On the Existence of Holomorphic Functions Having Prescribed Asymptotic Expansions

J. Schmets and M. Valdivia

Abstract. A generalization of some results of T. Carleman in [1] is developped. The practical form of it states that if the non-empty subset D of the boundary $\partial \Omega$ of a domain Ω of \mathbb{C} has no accumulation point and if the connected component in $\partial \Omega$ of every $u \in D$ has more than one point, then D is regularly asymptotic for Ω, i.e. for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of complex numbers, there is a holomorphic function f on Ω which at every $u \in D$ has $\sum_{n=0}^{\infty} c_{u,n}(z - u)^n$ as asymptotic expansion at u.

Keywords: Holomorphic functions, asymptotic expansions

AMS subject classification: Primary 30B99, secondary 46E10

1. Generalities

a) About the vector spaces. All the vector spaces we consider are over the field \mathbb{C} of the complex numbers. If A is a subset of a vector space, spanA denotes its linear hull. If I is a set, $\omega(I)$ denotes as usual the vector space \mathbb{C}^I endowed with the product topology. A subset $\{v_i : i \in I\}$ of the algebraic dual of a vector space E has the interpolation property if, for every family $\{c_i : i \in I\}$ of \mathbb{C}, there is $x \in E$ such that $(x, v_i) = c_i \text{ for every } i \in I$.

For future reference, let us mention the following result of M. Eidelheit, a generalization of which to the case when E is a B-complete space can be found as Theorem 1 of [4].

Theorem 1.1 (Interpolation): A subset $\{v_i : i \in I\}$ of the topological dual E' of a Fréchet space E has the interpolation property if and only if its elements are linearly independent and such that, for every equicontinuous subset B of E', the vector space span$\{v_i : i \in I\} \cap \text{span } B$ has finite dimension.

b) About the asymptotic expansions. We begin with the following

J. Schmets: Univ. de Liège, Inst. Math., 15 av. des Tilleuls, B - 4000 Liège. Partially supported by a grant of the Belgian CGRI.

Definition: A holomorphic function f on a non-void domain Ω of \mathbb{C} has an asymptotic expansion at $u \in \partial \Omega$ if the limits

$$a_0 = \lim_{z \in \Omega, z \to u} f(z)$$

and, for every $n \in \mathbb{N}$,

$$a_n = \lim_{z \in \Omega, z \to u} \frac{f(z) - \sum_{j=0}^{n-1} a_j (z - u)^j}{(z - u)^n}$$

exist and are finite. In such a case,

a) we say that the series $\sum_{n=0}^{\infty} a_n (z - u)^n$ is the asymptotic expansion of f at u

b) we write $f(z) \approx \sum_{n=0}^{\infty} a_n (z - u)^n$ at u

c) we use the notations

$$f^{[n]}(u) = a_n$$

for all $n \in \mathbb{N}_0$

$$f^{[0]}(z, u) = f(z)$$

for all $z \in \Omega$

$$f^{[n]}(z, u) = \frac{f^{[n-1]}(z, u) - f^{[n-1]}(u)}{z - u}$$

for all $z \in \Omega, n \in \mathbb{N}$.

(So, in fact, we have

$$f^{[n]}(z, u) = \frac{f(z) - \sum_{j=0}^{n-1} a_j (z - u)^j}{(z - u)^n}$$

for all $z \in \Omega, n \in \mathbb{N}$

as well as

$$\lim_{z \in \Omega, z \to u} f^{[n]}(z, u) = f^{[n]}(u)$$

for all $n \in \mathbb{N}_0$.)

c) Notations. Unless explicitly stated, throughout this paper, we use the following notations:

a) Ω is a non-void domain of \mathbb{C}.

b) $\{K_m : m \in \mathbb{N}\}$ is a compact cover of Ω such that $(K_1)^c \neq \emptyset$ and $K_m \subset (K_{m+1})^c$ for every $m \in \mathbb{N}$.

c) $\mathcal{H}(\Omega)$ is the Fréchet-Montel space of holomorphic functions on Ω, endowed with the compact-open topology (i.e., for instance, with the countable system of norms $\{\| \cdot \|_{K_m} : m \in \mathbb{N}\}$).

d) D is a non-void subset of $\partial \Omega$.

e) $A(\Omega; D)$ is the set of the elements of $\mathcal{H}(\Omega)$ which have an asymptotic expansion at every point of D. Of course, it is a vector subspace of $\mathcal{H}(\Omega)$. We endow it canonically with the topology induced by $\mathcal{H}(\Omega)$. Let us insist on this fact: from now on, $A(\Omega; D)$ is a topological vector subspace of $\mathcal{H}(\Omega)$.

f) The notation T refers to the linear map

$$T : A(\Omega; D) \to \omega(D \times \mathbb{N}_0), \quad f \mapsto \left(f^{[n]}(u) \right)_{(u, n) \in D \times \mathbb{N}_0}$$

g) For every $u \in D$ and $n \in \mathbb{N}_0$, the notation $\eta_{u, n}$ refers to the linear functional

$$\eta_{u, n} : A(\Omega; D) \to \mathbb{C}, \quad f \mapsto f^{[n]}(u).$$

As the set $\mathcal{P}(\Omega)$ of the restrictions to Ω of the polynomials is a vector subspace of $A(\Omega; D)$, the next result proves that the linear functionals $\eta_{u, n}$ for $u \in D$ and $n \in \mathbb{N}_0$ are linearly independent on any vector subspace of $A(\Omega; D)$ containing $\mathcal{P}(\Omega)$.
Lemma 1.2: For every subset D of $\partial \Omega$, \{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\} is a set of linearly independent linear functionals on $\mathcal{P}(\Omega)$.

Proof: If it is not the case, there are a finite subset D' of D, an integer $N \in \mathbb{N}_0$ and elements $c_{u,n}$ of \mathcal{C} for $u \in D'$ and $n \in \{0, \ldots, N\}$ such that $(P, \sum_{u \in D'} \sum_{n=0}^N c_{u,n} \eta_{u,n}) = 0$ for every $P \in \mathcal{P}(\Omega)$, although the coefficients are not all equal to 0. So we may suppose the existence of $u_0 \in D'$ and $n_0 \in \{0, \ldots, N\}$ such that $c_{u_0,n_0} \neq 0$ and $c_{u_0,n} = 0$ for every $n \in \{n_0 + 1, \ldots, N\}$. Then the consideration of the polynomial

$$P(z) = (z - u_0)^{n_0} \prod_{u \in D' \setminus \{u_0\}} (z - u)^{N+1}$$

leads immediately to a contradiction.

d) About the regularly asymptotic sets. We begin with the following:

Definition. The set D is regularly asymptotic for Ω if, for every family

$$\{c_{u,n} : u \in D, n \in \mathbb{N}_0\}$$

of \mathcal{C}, there is a function $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^\infty c_{u,n}(z - u)^n$ at u for every $u \in D$. So D is regularly asymptotic for Ω if and only if the linear map T is surjective which happens if and only if the set $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$ has the interpolation property on $A(\Omega; D)$.

In such a case, it is clear that no element of D can be an isolated point of $\partial \Omega$. The next result gives another restriction on such sets D.

Proposition 1.3: If D is regularly asymptotic for Ω, then it has no accumulation point. Hence it is countable.

