L_{φ}-Spaces and some Related Sequence Spaces

J. Boos, K.-G. Grosse-Erdmann and T. Leiger

Abstract

In view of closed graph theorems in case of maps defined by operator-valued matrices L_{φ}-spaces were recently introduced by two of the present authors as a generalization of separable $F K(X)$-spaces. In this paper we study the class of L_{φ}-spaces and a few closely related classes of sequence spaces. It is shown that an analogue of Kalton's closed graph theorem holds for matrix mappings if we consider L_{φ}-spaces as range spaces, and paralleling a result of Qiu we prove that the class of L_{φ}-spaces is the best-possible choice here. As a consequence we show that for any L_{φ}-space E every matrix domain E_{A} is again an L_{φ}-space.

Keywords: Matrix mappings, closed graph theorems, L_{φ}-spaces, L_{r}-spaces
AMS subject classification: 46A45, 46A30, 40 H 05

1. Introduction

Let E and F be locally convex spaces and suppose that E is a Mackey space, the space ($E^{\prime}, \sigma\left(E^{\prime}, E\right)$) is sequentially complete and F is separable and B_{r}-complete. Then Kalton's closed graph theorem [10] states that every closed linear map $T: E \longrightarrow F$ is continuous. Subsequently, Qiu [11] has identified the maximal class of range spaces F in this result, calling its elements L_{r}-spaces.

Kalton's theorem was successfully applied in classical summability theory to obtain inclusion theorems for K-spaces that are important in connection with Mazur-Orlicztype theorems (cf. [2-4]). In these applications F is a convergence domain c_{A} of some matrix A, which is always a separable Fréchet space. However, if one tries to extend these results to operator-valued matrices one encounters the problem that convergence domains are no longer separable in general. In fact they need not even be L_{r}-spaces [8 : Example 3.13/(b)].

[^0]Thus a new idea was needed. Now, in summability theory one usually deals with matrix mappings between sequence spaces, which ordinarily are particular closed mappings. In a recent paper two of the present authors were able to show that if we only consider matrix mappings, then a Kalton-type result obtains for all spaces F from a new class of spaces, which they call L_{φ}-spaces (see [8: Theorem 4.2]). As desired, this class is large enough to contain all convergence domains of'operator-valued matrices, so that one can now deduce inclusion theorems for such matrices [8: Theorem 4.4].

In this paper we study the class of ' L_{φ}-spaces and a few closely related classes of sequence spaces. We show that, indeed, Kalton's theorem and Qiu's characterization hold for L_{φ}-spaces if closed mappings are replaced by matrix mappings. It is also shown that for every L_{φ}-space E any matrix domain E_{A} is again an L_{φ}-space, answering a question in [8]. Similar results are proved for the other classes of sequence spaces considered here. For further investigations into L_{φ}-spaces see [6].

2. Notations and preliminaries

Throughout this paper we assume that $\left(X, \tau_{X}\right)$ and (Y, τ_{Y}) are (locally convex) Fréchet spaces. A sequence space (over X) is a subspace of the space $\omega(X)$ of all sequences $x=\left(x_{k}\right)$ in X. In particular, $c(X)$ and $\varphi(X)$ denote the spaces of convergent and finite sequences in X, respectively. The β-dual E^{β} of a sequence space E over X is defined as

$$
E^{\beta}=\left\{\left(A_{k}\right) \in \omega\left(X^{\prime}\right) \mid \forall\left(x_{k}\right) \in E: \sum_{k} A_{k}\left(x_{k}\right) \text { converges }\right\} .
$$

