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Uniqueness Theorem's' 
in Linear Theory of Microporous Solids 

T.G. Gegelia and L. Jentsch 

Abstract. This paper deals with uniqueness theorems for external boundary value problems 
and a contact problem for a system of differential equations , of the linear' elasticity theory of 
nicroporous solids. Here we have derived an asymptotic representation of the solution of this 
system in a neighbourhood of infinity which has enabled us to prove new uniqueness theorems. 
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1. Differential equations 
The system of differential equations of the linear elasticity theory of microporous solids 
is written in the following form (see [1,3, 6, 71):

=—üf	 (1) 
x 0 - 60 + ' div u = 0	 (2) 

where u = (u i ,u 2 ,u3 ) is the displacement vector, 0 is the dilatation, A, P are the Lamé 
modules of the solid part of the microporous material, o is the density, and , , x are 
further material constants, whose physical properties are discussed in [3,6, 7]. 

The fundamental equations (1),(2) we can write in the following matrix form: 

B(0) U(x)T +F(x)T = 0,"	,	 (3) 

where

U = (u i ,uz,u3,0),	F (OfI,9f2,f3,0) 
U, =u, (i=1,2,3) and U4 =0,	F,=f (i=1,2,3) and F4=0 
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B(0) = liBik(Ox)114x4
82 

	

B1k(0) = ö k/L1 +y	(i,k.= 1, 2,3) and B14 (0) = - , P_ (i = 1,2,3) 
OX 1 OXk	 Ox, 

B4k (0)=7— (k=1,2,3) and B44(0)=x-8, 

'7 = ) + j + '7, 6 k is the Kronecker symbol. It is assumed that the material constants 
',I, 5,'7,x satisfy the conditions (see [6,71)

2 >0.	 (4) 

The derivation of asymptotic representations mainly rests on the behaviour of the funda-
mental solution of the considered system.	 - 

2. Fundamental solution 
The fundamental solution of equations (3) can be written in the following form (see 
[1,3,6,7]; i,k= 1,2,3): 

	

r(x) = 11Fikii4x4	 S	 (5) 

	

/	 2	 2	_1!i 
r1k 1 1 5ik	0 lxi	/AXi2 8	1 - e 

(X) = --I--- 4xjz ixi	2q Ox 1Oxk	q1 2 0x 10xk	lxi 
1!1 

r14 (x)
1 17 0 1—c 

=

	

4rql axi	lxi 
11701—c.'.	 e" 

	

•	r41(x) = ----	, r4 ) = -_____ 
4xq1 Ox,	lxi	 47rxixI 

= (,X+2j+'7)5'72, q2=(A+IL+7)6-772 

	

•	 in2 = (+2+'7)-. 
qi 

By virtue of the inequalities (4) we have 

.\ + 2JL+'7>-+JL>0, 2 

	

ql =	5+(X+L+'7)ö77 >o>0. 

Let us establish the properties of the fundamental matrix p = ii 1'1 1i4x4 in a neighbourhood 
of infinity. In (5) it was used that 

m=+/(.X+2p+'7)&	 (6) 

By virtue of (5) and (6) we have the following estimateS: 

iO°r(x)i < Cx'4' (i, k = 1,2,3) 

	

jari4(X)j :5 Cx H (i = 1, 2,3)	 (7) 

	

io°r4k (x)i	Cx2	(k = 1 1 213) 
i0°f4 (x)i :5 Cx'.
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for some positive number C. Here a = (a i ,a2 ,a3) is an arbitrarymultiindex, n is an 
arbitrary non-negative integer. 

The derivation of the asymptotic representation formula for the solution of the system 
(3) in a neighbourhood of infinity [2] is based on the Green and Somigliana formulas [1]. 