Proof: If it is not the case, there is a sequence $(u_m)_{m \in \mathbb{N}}$ of distinct points of D converging to some $u_0 \in D$ with $u_m \neq u_0$ for every $m \in \mathbb{N}$. As D is regularly asymptotic for Ω, there is then $f \in A(\Omega; D)$ such that

$$f(z) \approx \sum_{n=0}^\infty c_{m,n}(z - u_m)^n \quad \text{at } u_m \text{ for all } m \in \mathbb{N}_0$$

with

$$c_{m,n} = \begin{cases} 1 & \text{if } m \in \mathbb{N} \\ 0 & \text{if } m = 0 \end{cases} \quad \text{for all } n \in \mathbb{N}_0.$$

This leads directly to the following contradiction:

$$\lim_{z \in \Omega, z \to u_m} f(z) = f(0)(u_m) = 1 \quad \text{for all } m \in \mathbb{N}$$

and

$$\lim_{z \in \Omega, z \to u_0} f(z) = f(0)(u_0) = 0.$$

Thus the statement is proven.
Remark. However these restrictions on \(D \) are not sufficient to ensure that \(D \) is regularly asymptotic for \(\Omega \). If we set \(\Omega = \mathbb{C} \setminus \{ 0 \} \), it is clear that \(D = \{ 0 \} \) has no isolated point of \(\partial \Omega \) and that \(D \) has no accumulation point. However, for every \(f \in A(\Omega; D) \), there is a neighbourhood \(U \) of 0 such that \(f \) is holomorphic and bounded on \(U \setminus \{ 0 \} \). Hence \(f \) must have a holomorphic extension to \(\mathbb{C} \setminus \{ 0 \} \).

e) Aim of this paper. In [1], T. Carleman has proved the following:

a) Every finite subset \(D \) of the boundary of a bounded, convex and open subset \(\Omega \) of \(\mathbb{C} \) is regularly asymptotic for \(\Omega \); for every family \(\{ c_{u,n} : u \in D, n \in \mathbb{N}_0 \} \) of \(\mathbb{C} \), there are infinitely many functions \(f \in A(\Omega; D) \) such that \(f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n \) at \(u \) for every \(u \in D \) (cf. [1: p. 31]).

b) \(\{ 0 \} \) is regularly asymptotic for the open subset

\[\Omega = \{ z \in \mathbb{C} : \| z \| < R \} \setminus \{ (x,0) : x \neq 0 \} \]

of \(\mathbb{C} \) (cf. [1: p. 37]).

We are going to generalize these results. We will first introduce some definitions and a basic result when \(D \) is a singleton, then consider the case when \(D \) is finite, next discuss the case when \(P \) is countable and finally state the generalizations we have obtained.

2. If \(D \) is a singleton

Let \(u \) be a point of \(\partial \Omega \). For every \(r \in \mathbb{N} \), we set

\[A_r(\Omega; \{ u \}) = \left\{ f \in A(\Omega; \{ u \}) : \sup_{z \in \Omega, |z-u| \leq 1/r} |f(z)| < \infty \right\}. \]

Clearly \(A_r(\Omega; \{ u \}) \) is a vector subspace of \(A(\Omega; \{ u \}) \) and

\[\bigcup_{r=1}^{\infty} A_r(\Omega; \{ u \}) = A(\Omega; \{ u \}). \]

Moreover an easy recursion on \(j \in \mathbb{N} \) establishes that the boundedness of \(f \in A(\Omega; \{ u \}) \) on \(\{ z \in \Omega : |z-u| \leq 1/r \} \) implies for every \(j \in \mathbb{N} \) the boundedness of \(f^{[j]}(\cdot, u) \) on the same set. Therefore, for every \(n \in \mathbb{N} \),

\[p_{u,r,n} : A_r(\Omega; \{ u \}) \to [0, +\infty), \quad f \mapsto \| f \|_{K_n} + \left\| \sum_{j=0}^{n} |f^{[j]}(\cdot, u)| \right\|_{\{ z \in \Omega : |z-u| \leq 1/r \}} \]

is a semi-norm on \(A_r(\Omega; \{ u \}) \); it is even a norm since \(\Omega \) is a domain and since \((K_n)^o \neq \emptyset \) for every \(n \in \mathbb{N} \). So

\[P_{u,r} = \{ p_{u,r,n} : n \in \mathbb{N} \} \]
On the Existence of Holomorphic Functions

is a countable system of semi-norms on \(A_r(\Omega; \{u\}) \), endowing this space with a metrizable locally convex topology which is finer than the one induced by \(\mathcal{H}(\Omega) \). In fact more can be said: we will prove in the next section that \((A_r(\Omega; \{u\}), P_{u,r}) \) is a Fréchet space.

The sets

\[
V_{u,r,n} = \left\{ f \in A_r(\Omega; \{u\}) : p_{u,r,n}(f) \leq \frac{1}{n} \right\} \quad (n \in \mathbb{N})
\]

constitute a fundamental basis of the neighbourhoods of the origin in \((A_r(\Omega; \{u\}), P_{u,r}) \).

So, for every sequence \(\mu = (m_n)_{n \in \mathbb{N}} \) of \(\mathbb{N} \),

\[
B_{u,r,\mu} = \bigcap_{n=1}^{\infty} m_nV_{u,r,n}
\]

is an absolutely convex and bounded subset of that space but more can be said here too.

Proposition 2.1: For every \(u \in \partial \Omega \), \(r \in \mathbb{N} \) and \(\mu \in \mathbb{N}^\mathbb{N} \), the set \(B_{u,r,\mu} \) is an absolutely convex and compact subset of \(\mathcal{H}(\Omega) \).

Proof: As \(B_{u,r,\mu} \) is an absolutely convex and bounded subset of the Fréchet-Montel space \(\mathcal{H}(\Omega) \), it is enough to prove that \(B_{u,r,\mu} \) is sequentially closed. Let \((f_k)_{k \in \mathbb{N}} \) be a sequence of \(B_{u,r,\mu} \) converging in \(\mathcal{H}(\Omega) \) to \(f \). First we establish that \(f \) has an asymptotic expansion at \(u \) with

\[
f^{[j]}(u) = \lim_{k \to \infty} f^{[j]}_k(u)
\]

for every \(j \in \mathbb{N}_0 \). For every \(k \in \mathbb{N} \), as we have \(f_k \in B_{u,r,\mu} \), we get at once \(|f^{[0]}_k(u)| \leq m_1 \).

So from every subsequence of \((f^{[0]}_k(u))_{k \in \mathbb{N}} \), we can extract a subsequence converging to some \(a_0 \in \mathbb{C} \). As we also have

\[
\left| f^{[1]}_k(z, u) \right| = \left| \frac{f^{[0]}_k(z, u) - f^{[0]}_k(u)}{z - u} \right| \leq m_1
\]

for every \(k \in \mathbb{N} \) and \(z \in \Omega \) such that \(|z - u| \leq 1/r \), we get

\[
\left| \frac{f(z) - a_0}{z - u} \right| \leq m_1
\]

for every \(z \in \Omega \) such that \(|z - u| \leq 1/r \), hence \(\lim_{z \in \Omega, z \to u} f(z) = a_0 \). The conclusion is then direct by use of a recursion.