Now suppose that the sequence space E over X is endowed with a locally convex topology τ. Then E is called a $K(X)$-space if the inclusion map $i: E \longrightarrow \omega(X)$ is continuous, where $\omega(X)$ carries the product topology. If, in addition, (E, τ) is a Fréchet (Banach) space, then E is called an $F K(X)$-space $(B K(X)$-space). A $K(X)$-space E is called an $A K$-space ($S A K$-space) if ($x_{1}, \ldots, x_{n}, 0, \ldots$) $\longrightarrow x$ (weakly) in E as $n \longrightarrow \infty$ for all $x \doteq\left(x_{k}\right) \in E$. If E is a $K(X)$-space, then every element $\left(A_{k}\right) \in E^{\beta}$ defines a linear functional on E via $\left(x_{k}\right) \longrightarrow \sum_{k} A_{k}\left(x_{k}\right)$. Hence, as usual, we can consider E^{β} as a subspace of E^{*}, the algebraic dual of E. In particular we have $\varphi\left(X^{\prime}\right) \subset E^{*}$.

Let $A=\left(A_{n k}\right)$ be a matrix with entries $A_{n k} \in B(X, Y)$, i.e., continuous linear operators $A_{n k}: X \longrightarrow Y$. A is called row-finite if each sequence $\left(A_{n k}\right)_{k}(n \in \mathbb{N})$ is finite. For a sequence space E over Y the matrix domain E_{A} is defined as

$$
E_{A}=\left\{x \in \omega(X) \mid \forall n \in \mathbb{N}: \sum_{k} A_{n k}\left(x_{k}\right) \text { converges and }\left(\sum_{k} A_{n k}\left(x_{k}\right)\right)_{n} \in E\right\}
$$

Here, the convergence of $\sum_{k} A_{n k}\left(x_{k}\right)$ is taken in the topology τ_{Y}. If, instead, we only require convergence with respect to $\sigma\left(Y, Y^{\prime}\right)$, then the corresponding sequence space is called a weak matrix domain, denoted by $E_{A_{w}}$. For any $x \in E_{A_{w}}$ we put $A x:=$ $\left(\sum_{k} A_{n k}\left(x_{k}\right)\right)_{n}$. If F is a sequence space over X with $F \subset E_{A}\left(F \subset E_{A_{w}}\right)$, then the
mapping $A: F \longrightarrow E, x \longrightarrow A x$, is called a (weak) matrix mapping. The space $\omega(Y)_{A}$ is an $F K(X)$-space by [5: Theorem 2.14], and the matrix domain E_{A} becomes an $\dot{F} K(X)$ space when it is endowed with the strongest topology that makes the matrix mappings $A: E_{A} \longrightarrow E, x \longrightarrow A x$ and $i: E_{A} \longrightarrow \omega(Y)_{A}, x \longrightarrow x$ continuous [1: Proposition 2.4].

The terminology from the theory of locally convex spaces is standard. We follow Wilansky [12]. For the theory of $F K(X)$-spaces and operator-valued matrix domains we refer to [1] and [5].

3. $L_{\varphi}-K$-spaces and some related K-spaces

Let (E, τ) be a locally convex space with topological dual E^{\prime} and algebraic dual E^{*}. For any subspace S of $E^{*}, S<E^{*}$, we use the notations

$$
\begin{aligned}
& \stackrel{\urcorner}{S}:=\left\{g \in E^{*} \mid \exists\left(g_{n}\right) \text { in } S: g_{n} \xrightarrow{!} g\left(\sigma\left(E^{*}, E\right)\right)\right\} \\
& \stackrel{\zeta}{S}:=\cap\left\{V<E^{*} \mid S \subset V=\stackrel{\Im}{V}\right\} \\
& \Gamma^{1}:=\nabla_{S} \quad \text { and } \quad \Gamma^{j+1}:=\nabla^{i}{ }^{1}=\nabla^{j} \cap E^{\prime} \quad(j \in \mathbb{N}) \text {. }
\end{aligned}
$$

Following J. Qiu [11] we define E to be an L_{r}-space if $E^{\prime} \subset S$ for any $\sigma\left(E^{\prime}, E\right)$-dense subspace S of E^{\prime}.

