \varphi(X')$, $S = \varphi(Y')$ and i = 0. If $\Phi = (\Phi_n)_{n=1}^N \in \varphi(Y')$, then we have for $x \in E_A$

$$(\Phi \circ A)(x) = \sum_{k=1}^{\infty} \left(\sum_{n=1}^{N} \Phi_n \circ A_{nk} \right) (x_k)$$

and hence $\Phi \circ A \in \varphi(X')$. Now Proposition 3.4 implies that $g \circ A \in \varphi(X')$.

(b') This follows from statement (a') since every $L_{\beta}(j)$ -space is also an $L_{\varphi}(j+1)$ -space

5. Matrix maps into L_{φ} -K-spaces

The aim of this section is to show that the class of L_{φ} -spaces is the complete analogue of Qiu's L_r -spaces if closed linear mappings are replaced by matrix mappings. We also prove that the matrix domain E_A of an operator-valued matrix is an L_{φ} -space whenever E is an L_{φ} -space. This result may be considered as a generalization of the classical fact that the matrix domain E_A of a scalar-valued matrix is separable if E is a separable FK-space.

Our first result is the analogue for matrix mappings of Qiu's extension of Kalton's closed graph theorem. It generalizes the results in Theorem 4.2 and Theorem 4.4./(a) \Rightarrow (b) of [8].

Theorem 5.1. Let E be a K(X)-space and F a K(Y)-space. If E is a Mackey space, $(E', \sigma(E', E))$ is sequentially complete and F is an L_{φ} -space, then every (weak) matrix mapping $A: E \longrightarrow F$ is continuous.

Proof. We put

$$D_A^{\bullet} := (A')^{-1}(E') = \{ f \in F^{\bullet} \mid f \circ A \in E' \}$$

and $D_A := D_A^* \cap F'$. If we can show that $D_A = F'$, then A is weakly continuous hence continuous as E is a Mackey space.

To that end let $f \in F^*$ and (f_n) in F^* with $f_n \circ A \in E'$ and $f_n \longrightarrow f$ in $(F^*, \sigma(F^*, F))$ be given. Then we have $f_n \circ A \longrightarrow f \circ A$ in $(E^*, \sigma(E^*, E))$. Since $(E', \sigma(E', E))$ is sequentially complete, this shows that $f \circ A \in E'$, so that $f \in D_A^*$. Thus D_A^* is $\sigma(F^*, F)$ -sequentially closed, which implies that $D_A \subset D_A^*$, hence $D_A \cap F' = D_A$.

We next show that $\varphi(Y') \subset D_A$. For this it suffices to prove that for each $g \in Y'$ and $n \in \mathbb{N}$ the mapping $x \longrightarrow g(\sum_{k=1}^{\infty} A_{nk}(x_k))$ belongs to E'. But since we have

$$g\left(\sum_{k=1}^{\infty}A_{nk}(x_k)\right) = \lim_{m}\sum_{k=1}^{m}(g \circ A_{nk})(x_k)$$

for all $x \in E$, this follows from the weak sequential completeness of E'.

383

In conclusion, $D_A \cap F' = D_A$, $\varphi(Y') \subset D_A$ and the fact that F is an L_{φ} -space imply that

$$F' = \varphi(Y') \cap F' \subset D_A \cap F' = D_A,$$

which had to be shown

Remark 5.2. The proof shows that the theorem remains true for any linear mapping $A = (A_n) : E \longrightarrow F$ with the property that $\varphi(Y') \subset D_A$, which is equivalent to the continuity of each mapping $A_n : E \longrightarrow Y$ $(n \in \mathbb{N})$.

The next result is the analogue to Qiu's characterization of L_r -spaces [11]. It shows that the class of L_{φ} -spaces is the maximal class of range spaces in Theorem 5.1.

Theorem 5.3. Let F be a K(X)-space. Then the following statements are equivalent:

(a) F is an L_{φ} -space.