3. Integral theorems 
Let fl be a bounded domain in JR3 with a piecewise smooth boundary ô, U = (U1 , U2, 
U3 , U4 ) E C' (0) fl C2 (l), V = ( V1 , V2 , V3 , V4 ) € C 1 () fl C2(Il), LI = ( vi, 1/2,1/3) the unit 
normal to 812 at the point y, external with respect to ft Then we obtain 

J (V1(z)Bk(0)uk(z) + 2W (U, V) (z)) dz =J V1 (y)Rk(O, v)Uk(y) dyS,	(8) 

where W(U, V) is a bilinear form:

•	W(U,V) =

lou,	ou,\ by, 
+—	— + — — + 

Ov, 
- 

i,.ri \Ox.,	Ox / \0x1	Oz 

i	30v	i	30u• -u4	- 
iiX 

1	1	3ou4av4 +U4 V4 + 

R(O,v) =	IIR4k(0,1/)II4x4 

Rjk( Ov, z/ ) =	&k41/
	+(A+  

i)u_ + 
R44 (O,zi). =	-7714,	l 4i (0,ii) = 0	(i = 1,2,3) 

• R44 (0, v)
0 

=
1=1

(9) 

(i,k= 1,2,3) 

In the sequel (as in formula (8)) the summation sign E will frequently be omitted and 
the index repetition in the monomial will imply summation from 1 to 4. 

Because of the symmetry W(U,.V) = W(V, U), Green's second identity follows from 
equality (8):

J (vs(z)B,k (02 )uk (z) - 

J (Vi 	v)Uk (y) -	 Rki 	u)V5 (y)) d, S.	(10) 

Here summation is taken over the index i and k from 1 to 4. 
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Let U E C 1 (2) n C2 (ci) and, for all x E ci, B(0)U(x) 0. Then the Somigliana 
formula is valid [1], i.e. for all x E ci we have (j = 1, 2,3,4) 

U(z) = 	(u(y).k(aY, V)rk(Y - x) - Fkj(y - z)Rk(ô, u)U1 (y)) dS. 
an 

4. Formulation of the problems 
We consider the following boundary value problems and a general contact problem for 
the system of differential equations of the elasticity theory of microporous solids. Let ci 
be a bounded domain in 1R3, 

ci- = 1R3\, S = oc = oci. 

Find in Q1 a solution U of system (3) with one of the boundary conditions below: 

• Problems (1, 1) : For all y E S let 
U+ (Y) =	lim U(x) = (y), U(y) = lim U(x) = 

Q+x_.yES	 flz-.yES 

• Problems (1,2) : For all y E Slet 

U(y) = (y) (i = 1,2,3), x (°"') (y) = 

• Problems (2, 1)' For all y € S let 

(R,k(O,v)Uk)(y)	Vi (Y) (i	1,2,3), U4 (y) = 

• Problems (2,2)-*: For all y E S let 
(R(O, z')U)(y) = (y). 

Here 0 = ( 1 , 02 , 03 , 4 ) and w = (o1,2,W3,'4) are given functions on S. It will 
be assumed below that a microporous medium, with the material constants A+,11, 

occupies domain 11+ and a microporous medium with the material constants 
.\, r, ,j, 6- , occupies domain ci. Now let us formulate the general contact prob-
lem. 

• Problem (3) Find in 0 and in Q_ a solution U of the system 

B(ôr)U(x) = 0 for all  E cit ;	B- (a1 )U(i) = 0 for all x E ul 

with the transmission conditions for all y E S 

U+ (Y) - U- (Y) = 0(y) 
(R(Ov,L')U)(y) - (RT(O,v)U)(y) = 

Here B+, W are the operators B, R formed with the material constants )c, A 71, 6, 
X+ and B, R are the operators B,R with the material constants
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5. Uniqueness theorem 
A vector U = (U1 ,U2 ,U3 ,U4 ), defined in f, we call regular in	if U E Cl) fl 
C'(F). A vector U, defined in	, we call regular in ci if U E C2(f) fl C'(Ilj and
if it admits in a neighbourhood of infinity the estimates 

	

U(x)=O(j-'-1), ô) =o()•
	

(ii)
 axi

Let us formulate the uniqueness theorem of a solution of problems (1, 1) 1 , ( 1 , 2)± , (2, 1)±, 
(2, 2), (3) (see [11). 