In case of $K(X)$-spaces E we note that $\varphi\left(X^{\prime}\right)$ is $\sigma\left(E^{\prime}, E\right)$-dense in E^{\prime} [8: Theorem 3.4] and introduce the following notations (see also [8]).

Definition and Remarks 3.1. Let E be a $K(X)$-space and $j \in \mathbb{N} . E$ is called an

$$
\begin{aligned}
& L_{\varphi} \text {-space if } E^{\prime} \subset \varphi\left(X^{\prime}\right) \\
& L_{\varphi}(j) \text {-space if } E^{\prime} \subset{\overleftarrow{\varphi\left(X^{\prime}\right)}}^{j} \\
& L_{\beta}(j) \text {-space if } E^{\prime} \subset{E^{\beta}}
\end{aligned}
$$

In [8] $L_{\varphi}(1)$-spaces and $L_{\beta}(1)$-spaces are called spaces having φ-sequentially dense dual and β-sequentially dense dual, respectively.
E is an L_{φ}-space if and only if $E^{\prime} \subset E^{\beta}$ since $E^{\beta} \subset \varphi\left(X^{\prime}\right)$. In fact, we even have $E^{\beta} \subset \overleftarrow{\varphi\left(X^{\prime}\right)}$.

The above definitions depend only on the dual pair (E, E^{\prime}) and not on the particular topology compatible with this dual pair. Obviously, for each $j \in \mathbb{N}$ we have

$$
L_{\varphi}(j) \text {-space } \Rightarrow L_{\mathcal{\beta}}(j) \text {-space } \Rightarrow L_{\varphi}(j+1) \text {-space } \Rightarrow L_{\varphi} \text {-space } \Leftarrow L_{r} \text {-space }
$$

Remarks 3.2. Let E be any sequence space over X and let H with $\varphi\left(X^{\prime}\right)<H<$ $\stackrel{E^{\beta}}{ }$ be given.
(a) Then ($E, \tau(E, H)$) is an L_{φ}-space. (The proof of the Inclusion Theorem in [7] shows us that we may be interested in L_{φ}-spaces $(E, \tau(E, H)$) where H is a very small subspace of $\stackrel{-}{E^{\beta}}$ containing $\varphi\left(X^{\prime}\right)$.)
(b) The statement in (a) remains true for any topology τ (instead of $\tau(E, H)$) that is compatible with the dual pair (E, H).
(c) Obviously, $\tau\left(E, \mathbb{E}^{\boldsymbol{\beta}}\right)$ is the strongest locally convex topology τ such that (E, τ) is an L_{φ}-space.
(d) If $j \in \mathbb{N}$ and τ is any topology that is compatible with the dual pair (E, H) such that (E, τ) is an $L_{\varphi}(j)$-space $\left(L_{\rho}(j)\right.$-space $)$, then $(E, \tau(E, \overparen{H}))$ is an $L_{\varphi}(j+1)$-space ($L_{\beta}(j+1)$-space).

Examples 3.3. (a) Each separable $F K(X)$-space, more generally each subWCG$F K(X)$-space, is an L_{φ}-space (see [8: Theorem 3.3]). Here, a subWCG-space is a (topological) subspace of a weakly compactly generated locally convex space.
(b) Every $S A K-K(X)$-space, in particular every $A K-K(X)$-space, is an $L_{\varphi}(1)$ space.
(c) The $B K(m)$-space $c(m)$ is an $L_{\varphi}(1)$-space, however, in general it is not separable and no L_{τ}-space. (See [8: Example 3.13/(b)].)
(d) Based on an example of P. Erdös and G. Piranian [9] in [8: Example 3.12] a regular (real-valued) matrix A is given such that the domain c_{A} is an $L_{\beta}(1)$-space but no $L_{\varphi}(1)$-space. In Remark 4.2 below we will give an example of an $L_{\varphi}(2)$-space that is no $L_{\beta}(1)$-space. We do not know if the $L_{\beta}(2)$-spaces and the $L_{\varphi}(2)$-spaces coincide.