It is then an easy matter to check that \(f \) belongs to \(B_{u,r,\mu} \). Hence the conclusion
3. If D is finite

If $D = \{u_1, \ldots, u_J\}$ is finite, we use the following notations:

a) For every $r \in \mathbb{N}$,

\[
A_r(\Omega; D) = \bigcap_{u \in D} A_r(\Omega; \{u\})
\]

\[
= \left\{ f \in A(\Omega; D) : \sup_{z \in \Omega, |z-u| \leq 1/r} |f(z)| < \infty \text{ for all } u \in D \right\}.
\]

So $A_r(\Omega; D)$ is a vector subspace of $A(\Omega; D)$ and

\[
\bigcup_{r=1}^{\infty} A_r(\Omega; D) = A(\Omega; D).
\]

b) For every $r, n \in \mathbb{N}$,

\[
p_{D,r,n} : A_r(\Omega; D) \to [0, +\infty), \quad f \mapsto \sup\{p_{u,r,n}(f) : u \in D\}
\]

is a norm on $A_r(\Omega; D)$ and

\[
P_{D,r} = \{p_{D,r,n} : n \in \mathbb{N}\}
\]

is a countable system of norms on $A_r(\Omega; D)$ endowing it with a finer locally convex topology than the one induced by $\mathcal{H}(\Omega)$. From now on, if D is finite and if $r > 0$, the notation $A_r(\Omega; D)$ will refer to the locally convex space $(A_r(\Omega; D), P_{D,r})$. So

\[
V_{D,r,n} = \left\{ f \in A_r(\Omega; D) : p_{D,r,n}(f) \leq \frac{1}{n} \right\} \quad (n \in \mathbb{N})
\]

is a fundamental sequence of neighbourhoods of the origin in $A_r(\Omega; D)$.

c) For every sequence $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$,

\[
B_{D,\rho} = \bigcap_{u \in D} B_{u,r_1,\rho_1}
\]

where ρ_1 is the sequence $(r_{n+1})_{n \in \mathbb{N}}$. Of course, $B_{D,\rho}$ is an absolutely convex and compact subset of $A(\Omega; D)$; moreover it is a bounded subset of the space $A_{r_1}(\Omega; D)$.

Proposition 3.1: If D is finite, then, for every $r \in \mathbb{N}$, $A_r(\Omega; D)$ is a Fréchet space.

Proof: Let $(f_k)_{k \in \mathbb{N}}$ be a Cauchy sequence. As it clearly is a Cauchy sequence in $\mathcal{H}(\Omega)$, it converges in $\mathcal{H}(\Omega)$ to some f. Let us prove now that f belongs to $A_r(\Omega; D)$. Let us fix $u \in D$. Let us also fix $j \in \mathbb{N}_0$. On one hand, for every $k \in \mathbb{N}$, the
function $f_k^j(\cdot,u)$ on Ω has a finite limit $f_k^j(u)$ at u. On the other hand, the sequence $\left(f_k^j(\cdot,u) \right)_{k \in \mathbb{N}}$ is uniformly Cauchy on $\left\{ z \in \Omega : |z - u| \leq 1/r \right\}$. Therefore the two limits

$$\lim_{k \to \infty} \lim_{z \in \Omega, z \to u} f_k^j(z,u) = \lim_{k \to \infty} f_k^j(u)$$

and

$$\lim_{z \in \Omega, z \to u} \lim_{k \to \infty} f_k^j(z,u)$$

exist, are finite and are equal. A direct recursion on $j \in \mathbb{N}_0$ establishes then that f has an asymptotic expansion at u.

It is finally a standard matter to prove that the sequence $(f_k)_{k \in \mathbb{N}}$ converges in $A_r(\Omega; D)$ to f.

The previous result is also a consequence of the following considerations which will prove to be very fruitful (we refer the reader to [3] for the definition and the properties of the quasi-LB spaces and representations).

Proposition 3.2: If D is finite, then the family $\{B_{D,\rho} : \rho \in \mathbb{N}^\infty\}$ is a quasi-LB representation of the space $A(\Omega; D)$, made of absolutely convex and compact sets.

Proof: By Proposition 2.1, for every $\rho \in \mathbb{N}^\infty$, $B_{D,\rho}$ is an absolutely convex and compact subset of $\mathcal{H}(\Omega)$ hence of $A(\Omega; D)$ since it is a subset of $A(\Omega; D)$. It is also clear that, for every $\rho, \sigma \in \mathbb{N}^\infty$ such that $\rho \leq \sigma$ (i.e. $r_n \leq s_n$ for every $n \in \mathbb{N}$ if $\sigma = (s_n)_{n \in \mathbb{N}}$), we have $B_{D,\rho} \subseteq B_{D,\sigma}$.

To conclude, it is then enough to check that $\bigcup_{\rho \in \mathbb{N}^\infty} B_{D,\rho}$ is equal to $A(\Omega; D)$. This is a direct matter: every $f \in A(\Omega; D)$ has an asymptotic expansion at every element of D so it is a bounded function on $\bigcup_{u \in D} \left\{ z \in \Omega : |z - u| \leq 1/r \right\}$ for some $r \in \mathbb{N}$. Moreover, for every $n \in \mathbb{N}_0$, there is $s_n \in \mathbb{N}$ such that $f \in s_n V_{D,r,n}$. Therefore f belongs to $B_{D,\rho}$ with $r_1 = r$ and $r_{n+1} = s_n$ for every $n \in \mathbb{N}$.

Now, as in [3], for every $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^\infty$, we may introduce successively:

a) For every $n \in \mathbb{N}$, the set

$$B_{D,r_1,\ldots,r_n} = \bigcup \left\{ B_{D,\sigma} : \sigma = (s_n)_{n \in \mathbb{N}} \in \mathbb{N}^\infty ; s_1 = r_1, \ldots, s_n = r_n \right\}.$$

In fact, it is a direct matter to check that in our case

$$B_{D,r_1} = A_{r_1}(\Omega; D)$$

and, for every $n = 2, 3, \ldots$,

$$B_{D,r_1,\ldots,r_n} = (r_2 V_{D,r_1,1}) \cap \ldots \cap (r_n V_{D,r_1,\ldots,r_{n-1}}).$$

b) For every $n \in \mathbb{N}$, the linear hull F_{D,r_1,\ldots,r_n} of B_{D,r_1,\ldots,r_n}. Of course, in our case, we get at once $F_{D,r_1,\ldots,r_n} = A_{r_n}(\Omega; D)$ for every $n \in \mathbb{N}$.

c) The vector space $F_{D,\rho} = \bigcap_{n=1}^\infty F_{D,r_1,\ldots,r_n}$, i.e. $F_{D,\rho} = A_{r_1}(\Omega; D)$ in our case.

At this point, [3] provides another way to prove that, for every $r \in \mathbb{N}$, $A_r(\Omega; D)$ is a Fréchet space.
Definition: If D is finite, we have

$$A(\Omega; D) = \bigcup_{r=1}^{\infty} A_r(\Omega; D)$$

and, for every $r, s \in \mathbb{N}$ such that $r < s$, the canonical injection from $A_r(\Omega; D)$ into $A_s(\Omega; D)$ is continuous. Therefore we may endow $A(\Omega; D)$ with an (LF)-topology τ by considering the inductive limit of the sequence $(A_r(\Omega; D))_{r \in \mathbb{N}}$ of Fréchet spaces. Of course, τ is finer than the topology of $A(\Omega; D)$.

Notations: If $D = \{u_1, \ldots, u_J\}$ is a finite subset of $\partial \Omega$, then, in this section and unless specifically stated, we use the following notations:

a) For every $j \in \{1, \ldots, J\}$, the notation T_j refers to the linear map $T_j : A(\Omega; D) \to \omega(N_0)$, $f \mapsto (f^{[n]}(u_j))_{n \in \mathbb{N}_0}$ which is continuous if we endow $A(\Omega; D)$ with the topology τ and L_j is the vector subspace span$\{\eta_{uj} : n \in \mathbb{N}_0\}$ of the topological dual $(A(\Omega; D), \tau)'$.

b) $L = \text{span}(u_1, \ldots, u_J)$.

Now we are looking for necessary and sufficient conditions under which D is regularly asymptotic for Ω.

Definition: If r belongs to \mathbb{N}, the finite subset D of $\partial \Omega$ is r-regularly asymptotic for Ω if the restriction of the map T to $A_r(\Omega; D)$ is also surjective onto $\omega(D \times \mathbb{N}_0)$.

Proposition 3.3: The finite subset D of $\partial \Omega$ is regularly asymptotic for Ω if and only if there is $r \in \mathbb{N}$ such that D is r-regularly asymptotic for Ω.

Proof: The proof of Proposition 9 in [4] applies also to this case.

Corollary 3.4: If D is finite and is regularly asymptotic for Ω, then the kernel of T has $2^{\mathbb{N}_0}$ as algebraic dimension.

