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Functional-Differential Equation 
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Abstract. The general solution of a functional-differential equation with non-Volterra operator 
is found by its reducing to an infinite system. An integral representation of the general solution 
of this system is presented. Properties of the kernel of this system are studied. 
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Consider the quasi-linear functional-differential equation 

Lx = Fx	 (1) 

where £ is a linear functional-differential operator and F is a nonlinear superposition 
operator. As the most relevant example of equation (1) we mention the equation 

(Cox)(t)	d(t) + B(t)(g(t)) + A(t)z(h(t)) = f(t, x(t)) (t E [0,	
2 

(<0). 

Here x(t) E in", t E [0, co), and A(t), B(t) are n x n-matrices whose entries are measur-
able essentially bounded real functions on the half-line. The functions g, h: [0, oo) —' JR 
are measurable, and the function 1: (0,-oo) x in" —' in" is locally summable 

Assume that g has the property that, for all measurable subsets e C [0, oo), 

m(e) = 0 implies m(g'(e)) = 0	 (3) 

where m is the Lebesgue measure. It is well known that condition (3) is necessary and 
sufficient for the following implication: if a function z : (—oo, oo) —' 1W' is measurable, 
then the superposition z(g) : [0, ) —' 1W' is also measurable. 

Denote by D[5 , b] the space of all functions x: [a, b] —' in" for which the norm 

X IID(J = II x IIct. e i + IIIIL..,1 
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is finite; here is the space of summable functions x : [a, b] -, JR Th . Similarly, D(o,,) 
and L(o,) are the spaces of locally absolutely continuous and summable functions, 
respectively. It is possible to define a topology in these spaces by a countable system of 
semi-norms 

II X IID(000) = II X IID(oØ )	and	II 2 IIL IoOO) = II x IILco, i	(fi € liv). 

In the study of equation (1),. two main different cases have to be distinguished. 

Case 1: The Operator A is Volterra. In this case it is enough to require 

g(t) <t	and	h(t) <t	(t € [0, oo)).	 (4)

Then, the conditions for representing the solution of the (linear) problem 

(Cox)(t)= 1(t) (t € [0,00))	and	x(0) = 0	 (5)

in the form

X(t) / C(t, s)f(s) ds	 (6) 

are well-known. The substitution 

	

X(t) = (Wf)(t) JC(t,3)f(s)ds	 (7) 

reduces problem (1) to the equation 

	

1(t) = (FWf)(i)	(t E (0, oo))	 (8) 

in the space L1o,) . The existence of the Cauchy matrix Qt, s) and its properties have 
found a great deal of attention in many papers and monographs (see [1, 4] and references 
there). The neutral-type equations were studied in detail in [2]. 

Case 2: The Operator A i3 Non- Volterra. Assume, for example, that 

g(t) :5 t + 1	and	h(t) :5 I + 1	(1 E [0, co)).	 (9) 

In this case the solution of problem (5) is in general not representable in the form (6). 
So, the question about representing the general solution of the equation 

	

(Cox)(t) = 1(t).	(t € [0, oo))	 (10) 

becomes relevant. We will try to obtain an integral representation for the solution of 
equation (10) by reducing it to a countable system of functional-differential equations. 
Denote

X?

	

(t) = X(1_1,I)(t)x(t)	(I E [0, oo), i € liv)
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where X(s-1,i) is the characteristic function of the interval [i - 1,i). Since x(t) = 
Ex(t), equation (10) takes then the form 

00	 00	 Co 

i ±(t) + B(t)	(g(t)) + A(t) E x(h(t)) = f(t) (t E [0, oo)) 

()() =	= 0	( <0; i E jAr). 

Furthermore, assume that m(h'(i)) = 0 for i EIV. From (9) we get 

	

1+1	 i+1 
k(t) + B(t)	(g(t)) + A(t) > x(h(t)) = f(i) (t E [i - 1, 1])	

(12) 

	

= x,() = 0	( <0;i E lAr).

For r E [0, 1] and i E N, set 

x1(r)=x(i-1+r), B(r)=B(i-1+r), A(7-)=A(i-1+7-) 
f(r) = Ai - 1 + r),	g(r) = g(i - 1 + r),	hi(r) = h(i - 1 + r).

In this notation we get the following system of equations (r E [0, 1]): 

i+1	 1+1 

	

(C 1 x)(7-) 1 4 (r) + B 4(r)	xk(g.(r)) + A 8 (r) E Zk( h 1( T )) = f,(r) 

	

= Xk() = 0	(C E (—oo,0)U(1,00); k = 1,2,...,i +1;i € EN).

Now, if x 1 , X2,... solve the problem (13) with boundary conditions 

x i (0)=c (aEiR")	and	x,(0)=x_i(1) (i=2,3...),

then the function

	

x(t)=x,(t—i+1)	(t€[i-1,i]) 

solves the problem (10) with initial condition x(0) = c. The last equality along with our 
study of boundary value problems for infinite systems of functional-differential equations 
[5] leads to the following 

Lemma 1. Let the problem 

	

(L,x)(t) = f(r)	and	x 1 (0) = ai	(r E [0,1]; i E N) 

be uniquely solvable for every Cii € Jflfl and fi E L10 , 1 1 (i € N). Then the general 
solution of equation (10) has a representation 

X(t) = X4 (t - i + 1)c + f Ci(t - i + 1,$)f(s)ds	(t E [i - 1,i])
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where c = (c,x(0),x(1),...) E JR°° and f = (11,12,...). Here Xi - is the i-th section of 
the infinite fundamental matrix X for the system (18), and G i is the i-lh section of the 
infinite Green matrix C of the preceding ,stem. 