The following result will be needed in the next section. For sake of brevity we put $\stackrel{T}{S}^{0}=S$ (not to be confused with the polar of \vec{S}).

Proposition 3.4. Let E and F be locally convex spaces, $U<E^{*}, S<F^{*}$ and $i, j \in \mathbb{N}_{0}$. Let $T: E \longrightarrow F$ be a continuous linear mapping such that

$$
f \circ T \in \overparen{U}^{i} \quad \text { whenever } \quad f \in \widetilde{S}^{0}
$$

Then

$$
g \circ T \in \overleftarrow{U}^{i+j} \quad \text { whenever } \quad g \in \widetilde{S}^{j}
$$

Proof. We can assume $j>0$. Let $g \in \Gamma^{j}$. Then there are elements $f_{\nu_{i+1} \ldots \nu_{i+j}} \in S \cap F^{\prime \prime}$ for $\nu_{i+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ such that:
(a) For $i+1 \leq \rho<i+j$ and all $\nu_{\rho+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ the mappings

$$
y \longrightarrow \lim _{\nu_{p}} \ldots \lim _{\nu_{i+1}} f_{\nu_{i+1} \ldots \nu_{i+j}}(y) \quad(y \in F)
$$

exist and belong to F^{\prime}.
(b) For all $y \in F$ we have

$$
g(y)=\lim _{\nu_{i+j}} \ldots \lim _{\nu_{i+1}} f_{\nu_{i+1} \ldots \nu_{i+j}}(y)
$$

From our assumption we know that $f_{\nu_{i+1} \ldots \nu_{i+j}} \circ T \in \widetilde{U}^{\text {p }}$ for each $\nu_{i+1}, \ldots, \nu_{i_{i+j}} \in \mathbb{N}$. This implies that there are elements $g_{\nu_{1} \ldots \nu_{i} \nu_{i+1} \ldots \nu_{i+},} \in U \cap E^{\prime}$ for $\nu_{1}, \ldots, \nu_{i+j} \in \mathbb{N}$ such that:
(c) For $1 \leq \sigma<i$ and all $\nu_{a+1}, \ldots, \nu_{i}, \nu_{i+1}, \ldots, \nu_{i+j} \in \mathbb{I N}$ the mappings

$$
x \longrightarrow \lim _{\nu_{\sigma}} \ldots \lim _{\nu_{1}} g_{\nu_{1} \ldots \nu_{i} \nu_{i+1} \ldots \nu_{i+j}}(x) \quad(x \in E)
$$

exist and belong to E^{\prime}.
(d) For all $x \in E$ and $\nu_{i+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ we have

$$
\left(f_{\nu_{i+1} \ldots \nu_{i+}} \circ T\right)(x)=\lim _{\nu_{i}} \ldots \lim _{\nu_{1}} g_{\nu_{1} \ldots \nu_{i} \nu_{i+1} \ldots \nu_{i+j}}(x)
$$

We thus have found elements $g_{\nu_{1} \ldots \nu_{i+j}} \in U \cap E^{\prime}$ for $\nu_{1}, \ldots, \nu_{i+j} \in \mathbb{N}$ with the following properties:
(a^{\prime}) For $1 \leq \rho<i+j$ and all $\nu_{\rho+1}, \ldots, \nu_{i+j} \in \mathbb{N}$ the mappings

$$
x \longrightarrow \lim _{\nu_{\rho}} \ldots \lim _{\nu_{1}} g_{\nu_{1} \ldots \nu_{i+j}}(x) \quad(x \in E)
$$

exist and belong to E^{\prime} (this is just (c) in case $\rho<i$; for $\rho=i$ it follows from (d) and for $\rho>i$ from (a) if we note that T is continuous).
(b') For all $x \in E$ we have

$$
(g \circ T)(x)=\lim _{\nu_{i+j}} \ldots \lim _{\nu_{1}} g_{\nu_{1} \ldots \nu_{i+j}}(x)
$$