Theorem 1. The problems (1, 1), (1,2)± ,(2,1)- -,(2,2)-, (3) at best have one regular 
solution: The difference - of two regular solutions of the problem (2, 1) or (2,2) is in the 
set span(A 1 ... A6), i.e. represented in the form 

6
CA (Ck = const) 

k=1 

where
/3	3	3 

	

Ak = (41,42,43,0) (k = 1,2,3) and Ak+3 =	E1,11 X1, E E k2I XI,	Ek3lX6 o) 

6kjI - symbol Levi-Civito. 

The uniqueness theorems for the external boundary value problems are valid only 
under some restrictions of the class of solution at infinity [1,4,5]. These restrictions 
arose naturally from the Green formulas and consist in the requirement that both the 
solution and its derivatives vanish at infinity (see (11)). 

In this paper we will prove the following uniqueness theorem. 

Theorem 2. The external boundary value problems (1, 1), (1, 2)-, (2,1), (2,2) 
and the general contact problem (3) at best have one solution in the class of functions U 
satisfying the conditions

U E C2 (I - ) n CF) 
and in a neighbourhood of infinity 

U1 (x) = o(1) (i = 1,2,3,4).	 (12) 

First we prove the following theorem of the asymptotic representation of a solution of 
the homogeneous system B(0)U(x) = 0 of (3) denoted by (3). 

Theorem 3. Let .S1 be a domain from 1R3 containing infinity, U defined in fl. and 
U E C2 (fl). Let in a neighbourhood of lxi = + 00 

U1 (x) = o(Ixi 1 )	(i= 1,2,3) • and	U4 (x) = o (1x 1'),	(13)
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where p is a non-negative integer. Then in a neighbourhood of IxI = +00 the following 
asymptotic representation is valid: 

U,(z) = U°(x) + E cx", 

where U° is a regular solution of equation (3)o in the domain l, i.e. U € C 2 (11) and, 
in a neighboorhood of IxI = + 00, 

IO'U°(x)I < IxI-1 (j = 1,2,3),	I&U°(x)I 

where j3 = (1,f32,03) is an arbitrary multiindex. 

Theorem 3 can be used, in particular, for Proof of Theorem 2. Indeed, let U be the 
difference of two solutions of the problem (p, q) or (3) satisfying the conditions (12). 
Then (p = 0) the representation

(J, (x) = U°(x) + C3	 (14) 

holds. From (14) and (12) we have C, = 0 for j = 1,2,3,4. Therefore (J,(x) = U,°(x). 
From Theorem 1 there follows U1 (x) = 0. Thus Theorem 2 is proved I 

6. Proof of Theorem 3 
Let 11 be a domain in 1R3 containing a neighbourhood of infinity, x € Il, and r> 1 chosen 
such that	

€ B (o, ) and 1R3\B (o, ) c a 
We write the Somigliana formula for the domain Il,. = B(0, r) fl Q. We will have

U1(x)	J (u(y)ri.k(oY , V)rk(Y - x) - I'j(y — x)Rk (ô, v)U(y)) dS 
an
+ J (U(y)R(ô,, v)rkJ(y - x) - rk,(Y - x)R(ö,, v)U1 (y)) dES. 