In [5] it is shown that, under conditions of Lemma 1, the general solution y = 
(21, 22,...) for the system (13) admits a representation 

y(r) = X(r)c + J G(r, s)z(s) ds.	 (14) 

Here X is the infinite fundamental matrix of (13), and C is the infinite Green matrix 
of the solution of (13), subject to the conditions 

x(0) = a	and	x(0) - x(1) = 0	(i E iN). 

Let us study the properties of the infinite Green matrix for the system (13) from a more 
general viewpoint. Consider an infinite system of linear functional-differential equations 

	

Mx = 1	 (15) 

where M Dj 11 - is a linear bounded operator. Here D 11 and L'11 are 
the spaces of functions x = (21,22,...) : [0,1] -+ JR°° with absolutely continuous 
and summable on [0,1] components, respectively. Denote by D, 11 and L 1) (/3 = 
0,1,...) the spaces of absolutely continuous and summable /3-dimensional functions 

= (21,22,... ,x) [0,1] -p R, respectively. Let K$ denote the projection of 
a vector x = (21,22,...) with an infinite number of components to the vector x = 
(2 1, 22,... , xp) consisting of the first /3 components of the vector x; thus, x = Kx. A 
system of semi-norms in D 11 and	is defined by the equalities 

ii x D 2o= IIKx I D5	and	II x "	- IIKx II Ls	(0 E 1W). 
10,11	 (0,11	 IIL11 -	(0,11 

Let us give several definitions, which are necessary for what follows, from the theory of 
linear equations in Fréchet spaces (see [5]). 

Let E and e be complete countably normed spaces with, systems of semi-norms 
and II 11 ( '6) (a,/3 E IV), respectively. A linear operator T : E -+' I is said to

have the V4, property (T E V) if for every natural /3 there exists a natural number (/3) 
such that the equality	= 0 implies the equality II T II	= 0. Evidently, any
bounded operator T: E - I possesses this property. 

Two elements C, q E E are said to be or -equivalent if they coincide in the a-seminorm, 
i.e. 11C - = 0. Identifying a-equivalent elements, we get a Banach space E' of 
elements °, where the norm is defined by the a - semi-norm of the space E. 

Given T € V,, for every 0 € iN one can define a linear operator Tp :	-' 
by putting

Tx = (Te)	(x =	€ E).
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The space of sequences g = (ga, , g, 2 ,...) of linear bounded functionals gj : 
? (g ) € (E)a]*) is said to be F-adjoint to the space E and is denoted by E (\ = 

c71, A2 .... fl . n the case ofA k =k(kEW)we will skip the index. 
For k € BV, denote by T : [Ek ]*	[E] the adjoint operator to Tk : E( k) _, 

The operator T' = (Tj,T,...) :1' - E,	= *ji(k) is then called the V-adjoint to
the operator T : E - E. Likewise, the equation 

T'g=f	(9 Ee',fEE,;.\k=0(k),kE1N) 

is called Vs-odjoimt to the equation T = 
We return now to equation (15). Let M E V. Since x(t) = f	) ds + x(0) (t E

[0, 1]), equation (15) is reducible to the form 

	

(Qi)(t) + P(t)x(0) = 1(t)	(t E [0, 1]) 

where Q = MV, (Vy)(t) = f y(s) ds and P is an infinite matrix whose entries are 
essentially bounded functions on 10, 1]. If the problem 

(Mx)(t) = 1(t),	x(0) = 0	 (16)

is uniquely solvable for every f € L 11 , then by virtue of [5: Theorem 7] we have 
X(t) = f G(t, s)f (s) ds. Applying the Green operator to both sides of (Qi)(t) = f(i) 
we get

/ 
G(t, s)(Q)(s) ds = 

/ 
x(o,tI(s)(I)(s) 

Hence, for every t E [0, 11 and a E iN we conclude that 

J G0 ,(t, s)K()[L1J](Q)(s) 
0

=

0 

= I X[Olt](S)ICIO(O(Cr*))Ko(o(.)).i(s)ds 
0 

where 1o('(a)) is the result of adding [((a)) - a] zero columns to the identity matrix 
I,. Consequently,

	

= X(o,tJ( 3 )Iaci	(t E [0,1],0, € IV). 

Thus, for every t € [0, 1] the matrix G(t,.) satisfies the V,,-adjoint equation in the second 
argument. We summarize with the following
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Theorem 1. For every t E [0, 1] the Green matrix for the problem (16) satisfies 
the matrix equation in the second argument [Q'G(t, .)](s) = X[o,t]( s )I (s € [0, 1]) where 
I is the infinite identity matrix. 

When applying the fundamental principles of both linear and nonlinear functional 
analysis to functional-differential equations, one often has to require also the compact-
ness (or weak compactness) of the operators involved, rather than just their continuity. 
An operator T: E -' E, T E V4, is called V-completely continuous (respectively, weakly 
V -completely continuous) if the operators T : -p V are completely continu-
ous (respectively, weakly completely continuous) for every natural 0. The proof of the 
following theorem is straightforward (see [61). 

Theorem 2. Let Q = J - K, where K : L 11 -	is a weakly V-completely
continuous operator. Then the following holds: 

1. For every s E [0, 1], G( . , s) is absolutely continuous on [0, s) U (s, 11, and 

G(s + 0, s) - G(s - 0, s) =I. 

2. For every z E L 11 , the equality 

f G(t, s)z(s)ds = z(t) + J G(t, s)z(s) ds 
dt 

holds. 
S. For every s E [0, 11, G(•, s) satisfies the relation 

s) -I K(t, r)G(r, s) dr + P(t)G(O, s) = K(t, s). 
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