Proof: By the previous proposition, there is $r \in \mathbb{N}$ such that the restriction S of T to $A_r(\Omega; D)$ is a continuous and surjective linear map. To conclude, we just have to prove that the Fréchet subspace $\ker S$ of $A_r(\Omega; D)$ is not finite-dimensional. If it were finite-dimensional, it would have a topological complement M and the restriction of T to M would appear as an isomorphism in between M and $\omega(D \times \mathbb{N})$ although M has a continuous norm.

The next result comes from [5]. We repeat it here, with proof, for the sake of completeness since the reference [5] is not readily accessible.

Theorem 3.5: The finite subset D of $\partial \Omega$ is regularly asymptotic for Ω if and only if, for every $u \in D$ and $(c_n)_{n \in \mathbb{N}_0} \in \omega(\mathbb{N}_0)$, there is $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_n(z - u)^n$ at u.

Proof: The condition is trivially necessary. The condition is also sufficient. Indeed, if D is a singleton, the result is trivial. So let us consider the case $D = \{u_1, \ldots, u_J\}$ with an integer $J \geq 2$.
For every \(j \in \{1, \ldots, J\} \), \(T_j \) is clearly a surjective, linear and continuous map. So the Fréchet space \(\omega(\mathbb{N}_0) \) is equal to \(\bigcup_{j=1}^{\infty} T_j \mathcal{A}_r(\Omega; D) \) hence there is \(r_j \in \mathbb{N} \) such that \(T_j \mathcal{A}_r(\Omega; D) \) is a second category vector subspace of \(\omega(\mathbb{N}_0) \). As a surjective, linear and continuous map from the Fréchet space \(\mathcal{A}_r(\Omega; D) \) onto its image, the restriction of \(T_j \) is a topological homomorphism. Therefore \(T_j \mathcal{A}_r(\Omega; D) \) is a Fréchet space hence is equal to \(\omega(\mathbb{N}_0) \).

To conclude, we are going to prove that, for \(r = \sup\{r_1, \ldots, r_j\} \), the set

\[
\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}
\]

has the interpolation property on \(\mathcal{A}_r(\Omega; D) \). By Theorem 1.1, as these continuous linear functionals on \(\mathcal{A}_r(\Omega; D) \) are linearly independent, we just need to prove that, for every \(s \in \mathbb{N} \), the dimension of the vector space \(L \cap \text{span} V_{\mathcal{A}_r}^{\beta_0,\ldots,\beta_N} \) is finite.

Let us fix \(s \in \mathbb{N} \) and, in order to simplify the notations, let us set \(U = V_{\mathcal{A}_r}^{\beta_0,\ldots,\beta_N} \). For every \(j \in \{1, \ldots, J\} \), the restriction of \(T_j \) to \(\mathcal{A}_r(\Omega; D) \) is surjective hence the dimension of \(L_j \cap \text{span} U^0 \) is finite: there is \(N(j) \in \mathbb{N} \) such that

\[
\left(\beta_0, \ldots, \beta_N \in \mathbb{C} : \beta_N \neq 0; \sum_{n=0}^{N} \beta_n \eta_{u_j,n} \in \text{span} U^0\right) \implies N \leq N(j).
\]

To conclude, it is then sufficient to prove that

\[
\zeta = \sum_{j=1}^{J} \sum_{n=0}^{N} \alpha_{j,n} \eta_{u_j,n} \in \text{span} U^0
\]

with \(N > \sup\{s, N(1), \ldots, N(J)\} \) implies \(\alpha_{j,N} = 0 \) for every \(j = 1, \ldots, J \).

This we do by contradiction: let us suppose the existence of such a functional \(\zeta \) with \(N > \sup\{s, N(1), \ldots, N(J)\} \) and \(\alpha_{k,N} \neq 0 \) for some \(k \in \{1, \ldots, J\} \), belonging to \(q U^0 \) for some \(q \in \mathbb{N} \).

We need some preparation. Let us denote by \(P(z) \) the polynomial

\[
\prod_{1 \leq j \leq J, j \neq k} (z - u_j)^{N+1}.
\]

It can also be written as

\[
P(z) = c_0 + c_1(z - u_k) + \ldots + c_{(N+1)(J-1)}(z - u_k)^{(N+1)(J-1)}
\]

with \(c_0 \neq 0 \). Then we choose a closed disk \(B \) in \(\mathbb{C} \), centered at the origin and containing

\[
K_s \cup \left(\bigcup_{j=1}^{J} \{ z \in \Omega : |z - u_j| \leq \frac{1}{r} \} \right).
\]

Finally we set

\[
C_1 = \sup \left\{ \left\| \frac{P(\cdot)}{(\cdot-u_j)^k} \right\|_B : h \in \{0, \ldots, s\}, j \in \{1, \ldots, J\} \setminus \{k\} \right\}
\]
\[C_2 = \sup \left\{ \left\| c_h + \cdots + c_{N+1}(J-1)(z - u_k)^{(N+1)(J-1)-h} \right\|_B : h = 0, \ldots, s \right\} \]

and introduce the polynomial

\[
Q(z) = \frac{P(z)}{2(C_1 + C_2)(s + 1)^2}.
\]

For every \(g \in U \), the function \(Qg \) clearly belongs to \(A_\tau(\Omega; D) \). In fact, it belongs to \(U \):

a) For every \(j \in \{1, \ldots, J\} \setminus \{k\} \) and \(h \in \{0, \ldots, s\} \), we have

\[
(Qg)^[\Lambda](z, u_j) = \frac{Q(z)}{(z - u_j)^h} g(z)
\]

hence

\[
\left| (Qg)^[\Lambda](z, u_j) \right| \leq \frac{C_1}{2(C_1 + C_2)(s + 1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s + 1)^2}
\]

for every \(z \in \Omega \) such that \(|z - u_j| \leq 1/r \).

b) For \(h \in \{0, \ldots, s\} \), we also have

\[
(Qg)^[\Lambda](z, u_k) = \sum_{l=0}^{h-1} c_l g^{[\Lambda-l]}(z, u_k) + (c_h + \cdots + c_{N+1}(J-1)(z - u_k)^{(N+1)(J-1)-h}) g^{[0]}(z, u_k)
\]

hence

\[
\left| (Qg)^[\Lambda](z, u_k) \right| \leq \frac{(s + 1)c_2}{2(C_1 + C_2)(s + 1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s + 1)}
\]

for every \(z \in \Omega \) such that \(|z - u_k| \leq 1/r \).

c) For every \(z \in K_s \), it is clear that

\[
\left| (Qg)(z) \right| \leq \frac{C_1}{2(C_1 + C_2)(s + 1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s + 1)^2}.
\]

At this stage, we consider the continuous linear functional

\[
\eta = \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) \eta_{u_k,j}.
\]

The coefficient of \(\eta_{u_k,N} \) is \(\alpha_{k,N} Q^{[0]}(u_k) \) and differs from 0. Moreover as \(N > N(k) \), \(\eta \) does not belong to \(\text{span} U^\circ \). Therefore there is \(f \in U \) such that \(\left| (f, \eta) \right| > q \). As \(Qf \) belongs to \(U \), we finally arrive at the following contradiction:

We have

\[
\left| (Qf, \zeta) \right| \leq q
\]
because $\zeta \in qU^\circ$, as well as

$$|\langle Qf, \zeta \rangle| = \left| \sum_{j=1}^{J} \sum_{n=0}^{N} \alpha_{j,n} \langle Qf, \eta_{u_j, n} \rangle \right|$$

$$= \left| \sum_{n=0}^{N} \alpha_{k,n} \langle Qf, \eta_{u_k, n} \rangle \right|$$

$$= \left| \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) f[j](u_k) \right|$$

$$= \left| \left\langle f, \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) \eta_{u_k, j} \right\rangle \right|$$

$$= |\langle f, \eta \rangle|$$

$$> q.$$

Thus our statement is proved

At this stage, we can extend Theorem 4 of [4] in the following way.