(b) For each K(X)-space E that is a Mackey space such that $(E', \sigma(E', E))$ is sequentially complete every matrix mapping $A: E \longrightarrow F$ is continuous.

Proof. The implication (a) \Rightarrow (b) is contained in Theorem 5.1. The converse implication follows immediately from the following remark \blacksquare

Remark 5.4. Let F be a K(X)-space. If the inclusion map

$$i:\left(F,\tau\left(F,\stackrel{\smile}{F^{\beta}}
ight)
ight)\longrightarrow F$$

is continuous, then F is an L_{φ} -space. (Namely, in this situation we have $F' \subset F^{\beta} = \varphi(X')$.)

Using the last remark we can now obtain a permanence result for L_{φ} -spaces under the formation of matrix domains, answering a question in [8].

Theorem 5.5. Let $A = (A_{nk})$ be a matrix with $A_{nk} \in B(X,Y)$. If E is an L_{φ} -K(Y)-space, then E_A is an L_{φ} -K(X)-space.

Proof. By Remark 5.4 we have to prove the continuity of

$$i: \left(E_A, \tau\left(E_A, \overleftarrow{E_A}^\beta\right)\right) \longrightarrow E_A$$

which is equivalent to the continuity of the inclusion map

$$i_{\omega}:\left(E_{A},\tau\left(E_{A},\overleftarrow{E_{A}}^{\beta}\right)\right)\longrightarrow\omega(Y)_{A}$$

and of the map

$$A:\left(E_A,\tau\left(E_A,\overleftarrow{E_A}^{\beta}\right)\right)\longrightarrow E,\ x\longrightarrow Ax.$$

However, since in both cases the range space is an L_{φ} -space (note that $\omega(Y)_A$ is an AK-space by [5: Theorem 2.14]), this is an immediate corollary of Theorem 5.1

References

- Baric, L. W.: The chi function in generalized summability. Studia Math. 39 (1971), 165 180.
- [2] Bennett, G. and N. J. Kalton: FK-spaces containing c₀. Duke Math. J. 39 (1972), 561 -582.
- Bennett, G. and N. J. Kalton: Inclusion theorems for K-spaces. Canad. J. Math. 25 (1973), 511 - 524.
- [4] Boos, J. and T. Leiger: General theorems of Mazur-Orlicz type. Studia Math. 92 (1989), 1-19.
- [5] Boos, J. and T. Leiger: Some distinguished subspaces of domains of operator valued matrices. Resultate Math. 16 (1989), 199 211.
- [6] Boos, J. and T. Leiger: Product and direct sum of L_φ-K(X)-spaces and related K(X)-spaces. Acta Comm. Univ. Tartuensis 928 (1991), 29 40.
- [7] Boos, J. and T. Leiger: Weak domains of operator valued matrices. In: Approximation Interpolation and Summability. Israel Math. Conf. Proc., Ramat Aviv, 1990 and Ramat Gan, 1990 (ed.: S. Baron and D. Leviatan). Bar-Ilan: Bar-Ilan Univ. 1991, pp. 63 - 68.
- [8] Boos, J. and T. Leiger: Some new classes in topological sequence spaces related to L_r -spaces and an inclusion theorem for K(X)-spaces. Z. Anal. Anw. 12 (1993), 13 26.
- [9] Erdös, P. and G. Piranian: Convergence fields of row-finite and row-infinite Toeplitz transformations. Proc. Amer. Math. Soc. 1 (1950), 397 401.
- [10] Kalton, N. J.: Some forms of the closed graph theorem. Proc. Cambridge Philos. Soc. 70 (1971), 401 - 408.
- [11] Qiu, J.: A new class of locally convex spaces and the generalization of Kalton's closed graph theorem. Acta Math. Sci. (English Ed.) 5 (1985), 389 - 397.
- [12] Wilansky, A.: Modern Methods in Topological Vector Spaces. New York: McGraw-Hill 1978.

Received 30.11.1993