8B(O,i-) 
Let

U°(x) = J (uI(y)R1-k(ô, V)rk(Y - x) - Fk,(y - x)Rk,(O, zi)U* (y)) dS 
an 

T1 (x) =	J (U1 (y)Rik (ô,v)1'k(y - x) - rk(Y - X)Rk((9y,V)U(y)) dS. (15) 
aB(Or) 

Then
(J,(x) = U°(x) + T,(x).	 (16) 

It is not difficult to prove that (1(0) is a solution of the equation (3)0 . Let us establish the 
properties of the fundamental matrix	 S 

= I',k(x—y).
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We have

B,(o)U°(x) = J B,i(ar)uj(y)R,k(ov,u)rkj(y - z)dyS 

_J B:,(ô)l',,,(y - x)Rk(O, v)U 1 (y) dS 
an 

= J U1 (y)R(ô, V)B,,(o)r,k(Z - y) dS 
an 
_J B,3 (a4r,( - Y)Rk (OV ,z/)Ui (y)dY S = 

an 
Now we will prove that U° is a regular vector, i.e. in a neighbourhood of lxi = + 00 

it admits the estimates (11). Moreover, 

CC o°uJo(x)I	xI (j = 1,2,3)	and	l0UO)(x)l 

Indeed, this follows from (7). Let us establish the properties of the integral T,(x) in a 
neighbourhood of infinity. If x 54 y, then Fk,(y —x) is an analytic function. We represent 

- x) in a neighbourhood of the point y by the Taylor formula: 

i 
rk,(y—x ) =

	

	
IaI 

-	x b"l'k,(y)+ Ski (x,y)	 (17) 
IaIp

(-1)1°lx° Ski (x , y ) =	 8a at 
IoI=p4-1 

where p is an arbitrary non-negative integer, a is a multiindex and 0 < 0 < 1. First we 
have to prove that

aSk,(x,y) = E (_1)kIx0oQ+pr( - O jx),	 (18) 
aI=p+1 

where fi is an arbitrary multiindex and 0 < 0 1 < 1. The differentiation of (17) gives 

1Io IX 
O'3 °Fk(y)+O Ski (x,y).	 (19) 

IaI< p	 - 

Indeed, using the Taylor formula we can represent, O[',(y - x) in a neighbourhood of 
the point y as

ork(Y - x) =	 fk(y) + S(x, y)	 (20) 
I°I<p	a!

1Iol 
S(x,y) =	( ) Z 8a+13F (y - Oix), 0<01 < 1.	(21) a! IaIp+1
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Therefore
ôSk(x,y) = S(x,y).	 (22)

By virtue of (22), (21), (20) and (19) we have(18). 
We will estimate T(x) in a neighbourhood of lxi = +00. But for all y E ÔB(0,r) 

(Il = r) and for xE B(0,) (I x I < 801 0 < •Oi <1, we have 

ly - Oixi^! 
7r 
--,= 71 j 

 -j--• 

Hence by virtue of (7) we obtain the estimates 

1O 0I'k1 (y - Oiz)I	C,,3(x) i - Oixi_0i 

	

1-2—P—I13I	for k,j = 1,2,3 
lô 0fk4 (y - Oix)l;	.Ca,p(x) i - Oixi2' 

	

< C,,0(x) 1-3-1-IøI	for k = 1,2,3 

	

- Oix)l 15 Ca(X) 1-3--I3I	for k = 1,2,3 

- Oix)l :5 C,,,0(x)	--p-IøI 

where n is an arbitrary non-negative integer. Hence we obtain the estimates 
lOSkj (x,y)i ^ C, ,p(x) y l 2 "	for k, J_ = 1,2,3 

	

Ik =
k = 4 and j = 1,2,3

lSkj (x,y)i	Ca,p(X)iyi_3_1H	for 
	1,2,3 and j = 4

(23) 

lS44 (x 7 y)1.	Cc,,p(x) iYi' 

The estimates (23) and (9) imply the following ones: 
lRjk(8Y,zi)Skj(x,y)i :5 C(x)y 3 '	for i,j = 112,3 
i1 k (8y ,V)Ski (X,Y)l 15 C(z) y14P	for i = 4 or j = 4. 