Proposition 3.6: The finite subset $D = \{u_1, \ldots, u_J\}$ of $\partial \Omega$ is regularly asymptotic for Ω if and only if the following condition (*) is satisfied:

(*) There is $r \in \mathbb{N}$ such that, for every compact subset K of Ω and $j_0 \in \{1, \ldots, J\}$, there is an integer $p \in \mathbb{N}$ such that, for every $h > 0$, there is $f \in A_r(\Omega; D)$ verifying

$$|f(z)| \leq 1 \quad \text{for all } z \in K \cup \left(\bigcup_{j=1}^{J} \left\{ u \in \Omega : |u - u_j| \leq \frac{1}{r} \right\} \right)$$

and

$$|f^{[p]}(u_{j_0})| > h.$$

Proof: The condition is necessary. Indeed, by Proposition 3.3, there is an integer $r \in \mathbb{N}$ such that

$$S : A_r(\Omega; D) \to \omega(D \times \mathbb{N}_0), \quad f \mapsto \left(f^{[n]}(u) \right)_{(u,n) \in D \times \mathbb{N}_0}$$

is a continuous, surjective and linear map. Let us fix a compact subset K of Ω and an integer j_0 in $\{1, \ldots, J\}$. There is then an integer $s \in \mathbb{N}$ such that $K \subset K_s$. As, for $n \in \mathbb{N}_0$, the continuous linear functionals $\eta_{u_{j_0}, n}$ on $A_r(\Omega; D)$ are linearly independent, Theorem 1.1 tells us that the dimension of the vector space

$$\text{span} \left\{ \eta_{u_{j_0}, n} : n \in \mathbb{N}_0 \right\} \cap \text{span} \mathcal{V}^{\circ}_{D, r, s}$$

is finite. Therefore there is an integer $p \in \mathbb{N}$ such that $\eta_{u_{j_0}, p}$ does not belong to $\text{span} \mathcal{V}^{\circ}_{D, r, s}$. Hence, for every $h > 0$, there is $f \in \mathcal{V}_{D, r, s}$ such that

$$|f^{[p]}(u_{j_0})| = |\langle f, \eta_{u_{j_0}, p} \rangle| > h.$$
Hence the conclusion.

The condition is sufficient. Indeed, by Theorem 3.5, it is enough to prove that, for every \(j \in \{1, \ldots, J\} \), the map

\[
S_j : A_r(\Omega; D) \to \omega(\mathcal{N}_0), \quad f \mapsto (f^{[n]}(u_j))_{n \in \mathcal{N}_0}
\]

is surjective. Let us fix \(j \in \{1, \ldots, J\} \). As, for \(n \in \mathcal{N}_0 \), the continuous linear functionals \(\eta_n = \eta_{u_{j,n}} \) are linearly independent, by Theorem 1.1, we just need to prove that, for every \(s \in \mathcal{N} \), the vector space

\[
\text{span}\{\eta_n : n \in \mathcal{N}_0\} \cap \text{span} V_{D,r,s}^S
\]

has finite dimension. Let us fix \(s \in \mathcal{N} \) and denote by \(p_j \) the least integer satisfying condition (*) for \(K = K_s \) and \(j_0 = j \). There is then \(k > 0 \) such that, for every \(g \in A_r(\Omega; D) \) verifying \(|g(z)| \leq 1 \) for every element \(z \) of the set

\[
\mathcal{K} = K_s \bigcup \left(\bigcup_{u \in D} \left\{ t \in \Omega : |t - u| \leq \frac{1}{r} \right\} \right),
\]

one has

\[
|g^{[n]}(u_j)| \leq k \quad \text{for all } n \in \{0, \ldots, p_j - 1\}.
\]

At this point, to conclude, it is sufficient to prove that a functional of the type

\[
d = \sum_{n=0}^{N} \alpha_n \eta_n \quad \text{with } N > p_j + s, \quad \alpha_n \in \mathcal{C} \quad \text{and } \alpha_N \neq 0
\]

never belongs to \(\text{span} V_{D,r,s}^S \). This we do by contradiction. Let us suppose that such a functional \(\delta \) belongs to \(hV_{D,r,s}^S \) for some \(h > 0 \). We need some preparation. We choose an integer \(d \) greater than the diameter of \(\mathcal{K} \) and set successively

\[
\alpha = \sup \{|\alpha_0|, \ldots, |\alpha_N|\}.
\]

\[
P(z) = (z - u_j)^{N - p_j} \prod_{1 \leq k \leq J, k \neq j} (z - u_k)^N.
\]

\[
L = \sup \left\{ |P^{[n]}(u_j)| : n = 0, \ldots, N \right\}.
\]

Now we choose \(f \in A_r(\Omega; D) \) such that \(|f(z)| \leq 1 \) for every \(z \in \mathcal{K} \) and

\[
|f^{[p_j]}(u_j)| > \frac{s(s + 2)hd^{N_J} + 2L\alpha N^2k}{|\alpha_N P^{[N - p_j]}(u_j)|}.
\]

Finally we set \(g = Pf \). Of course \(g \) belongs to \(A_r(\Omega; D) \); more precisely from

\[
p_{D,r,s}(g) = \sup_{u \in D} \left(\|Pf\|_{\mathcal{K},r} + \sup \left\{ \sum_{l=0}^{s} \frac{|P(z)f(z)|}{|z - u|^l} : z \in \Omega, |z - u| \leq \frac{1}{r} \right\} \right)
\]

\[
\leq d^{N_J} + (s + 1)d^{N_J}
\]

\[
= (s + 2)d^{N_J}
\]
we get that g belongs to $s(s+2)d^{NJ}V_{D,r,s}$ and hence g satisfies

$$|(g,\delta)| \leq hs(s+2)d^{NJ}.$$

But we also have

$$|f^{[N-t]}(u_j)| \leq k \quad \text{for every } t \in \{N-p_j+1, \ldots, N\}$$

and this leads to the following contradiction:

$$|\langle g,\delta \rangle| = \sum_{n=0}^{N} \alpha_n g^{[n]}(u_j)$$

$$= \sum_{n=0}^{N} \alpha_n (Pf)^{[n]}(u_j)$$

$$= \sum_{n=0}^{N} \alpha_n \sum_{t=0}^{n} p^{[t]}(u_j) f^{[n-t]}(u_j)$$

$$= \left| \sum_{n=N-p_j}^{N} \alpha_n \sum_{t=N-p_j}^{n} p^{[t]}(u_j) f^{[n-t]}(u_j) \right|$$

$$\geq |\alpha_N| \left| p^{[N-p_j]}(u_j) f^{[p_j]}(u_j) \right| - |\alpha_N| \sum_{t=N-p_j+1}^{N} \left| p^{[t]}(u_j) \right| \left| f^{[N-t]}(u_j) \right|$$

$$- \sum_{n=N-p_j}^{N-1} |\alpha_n| \sum_{t=N-p_j}^{n} \left| p^{[t]}(u_j) \right| \left| f^{[n-t]}(u_j) \right|$$

$$\geq s(s+2)hd^{NJ} + 2LaN^2k - \alpha NLk - N^2\alpha Lk$$

$$> s(s+2)hd^{NJ}.$$

Thus the assertion is proved \[.\]

Now by use of the previous result and of ideas of \[4\], we are going to establish a first generalization of Carleman's result.