(this follows from (b) and (d)).
But (a') and (b') together imply that $g \circ T \in \widetilde{U}^{i+j}$
Remark 3.5. Using the adjoint $T^{\prime}: F^{\prime} \longrightarrow E^{\prime}$ of the mapping T, the assertion of the proposition can be put more concisely as

$$
T^{\prime}\left({\vec{S}^{0}}^{0}\right) \subset \vec{U}^{i} \quad \text { implies } \quad T^{\prime}\left(\vec{S}^{j}\right) \subset \overleftarrow{U}^{i+j}
$$

4. Domains of operator-valued matrices

From [8: Theorems 3.9 and 3.10] it is known that the domain $c(Y)_{A}$ of an operator-valued matrix A is an $L_{\beta}(1)$-space, and that E_{A} is an L_{φ}-space whenever E is an $L_{\beta}(1)$-space. Here we are going to improve these results.

Theorem 4.1. Let E be a $K(Y)$-space, $A=\left(A_{n k}\right)$ a matrix with $A_{n k} \in B(X, Y)$ and let $j \in \mathbb{N}$.
(a) If E is an $L_{\varphi}(j)-$ space, then E_{A} is an $L_{\beta}(j)$-space.
(b) If E is an $L_{\beta}(j)$-space, then E_{A} is an $L_{\beta}(j+1)$-space.

Suppose that in addition A is row-finite. Then:
(a') If E is an $L_{\varphi}(j)$-space, then E_{A} is an $L_{\varphi}(j)$-space.
(b') If E is an $L_{\beta}(j)$-space, then E_{A} is an $L_{\varphi}(j+1)$-space.
Special case (see [8: Theorem 3.9]): $c(Y)_{A}$ is an $L_{\beta}(1)$-space, and even an $L_{\varphi}(1)-$ space if A is row-finite.

Remark 4.2. Example 3.3/(d) tells us that, in general, we cannot replace ' $L_{\beta}(j)-$ space' by ' $L_{\varphi}(j)$-space' in statement (a). Assertion (a') is obviously best-possible, while in statement (b') we cannot replace ' $L_{\varphi}(j+1)$-space' by ' $L_{\beta}(j)$-space' in general: In [8: Example 3.14] there is an example of a (real-valued) row-finite matrix A and an $L_{\beta}(1)$ space E such that the domain E_{A} is no $L_{\beta}(1)$-space. (From statement (b') above we see that it is an $L_{\varphi}(2)$-space.) We do not know if one can replace ' $L_{\beta}(j+1)$-space' in statement (b) by ' $L_{\varphi}(j+1)$-space'.

Proof of Theorem 4.1. Let E be a $K(Y)$-space, and let $f \in E_{A}^{\prime}$ be given. Then we may choose elements $g \in E^{\prime}$ and $h \in \omega(Y)_{A}^{\beta}=\omega(Y)_{A}^{\prime}$ with $f=g \circ A+h$ (see [1:
(Proposition 2.10] and [5: Theorem 2.14/(b)]). Since $E_{A} \subset \omega(Y)_{A}$, we have $h \in E_{A}^{\beta} \subset$ $\varphi\left(X^{\prime}\right) \subset \widetilde{E}_{A}^{\beta}$ for all $j \in \mathbb{N}$. Hence in order to prove the various statements of the theorem we need only show that $g \circ A$ belongs to ${\bar{E}_{A}^{\beta}}^{j},{\bar{E}_{A}^{\beta}}^{j+1},{\widetilde{\varphi}\left(X^{\prime}\right)}^{j}$ and ${\bar{\varphi}_{\varphi\left(X^{\prime}\right)}}^{j+1}$, respectively. To this end we apply Proposition 3.4 to the mapping $A: E_{A} \longrightarrow E$.
(a) Let E be an $L_{\varphi}(j)$-space. Then $g \in E^{\prime} \subset{\overleftarrow{\varphi\left(Y^{\prime}\right)}}^{j}$. Here we choose $U=E_{A}^{\beta}$, $S=\varphi\left(Y^{\prime}\right)$ and $i=0$. If $\Phi=\left(\Phi_{n}\right)_{n=1}^{N} \in \varphi\left(Y^{\prime}\right)$, then we have for $x \in E_{A}$