Let us now turn to the -representation (15). We write 

(x) =	j	(> 
(_1)I 

T1	
aIxa 

a!	
) 

a°I',(y) + Sk3(x,y) 
OB(O,i)	 \IcI^p 

- ((_1)Ixo oar()+ sk(x Y )  Rk(av)UI(Y) dS 
I^v 

= E C°(r)x+L(p,r,x),	 (24) 
I a I<p	 • 

where

•	CJ°(r) 
= (_1)II j (u(y)R,(oV,z,)o0rkj(y) 

	

aB(o,r)	 • 

— O°Fkj (y ) Rk1( O , v)U.(y))dS	 (25) 

L,(p,r,x) 
=	f (u1(y)Rk(a,zi)Sk,(x,y) 

8B(O,i)	 - 

-SkJ (x, y)Rk2(O, v)U,(y))dS.	 (26)
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We have to show that in the representation (24) the coefficients CJ' ) (-r) are independent 
Of T. Indeed, let r1 > r and apply Green's formula (10) to the vectors 

U_(U1 ,U2 ,U3 ,U4) and V=(ô°f 12 ,8°F 2 , 9°F32 , ô°I'4) 

in the domain B(0, r1 ) \ B(0, r). When z E B(0, r1 ) \ B(0, r), we have 

Bk(ô)V(Z) = Bk1(ô2 )ô'F,(z)	 = 0 

Bk1 (19)U(Z) = 0	- 

and thus the volume integrals vanish in (10). Therefore we obtain 

J(O°rj(y)ik(ôV , v)Uk(y) - Uk(y)Rk2(O, v)&T1(y))dS 
aB(O,r)

= J (O°I'II(y)Rk(o, u)Uk(y) - Uk(y ) Rk(O , u)O°1'1(y))ds. 
8B(O,r,) 

Here the normals to ÔB(0, r) and OB(0, Ti) are assumed to be external with respect to 
B(0, r) and B(0, r1 ), respectively. The above equality shows that (see (25)) C'(7-) = 

C(Ti ). Now (24) implies that L(p,r,x) is independent of r, too. 
Now we will prove that if (13) is fulfilled, then 

lirnL,(p,r,x) = 0.	 (27) 
T 00 

On account of (27), (24) and (16), we obtain	 S 

U(x) = U1°(x) + T,(x) = (JJ°(x) + > C°x°.	 (28) 
IaI<p 

Thus, if we prove (27), we will obtain (28). 
Let w E Cc0 (1R3) be a real function possessing the properties 

w(y) = 1 ' for	2,	w(y) = 0 for lvi < 	lvi > 3. 

Then the function w(-) ( y ) = w () possesses the properties:	 S 

w(,)= 1 for T	Ill 152T,	w(y)=0 for i y i< ,	$yi	3r. 

Obviously, b = sup3 iO°w(y)I <+oo and, therefore; 

= 
-4-1(a°w) () ^ b0rH .	 (29) 

Introduce the notation
(1)	(i.) S,, (X , Y) = w (y)Sk,(x,y).
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Then S will have the properties: 

Ikj 	y) = 0, 17,k (8,, v)S(x, y) = 0	for all y € ÔB(0, ) 

0	
(30) 

Rt(O,v)S(x,y) = ft,k (ÔV ,z/)Skj (z,y)	for all y  ÔB(0,r).

Hence by virtue of (26) and (30), we obtain 

L(p,r,x) =	J	(U(y)I(O,v)s(x,y) - 
8B(0,r)U8B(0,) 

=	f	(u1(Z)B1k(o)s;)(X,Z) - S(x,z)Bk(ô)U(z))dz 
B(O,r)\B(O,) 

=	f	U1(z)B(ö)SL(x,z)dz. 
B(O,i)\B(O,) 

On account of (23), using the above estimate for Oaw() (see (13) and (29)) we obtain 
U(Z)Bk(ö2)S(x, z) = o fr -3 ) for all z E B(0, r)\B(0, !: ). ' Thus Theorem 3 is proved I 
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