Notations: For $u \in \mathbb{C}$ and $A \subset \mathbb{C}$, let us set

$$\delta_1(u, A) = \inf \{|u - z| : z \in A\} \quad \text{and} \quad \delta_2(u, A) = \sup \{|u - z| : z \in A\}.$$

Definition: The boundary $\partial \Omega$ is **quasi-connected** at $u \in \partial \Omega$ if, for every $\epsilon, \delta > 0$ such that $0 < \epsilon < \delta$, there is a connected subset A of $\partial \Omega$ such that

$$\delta_2(u, A) < \delta \quad \text{and} \quad \delta_1(u, A) < \epsilon \delta_2(u, A).$$

Let us mention that in Section 5, we will prove that $\partial \Omega$ is quasi-connected at $u \in \partial \Omega$ if the connected component of u in $\partial \Omega$ contains more than one point. So if Ω is simply connected, $\partial \Omega$ is quasi-connected at every point of $\partial \Omega$.
Theorem 3.7: If $\partial \Omega$ is quasi-connected at every point of the finite subset D of $\partial \Omega$, then D is regularly asymptotic for Ω.

Proof: As $D = \{u_1, \ldots, u_J\}$ is finite, there is $r \in \mathbb{N}$ such that the disks

$$\left\{ z \in \mathbb{C} : |z - u_j| \leq \frac{1}{r} \right\}$$

are pairwise disjoint for $j \in \{1, \ldots, J\}$. Let us fix $j \in \{1, \ldots, J\}$ and a compact subset K of Ω. We are going to prove that Proposition 3.6 applies with $p = 1$. Of course there is $C > 0$ such that $|z - \alpha| \cdot |z - \beta| < C^2$ for every

$$z \in K = K \bigcup \left(\bigcup_{u \in D} \left\{ t \in \mathbb{C} : |t - u| \leq \frac{1}{r} \right\} \right)$$

and every $\alpha, \beta \in \mathbb{C}$ such that $|\alpha - u_j| \leq 1/r$ and $|\beta - u_j| \leq 1/r$. Given $h > 0$, by hypothesis, there is a connected subset A of $\partial \Omega$ such that

$$\delta_2(u_j, A) < \frac{1}{r} \quad \text{and} \quad 0 < \delta_1(u_j, A) < \inf \left\{ \frac{1}{2r}, \frac{1}{16C^2h^2} \right\} \delta_2(u_j, A).$$

Therefore there are points α and β in A such that

$$|u_j - \alpha| < \inf \left\{ \frac{1}{2r}, \frac{1}{16C^2h^2} \right\} |u_j - \beta|.$$

Then there is a determination g of $\sqrt{(\cdot - \alpha)(\cdot - \beta)}$ which is holomorphic on $\Omega \cup V$ for some open neighbourhood V of D. So $f = g/C$

a) belongs to $A_r(\Omega; D)$

b) verifies $|f(z)| < 1$ for every $z \in K$

c) verifies

$$|f^{[1]}(u_j)| = \frac{1}{C} \lim_{z \to u_j} \left| \frac{g(z) - g(u_j)}{z - u_j} \right| = \frac{|2u_j - (\alpha + \beta)|}{2C|u_j - \alpha|^{1/2}|u_j - \beta|^{1/2}}$$

$$\geq \frac{1 - \frac{|u_j - \alpha|}{|u_j - \beta|}}{2C \left| \frac{|u_j - \alpha|}{|u_j - \beta|} \right|^{1/2}}$$

$$> \frac{1 - 1/2}{2C \cdot \frac{1}{4Ch}} = h,$$

hence the conclusion by Proposition 3.6

Let us also mention the following result.
Proposition 3.8: Let D be a finite subset of $\partial \Omega$. Let us suppose moreover the existence of a subset \{$(d_{u,n} : u \in D, n \in N_0)$\} of $(0, +\infty)$ such that, for every subset \{$(c_{u,n} : u \in D, n \in N_0)$\} of \mathbb{C} such that $|c_{u,n}| \leq d_{u,n}$ for every $u \in D$ and $n \in N_0$, there is $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n} (z-u)^n$ at every $u \in D$.

Then there is $\rho \in N^N$ such that, for every subset \{$(c_{u,n} : u \in D, n \in N_0)$\} as above, there is $g \in B_{D,r_1,\rho}$ such that $g(z) \approx \sum_{n=0}^{\infty} c_{u,n} (z-u)^n$ at every $u \in D$.

Proof: The set

$$ C = \{(c_{u,n} : (u,n) \in D \times N_0) : |c_{u,n}| \leq d_{u,n} \quad \text{for all} \quad (u,n) \in D \times N_0\} $$

is clearly an absolutely convex and compact subset of $\omega(D \times N_0)$. By the Proposition 12/(b) of [3], there are then $\rho \in N^N$ and a subset M of $B_{D,r_1,\rho}$ such that $TM = C$.

Hence the conclusion.

4. If D is infinite

Let us recall that every subset D of $\partial \Omega$ which is regularly asymptotic for Ω is countable.

Notations: Let $D = \{u_j : j \in N\}$. Then:
1) For every $\rho = (r_j)_{n \in N} \in N^N$, we set

$$ A_\rho(\Omega; D) = \bigcap_{j=1}^{\infty} A_{r_j}(\Omega; \{u_j\}) $$

$$ = \left\{ f \in A(\Omega; D) : \sup_{z \in \Omega, |z-u_j| \leq 1/r_j} |f(z)| < \infty \quad \text{for all} \quad j \in N \right\}. $$

So $A_\rho(\Omega; D)$ is a vector subspace of $A(\Omega; D)$ and

$$ \bigcup_{\rho \in N^N} A_\rho(\Omega; D) = A(\Omega; D). $$

2) For every $\rho \in N^N$ and $n \in N$,

$$ p_{D,\rho,n} : A_\rho(\Omega; D) \to [0, +\infty), \quad f \mapsto \sup\{p_{u_j,r_j,n} : j \in \{1, \ldots, n\}\} $$

is a norm on $A_\rho(\Omega; D)$ and

$$ P_{D,\rho} = \{p_{D,\rho,n} : n \in N\} $$

is a countable system of norms on $A_\rho(\Omega; D)$ endowing it with a finer locally convex topology than the one induced by $H(\Omega)$. From now on, if $D = \{u_j : j \in N\}$ and if $\rho \in N^N$, the notation $A_\rho(\Omega; D)$ will refer to the locally convex space $(A_\rho(\Omega; D), P_{D,\rho})$. So

$$ V_{D,\rho,n} = \left\{ f \in A_\rho(\Omega; D) : p_{D,\rho,n}(f) \leq \frac{1}{n} \right\} \quad (n \in N). $$
is a fundamental sequence of neighbourhoods of the origin in \((A_\rho(\Omega; D), P_{D, \rho})\).

3) We fix once for all an infinite partition

\[\{\{n_k : k \in \mathbb{N}\} : j \in \mathbb{N}\} \]

of \(\{2n : n \in \mathbb{N}\}\). Then, for every \(\rho \in \mathbb{N}^\mathbb{N}\),

\[B_{D, \rho} = \bigcap_{j=1}^{\infty} B_{u_j, r_{nj-1}, \rho(j)} \]

where \(\rho(j)\) is the sequence \((r_{nj,k})_{k \in \mathbb{N}}\). Of course, \(B_{D, \rho}\) is an absolutely convex and compact subset of \(A(\Omega; D)\); moreover it is a bounded subset of the space \((A_{\rho'}(\Omega; D), P_{D, \rho'})\) where \(\rho'\) is the sequence \((r_{2n-1})_{n \in \mathbb{N}}\).

Let us remark that these notations depend heavily on the enumeration of the points of \(D\) but any enumeration will do.

Proposition 4.1: If \(D = \{u_j : j \in \mathbb{N}\}\), then, for every \(\rho \in \mathbb{N}^\mathbb{N}\), \(A_\rho(\Omega; D)\) is a Fréchet space.