$$
(\Phi \circ A)(x)=\sum_{n=1}^{N} \Phi_{n}\left(\sum_{k=1}^{\infty} A_{n k}\left(x_{k}\right)\right)=\sum_{k=1}^{\infty}\left(\sum_{n=1}^{N} \Phi_{n} \circ A_{n k}\right)\left(x_{k}\right)
$$

so that $\Phi \circ A \in E_{A}^{\beta}$. Hence the hypothesis of Proposition 3.4 holds, so that $g \circ A \in \stackrel{E_{A}^{\beta}}{ }$, as desired.
(b) Let E be an $L_{\beta}(j)$-space. Then $g \in E^{\prime} \subset{\widetilde{E^{\beta}}}^{j}$. Here we choose $U=E_{A}^{\beta}$, $S=E^{\beta}$ and $i=1$. If $\Phi=\left(\Phi_{n}\right) \in E^{\beta}$, then we have for $x \in E_{A}$

$$
(\Phi \circ A)(x)=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \Phi_{n}\left(\sum_{k=1}^{\infty} \mathscr{A _ { n k }}\left(x_{k}\right)\right)=\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty}\left(\sum_{n=1}^{m} \Phi_{n} \circ A_{n k}\right)\left(x_{k}\right)
$$

so that $\Phi \circ A \in{E_{A}^{\beta}}^{1}$. Proposition 3.4 implies that $g \circ A \in{E_{A}^{\beta}}^{+1}$.
Now suppose that A is row-finite.
(a') Let E be an $L_{\varphi}(j)$-space. Then $g \in E^{\prime} \subset{\widetilde{\varphi}\left(Y^{\prime}\right)}^{j}$. Here we choose $U=\varphi\left(X^{\prime}\right)$, $S=\varphi\left(Y^{\prime}\right)$ and $i=0$. If $\Phi=\left(\Phi_{n}\right)_{n=1}^{N} \in \varphi\left(Y^{\prime}\right)$, then we have for $x \in E_{A}$

$$
(\Phi \circ A)(x)=\sum_{k=1}^{\infty}\left(\sum_{n=1}^{N} \Phi_{n} \circ A_{n k}\right)\left(x_{k}\right)
$$

and hence $\Phi \circ A \in \varphi\left(X^{\prime}\right)$. Now Proposition 3.4 implies that $g \circ A \in{\overline{\varphi\left(X^{\prime}\right)}}^{i}$.
(b') This follows from statement (a') since every $L_{\beta}(j)$-space is also an $L_{\varphi}(j+1)-$ space

5. Matrix maps into $L_{\varphi}-K-$ spaces

The aim of this section is to show that the class of L_{φ}-spaces is the complete analogue of Qiu's L_{r}-spaces if closed linear mappings are replaced by matrix mappings. We also prove that the matrix domain E_{A} of an operator-valued matrix is an L_{φ}-space whenever E is an L_{φ}-space. This result may be considered as a generalization of the classical fact that the matrix domain E_{A} of a scalar-valued matrix is separable if E is a separable FK-space.

Our first result is the analogue for matrix mappings of Qiu's extension of Kalton's closed graph theorem. It generalizes the results in Theorem 4.2 and Theorem 4.4./(a) \Rightarrow (b) of [8].

Theorem 5.1. Let E be a $K(X)$-space and F a $K(Y)$-space. If E is a Mackey space, ($E^{\prime}, \sigma\left(E^{\prime}, E\right)$) is sequentially complete and F is an L_{φ}-space, then every (weak) matrix mapping $A: E \longrightarrow F$ is continuous.

Proof. We put

$$
D_{A}^{*}:=\left(A^{\prime}\right)^{-1}\left(E^{\prime}\right)=\left\{f \in F^{*} \mid f \circ A \in E^{\prime}\right\}
$$

and $D_{A}:=D_{A}^{*} \cap F^{\prime}$. If we can show that $D_{A}=F^{\prime}$, then A is weakly continuous hence continuous as E is a Mackey space.

To that end let $f \in F^{*}$ and $\left(f_{n}\right)$ in F^{*} with $f_{n} \circ A \in E^{\prime}$ and $f_{n} \longrightarrow f$ in $\left(F^{*}, \sigma\left(F^{*}, F\right)\right)$ be given. Then we have $f_{n} \circ A, \longrightarrow f \circ A$ in $\left(E^{*}, \sigma\left(E^{*}, E\right)\right)$. Since ($E^{\prime}, \sigma\left(E^{\prime}, E\right)$) is sequentially complete, this shows that $f \circ A \in E^{\prime}$, so that $f \in D_{A}^{*}$. Thus D_{A}^{*} is $\sigma\left(F^{*}, F\right)$-sequentially closed, which implies that $D_{A} \subset D_{A}^{*}$, hence $D_{A} \cap F^{\prime}=D_{A}$.

We next show that $\varphi\left(Y^{\prime}\right) \subset D_{A}$. For this it suffices to prove that for each $g \in Y^{\prime}$ and $n \in \mathbb{N}$ the mapping $x \longrightarrow g\left(\sum_{k=1}^{\infty} A_{n k}\left(x_{k}\right)\right)$ belongs to E^{\prime}. But since we have

$$
g\left(\sum_{k=1}^{\infty} A_{n k}\left(x_{k}\right)\right)=\lim _{m} \sum_{k=1}^{m}\left(g \circ A_{n k}\right)\left(x_{k}\right)
$$

for all $x \in E$, this follows from the weak sequential completeness of E^{\prime}.

In conclusion, $\widehat{D_{A}} \cap F^{\prime}=D_{A}, \varphi\left(Y^{\prime}\right) \subset D_{A}$ and the fact that F is an L_{φ}-space imply that

$$
\dot{F^{\prime}}=\stackrel{\varphi\left(Y^{\prime}\right)}{\square} F^{\prime} \subset \overline{D_{A}} \cap F^{\prime}=D_{A}
$$

which had to be shown
Remark 5.2. The proof shows that the theorem remains true for any linear mapping $A=\left(A_{n}\right): E \longrightarrow F$ with the property that $\varphi\left(Y^{\prime}\right) \subset D_{A}$, which is equivalent to the continuity of each mapping $A_{n}: E \longrightarrow Y(n \in \mathbb{N})$.

The next result is the analogue to Qiu's characterization of L_{r}-spaces [11]. It shows that the class of L_{φ}-spaces is the maximal class of range spaces in Theorem 5.1.

Theorem 5.3. Let F be a $K(X)$-space. Then the following statements are equivalent:
(a) F is an L_{φ}-space.
(b) For each $K(X)$-space E that is a Mackey space such that $\left(E^{\prime}, \sigma\left(E^{\prime}, E\right)\right)$ is sequentially complete every matrix mapping $A: E \longrightarrow F$ is continuous.

Proof. The implication (a) $\Rightarrow(\mathrm{b})$ is contained in Theorem 5.1. The converse implication follows immediately from the following remark

Remark 5.4. Let F be a $K(X)$-space. If the inclusion map

$$
i:\left(F, \tau\left(F, F^{\beta}\right)\right) \rightarrow F
$$

is continuous, then F is an L_{φ}-space. (Namely, in this situation we have $F^{\prime} \subset \overrightarrow{F^{\beta}}=$ $\stackrel{\llcorner }{\varphi\left(X^{\prime}\right)}$.).