Proof: One can go on with a direct proof as in Proposition 3.1 or use the technique of the (LB)-spaces as we do hereafter. \(\blacksquare\)

Proposition 4.2: If \(D = \{u_j : j \in \mathbb{N}\}\), the family \(\{B_{D, \rho} : \rho \in \mathbb{N}^\mathbb{N}\}\) is a quasi-LB representation of the space \(A(\Omega; D)\) made of absolutely convex and compact sets.

Now as in [31], once again, for every \(\rho \in \mathbb{N}^\mathbb{N}\), we may successively introduce the sets

\[B_{D, r_1, \ldots, r_n} = \bigcup \{B_{D, \sigma} : \sigma \in \mathbb{N}^N, s_1 = r_1, \ldots, s_n = r_n\} \]

\[F_{D, r_1, \ldots, r_n} = \text{span} B_{D, r_1, \ldots, r_n} \]

for every \(n \in \mathbb{N}\) and

\[F_{D, \rho} = \bigcap_{n=1}^{\infty} F_{D, r_1, \ldots, r_n}. \]

One can describe directly these sets in our case. In particular, one gets \(F_{D, \rho} = A_{\rho'}(\Omega; D)\). This provides another way to establish that, for every \(\rho \in \mathbb{N}^\mathbb{N}\), \(A_\rho(\Omega; D)\) is a Fréchet space.

Definition: If \(D = \{u_j : j \in \mathbb{N}\}\), we have

\[A(\Omega; D) = \bigcup_{\rho \in \mathbb{N}^\mathbb{N}} A_\rho(\Omega; D) \]

and, for every \(\rho, \sigma \in \mathbb{N}^\mathbb{N}\) such that \(\rho \leq \sigma\), the canonical injection from \(A_\rho(\Omega; D)\) into \(A_\sigma(\Omega; D)\) is continuous. Therefore we may endow \(A(\Omega; D)\) with the locally convex topology \(\tau\) of the inductive limit of these Fréchet spaces. Of course \(\tau\) is finer than the topology of \(A(\Omega; D)\) but we must insist on the fact that \((A(\Omega; D), \tau)\) is not an (LF)-space.

However some results similar to those obtained in the case when \(D\) is finite, can be established.
On the Existence of Holomorphic Functions 323

Definition: If \(\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^\mathbb{N} \), the subset \(D = \{ u_j : j \in \mathbb{N} \} \) of \(\partial \Omega \) is \(\rho \)-regularly asymptotic for \(\Omega \) if the restriction of the map \(T \) to \(A_\rho(\Omega; D) \) is surjective.

Theorem 4.3: Let \(D = \{ u_j : j \in \mathbb{N} \} \) be a subset of \(\partial \Omega \) having no accumulation point. The following conditions are equivalent:

(a) \(D \) is regularly asymptotic for \(\Omega \).
(b) For every \(j \in \mathbb{N} \) and every sequence \((c_n)_{n \in \mathbb{N}} \) of complex numbers, there is \(f \in A(\Omega; D) \) such that \(f(z) \approx \sum_{n=0}^{\infty} c_n (z - u_j)^n \) at \(u_j \).
(c) There is \(\rho \in \mathbb{N}^\mathbb{N} \) such that \(D \) is \(\rho \)-regularly asymptotic for \(\Omega \).

Proof: (a) \(\Rightarrow \) (b) and (c) \(\Rightarrow \) (a) are trivial.

(b) \(\Rightarrow \) (c): Let us first introduce a sequence \(\rho \in \mathbb{N}^\mathbb{N} \). As \(D \) has no accumulation point, there is a sequence \(\tau = (t_j)_{j \in \mathbb{N}} \) such that the disks \(\{ z \in \mathbb{C} : |z - u_j| \leq 1/t_j \} \) are pairwise disjoint. We set \(r_1 = t_1 \) and obtain the other elements as follows, by induction. If \(r_1, \ldots, r_m \) are determined, we denote by \(d_m \) the distance of \(u_{m+1} \) to

\[
H_m = K_m \cup \left(\bigcup_{j=1}^{m} \left\{ z \in \mathbb{C} : |z - u_j| \leq \frac{1}{t_j} \right\} \right).
\]

As \(\{ u_{m+1} \} \) is a regularly asymptotic set for \(\Omega \), \(u_{m+1} \) is not an isolated point in \(\partial \Omega \); therefore there is \(v_m \in \partial \Omega \) such that

\[
0 < |v_m - u_{m+1}| < \inf \left\{ \frac{d_m}{4}, \frac{1}{t_{m+1}} \right\} \quad \text{and} \quad d(v_m, H_m) \geq \frac{d_m}{2}.
\]

Then we choose \(r_{m+1} \) in \(\mathbb{N} \) such that \(r_{m+1} \geq t_{m+1} \) and \(1/r_{m+1} < |v_m - u_{m+1}| \).

As \(\{ \eta_{u,n} : u \in D, n \in \mathbb{N}_0 \} \) is a subset of the dual space \((A_\rho(\Omega; D), P_{D,\rho})' \), the elements of which are linearly independent, by Theorem 1.1, all we need to prove is that, for every \(s \in \mathbb{N} \), the vector space

\[
\text{span}\{ \eta_{u,n} : u \in D, n \in \mathbb{N}_0 \} \cap \text{span} V^\circ_{D,\rho,s}
\]

has finite dimension. Let us fix \(s \in \mathbb{N} \) and, to simplify the notations, let us set \(q = P_{D,\rho,s} \) and \(U = V_{D,\rho,s} \). For every \(j \in \mathbb{N} \), we know already that

\[
\text{span}\{ \eta_{u_j,n} : n \in \mathbb{N}_0 \} \cap \text{span} U^\circ
\]

has finite dimension so there is an integer \(N(j) \in \mathbb{N} \) such that

\[
\left(\alpha_1, \ldots, \alpha_N \in \mathbb{C} : \alpha_N \neq 0; \; \sum_{n=0}^{N} \alpha_k \eta_{u_j,n} \in \text{span} U^\circ \right) \Rightarrow N \leq N(j).
\]

To conclude, it is then sufficient to prove that, if

\[
\zeta = \sum_{j=1}^{m+1} \sum_{n=0}^{N} \alpha_{j,n} \eta_{u_j,n} \quad \text{with} \; m \geq s
\]
belongs to span U^o, then a) and b) hereunder hold.

a) We have $\alpha_{m+1,n} = 0$ for every $n = 0, \ldots, N$. Indeed, if it is not the case, let $q \in \mathbb{N}$ be such that $\zeta \in qU^o$ and let l be the greatest integer such that $\alpha_{m+1,l} \neq 0$. We then introduce the polynomial

$$P(z) = (z - u_1)^{m+N} \cdots (z - u_m)^{m+N}(z - u_{m+1})^l$$

and an integer d larger than the diameter of H_m, choose an integer t such that

$$|u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} 2^t > q(s + 2)d^{(m+N)(m+1)}$$

and finally set

$$g(z) = P(z) \cdot \left(\frac{d_m}{2(z - v_m)} \right)^t$$

for all $z \in \Omega$.

It is clear that g belongs to $A_q(\Omega; D)$. Moreover from

$$\left| \frac{d_m}{2(z - v_m)} \right|^t \leq 1 \quad \text{for all } z \in H_m$$

we easily get

$$q(g) \leq \sup_{1 \leq j \leq s} p_{u_j, r_j, s}(g)$$

$$\leq d^{(m+N)(m+1)} + (s + 1)d^{(m+N)(m+1)}$$

$$= (s + 2)d^{(m+N)(m+1)}$$

hence g belongs to $s(s + 2)d^{(m+N)(m+1)}U$ therefore

$$|(g, \zeta)| \leq q(s + 2)d^{(m+N)(m+1)}.$$

But we also have

$$\left| \frac{d_m}{2(u_{m+1} - v_m)} \right|^t > 2^t$$

hence

$$|(g, \zeta)| = \left| \sum_{j=1}^{m+1} \sum_{n=0}^{N} \alpha_{j,n} g^{[n]}(u_j) \right|$$

$$= \left| g^{[l]}(u_{m+1}) \right|$$

$$= |u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} \left| \frac{d_m}{2(u_{m+1} - v_m)} \right|^t$$

$$> |u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} \cdot 2^t$$

$$> q(s + 2)d^{(m+N)(m+1)}.$$

Hence a contradiction.

b) We have $\alpha_{j,N} = 0$ if $N > \sup\{s, N(1), \ldots, N(s)\}$, by a proof very similar to the one of Theorem 3.5.