Using the last remark we can now obtain a permanence result for L_{φ}-spaces under the formation of matrix domains, answering a question in [8].

Theorem 5.5. Let $A=\left(A_{n k}\right)$ be a matrix with $A_{n k} \in B(X, Y)$. If E is an $L_{\varphi}-$ $K(Y)$-space, then E_{A} is an $L_{\varphi}-K(X)$-space.

Proof. By Remark 5.4 we have to prove the continuity of

$$
i:\left(E_{A}, \tau\left(E_{A}, \overline{E_{A}^{\beta}}\right)\right) \longrightarrow E_{A}
$$

which is equivalent to the continuity of the inclusion map

$$
i_{\omega}:\left(E_{A}, \tau\left(E_{A}, \overline{E_{A}^{\beta}}\right)\right) \longrightarrow \omega(Y)_{A}
$$

and of the map

$$
A:\left(E_{A}, \tau\left(E_{A}, \stackrel{E_{A}^{\beta}}{ }\right)\right) \longrightarrow E, x \longrightarrow A x
$$

However, since in both cases the range space is an L_{φ}-space (note that $\omega(Y)_{A}$ is an $A K$-space by [5: Theorem 2.14]), this is an immediate corollary of Theorem 5.1

References

[1] Baric, L. W.: The chi function in generalized summability. Studia Math. 39 (1971), 165 180.
[2] Bennett, G. and N. J. Kalton: FK-spaces containing co. Duke Math. J. 39 (1972), 561 582.
[3] Bennett, G. and N. J. Kalton: Inclusion theorems for K-spaces. Canad. J. Math. 25 (1973), 511-524.
[4] Boos, J. and T. Leiger: General theorems of Mazur-Orlicz type. Studia Math. 92 (1989), 1-19.
[5] Boos, J. and T. Leiger: Some distinguished subspaces of domains of operator valued matrices. Resultate Math. 16 (1989), $199-211$.
[6] Boos, J. and T. Leiger: Product and direct sum of $L_{\varphi}-K(X)$-spaces and related $K(X)$ spaces. Acta Comm. Univ. Tartuensis 928 (1991), 29-40.
[7] Boos, J. and T. Leiger: Weak domains of operator valued matrices. In: Approximation Interpolation and Summability. Israel Math. Conf. Proc., Ramat Aviv, 1990 and Ramat Gan, 1990 (ed.: S. Baron and D. Leviatan). Bar-Ilan: Bar-Ilan Univ. 1991, pp. 63-68.
[8] Boos, J. and T. Leiger: Some new classes in topological sequence spaces related to L_{r}-spaces and an inclusion theorem for $K(X)$-spaces. Z. Anal. Anw. 12 (1993), 13-26.
[9] Erdös, P. and G. Piranian: Convergence fields of row-finite and row-infinite Toeplitz transformations. Proc. Amer. Math. Soc. 1 (1950), 397-401.
[10] Kalton, N. J.: Some forms of the closed graph theorem. Proc. Cambridge Philos. Soc. 70 (1971), 401-408.
[11] Qiu, J.: A new class of locally convex spaces and the generalization of Kalton's closed graph theorem. Acta Math. Sci. (English Ed.) 5 (1985), $389-397$.
[12] Wilansky, A.: Modern Methods in Topological Vector Spaces. New York: McGraw-Hill 1978.

Received 30.11.1993

[^0]: J. Boos: Fernuniv. - Gesamthochschule, FB Math., Lützowstr. 125, D-58084 Hagen
 K.-G. Grosse-Erdmann: Fernuniv. - Gesamthochschule, FB Math., Lützowstr. 125, D-58084 Hagen
 T. Leiger: Tartu Ülikool, Puhta Matemaatika Instituut, EE 2400 Tartu, Eesti