The proof is now complete.
Corollary 4.4: If $D = \{u_j : j \in \mathbb{N}\}$ is regularly asymptotic for Ω, then the kernel of T has 2^{\aleph_0} as algebraic dimension.

Proof: The proof of Corollary 3.4 applies here too: one has just to replace $r \in \mathbb{N}$ by some appropriate $\rho \in \mathbb{N}^\mathbb{N}$ and the space $A_r(\Omega; D)$ by $A_\rho(\Omega; D)$.

Proposition 4.5: Let $D = \{u_j : j \in \mathbb{N}\}$ be a subset of $\partial \Omega$ having no accumulation point. This implies the existence of a sequence $\tau = (t_j)_{j \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}$ such that the disks $\{z \in \mathbb{C} : |z - u_j| \leq 1/t_j\}$ are pairwise disjoint. Then the following conditions on a sequence $\rho \in \mathbb{N}^\mathbb{N}$ verifying $\rho \geq \tau$ are equivalent:

(a) D is ρ-regularly asymptotic for Ω.

(b) For every compact subset K of Ω and every $j_0 \in \mathbb{N}$, there is $p \in \mathbb{N}$ such that, for every $h > 0$, there is $f \in A_\rho(\Omega; D)$ verifying

$$|f(z)| \leq 1 \quad \text{for all } z \in K \cup \left(\bigcup_{j=1}^p \left\{ u \in \Omega : |u - u_j| \leq \frac{1}{r_j} \right\} \right),$$

and

$$|f^{(p)}(u_{j_0})| > h.$$

Proof: The proof of (a) \Rightarrow (b) is essentially the same as the one of the necessity of the condition in Theorem 3.6: one just has to replace $A_r(\Omega; D)$ by $A_\rho(\Omega; D)$.

Slight modifications to the proof of the sufficiency of the condition in Theorem 3.6 give (b) \Rightarrow (a). One just needs to replace $A_r(\Omega; D)$ by $A_\rho(\Omega; D)$, to fix j in \mathbb{N}, to impose moreover the condition $s > j$ on s, to replace $V_{\tau, r, s}$ by $V_{\rho, p, s}$, to set

$$\mathcal{K} = K \cup \left(\bigcup_{j=1}^p \left\{ z \in \Omega : |z - u_j| \leq \frac{1}{r_j} \right\} \right)$$

and

$$P(z) = (z - u_j)^{N-p_j} \prod_{1 \leq k \leq s, k \neq j} (z - u_k)^N,$$

and to replace $p_{\tau, r, s}$ by $p_{\rho, p, s}$.

Theorem 4.6: Let $D = \{u_j : j \in \mathbb{N}\}$ be a subset of $\partial \Omega$ having no accumulation point. This implies the existence of a sequence $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}$ such that the disks $\{z \in \mathbb{C} : |z - u_j| \leq 1/r_j\}$ for $j \in \mathbb{N}$ are pairwise disjoint.

If $\partial \Omega$ is quasi-connected at every point of D, then D is ρ-regularly asymptotic, hence regularly asymptotic, for Ω.

Proof: The proof is very similar to the one of Theorem 3.7. One fixes j in \mathbb{N}, sets

$$\mathcal{K} = K \cup \left(\bigcup_{k=1}^j \left\{ t \in \mathbb{C} : |t - u_j| \leq \frac{1}{r_j} \right\} \right)$$

and chooses A with the condition $\delta_2(u_j, A) < 1/r_j$ instead of $\delta_2(u_j, A) < 1/r$. The conclusion then follows from the preceding proposition.
5. Generalizations of Carleman’s results

We begin with the following

Theorem 5.1: If D is a non-empty subset of $\partial \Omega$ having no accumulation point and if $\partial \Omega$ is quasi-connected at every point of D, then D is regularly asymptotic for Ω.

Moreover, for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}\}$ of complex numbers, the set of the elements f of $A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z - u)^n$ for every $u \in D$ is a linear variety of dimension 2^{N_0}.

Proof: Having no accumulation point, D must be countable. So if D is finite, this is Theorem 3.7 and the Corollary 3.4, and if D is infinite but countable, it is a trivial consequence of Theorem 4.6 and of Corollary 4.4.

The following result gives an easy way to verify that $\partial \Omega$ is quasi-connected at some point.

Proposition 5.2: If the connected component C_u of $u \in \partial \Omega$ has more than one point, then $\partial \Omega$ is quasi-connected at u.

Proof: We are going to use twice the following property (cf. [6: (10.1)]): If A is a closed, connected subset and G a bounded, open subset of \mathbb{C} such that $A \neq G \cap A \neq \emptyset$, then every connected component of $G \cap A$ has some point in the boundary of G.

Given $0 < \varepsilon < \delta < 1$, as C_u contains more than one point, there is $r_1 \in (0, \delta/2)$ such that $C_1 = C_u \cap \{z \in \mathbb{C} : |z - u| \leq r_1\} \neq C_u$. Let C be the connected component of C_1 containing u. Of course, C_u is a closed, connected subset and $b = \{z \in \mathbb{C} : |z - u| < r_1\}$ is a bounded, open subset of \mathbb{C} such that $C_u \neq b \cap C_u \neq \emptyset$. Therefore there is $z_1 \in C$ such that $|z_1 - u| = r_1$. Now we chose $r_2, r_3 > 0$ such that $r_2 < \varepsilon r_1$ and $r_1 < r_3$, and set $G = \{z \in \mathbb{C} : r_2 < |z - u| < r_3\}$. So we have $u \notin G$ and $z_1 \in G$, hence $C \neq G \cap C \neq \emptyset$ and the connected component P of $C \cap G$ containing z_1 contains a point z_2 of the boundary of G. As $|z_2 - u| \neq r_3$, we must have $|z_2 - u| = r_2$. Therefore P is a connected subset of $\partial \Omega$ such that $\delta_1(u, P) = |z_2 - u| = r_2$ and $\delta_2(u, P) = |z_1 - u| = r_1$ hence $\delta_2(u, P) = r_1 < \delta$ and $0 < \delta_1(u, P) = r_2 < \varepsilon r_1 = \varepsilon \delta_2(u, P)$.

Combining the previous two results, we get the following statement which constitutes the practical form of our result. Let us mention that it generalizes Proposition 10 of [4]:

If the connected component of $u \in \partial \Omega$ has more than one point, then $\{u\}$ is regularly asymptotic for Ω

as well as Corollary 1 of [4]:

If Ω is simply connected, then every point of $\partial \Omega$ is regularly asymptotic for Ω.

Theorem 5.3: If D is a non-empty subset of $\partial \Omega$ having no accumulation point and if the connected component of every point of D in $\partial \Omega$ has more than one point, then D is regularly asymptotic for Ω.
Moreover, for every family \(\{ c_{u,n} : u \in D, n \in \mathbb{N} \} \) of complex numbers, the set of the elements \(f \) of \(A(\Omega; D) \) such that \(f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z - u)^n \) at every \(u \in D \) is a linear variety of dimension \(2^{N_v} \).

References

Received 01.02.1993; in revised form 22.09.1993