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The Smoothness of the Solution 
to a Two-Dimensional Integral Equation with Logarithmic Kernel 

U. KANGRO 

We observe a two-dimensional weakly singular integral equation with 
logarithmic kernel. The behavior of the higher order derivatives of the 
solution to the equation is examined in case of bounded domain of 
Integration with piecewise smooth boundary. Exact descriptions for the 
leading terms of the derivatives and estimations for the remainders are 
given. 
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1. Introduction. As a rule, the derivatives of a solution to a weakly 
singular integral equation have singularities near the boundary of the 
Integration domain. Descriptions of the singularities or at least esti-
mations of those are needed when effective approximate methods are 
constructed to solve the equation. The case of one-dimensional integral 
equations is analyzed in [1,4,5,7]. In [3,6] the behavior of the derivatives 
of the solution is examined In the case of multidimensional equations. 
In general, these estimations are non-Improvable for the classes of 
kernels considered in [3,6]; typically, the singularities may occur along 
the whole boundary. In [2] a more special equation with logarithmically 
singular kernel is examined: 

	

u(x) = fa(x,y) in I x - y l u (y )dy+f ( x), XEO	 (1) 
0 

where Oc !R 2 is an open bounded set with a piecewise Lyapunov boun-
dary and f and a are sufficiently smooth functions. It Is shown that a 
solution to (1) and its first derivatives are continuous on the closure Ti 

and the second derivatives may have logarithmical or bounded singulari-
ties only at corner points of the boundary 430. Explicit formulas for the 
singular parts of the second derivatives are given. 

In the present paper we continue the examination of a solution to (1). 
We describe the leading singular parts of its derivatives of an arbitrary 
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order depending on the smoothness properties of a, f and 60. In general, 
O may have an "Inner boundary" (a part of boundary where 0 lies on both 
sides of dO). To treat this situation formally, we use the "inner" com-
pletion 0' of 0 Instead of the usual Euclidean closure Ti. A function 
u€C(0*) Is piecewise continuous on C) and may have Jumps on the Inner 
boundary. More complete definitions are given In Section 2. 

2. Definitions and assumptions. Let r be a piecewise smooth closed 

directed curve with the unit tangent vector t(y) (t 1(y) t (y)). ye!'. Then 
( w(y)' I - t (y)\ 

I ) =	
2	Is the unit Interior normal to r at the point y (If c,)2y 

we move along the curve r in the positive direction, then the interior 
Is on the left). Let pp(y) be the angle between the abclssa axis and 
the vector t(y). Denote by P the matrix of rotation by -n/2 and P(y) - 
the matrix of rotation by cp(y). Then 

	

f 0 1\	 (	2(Y) w(y)\ 

	

° k-i o,''	',(y) = k- 1 (y) w2(y))	ye!'. 

For a smooth curve F denote	 -	 - 

	

= {fECm(f): d''f(y) - dmfty')1	M I y- y 'l-}, o<t!gi. 

Let () be an open bounded set. Introduce the Inner distance d0(x',x2) 
between the points X 1 ,X 2E 0 as the infimimum of the lenghts of the 
polygonal paths In C) which connect the points x 1 and x2 . If x1 and x2 
belong to different connectivity components, then let d0(x1,x2)co. 
Denote the completion of () with respect to d.-metrics by 0. Let F be 
the d0-boundary of 0*, that Is r=o* \o . Then F Is the boundary of 0 
with possibly "multiple points", which are different In d0-metrics. 

Assume that separation points y'.... y" divide F Into smooth parts 

	

so that	e[H m ,I1 (F1 )]s , J1.... .a. Assume that there exists a 
8>0 such that the normal w Is m1 times (m!^m) continuously differenti-
able In rns(i,$), where S(y,8)= {x:1x-yI<8}. If w Is discontinuous at 
then put m1 -1. In the following we refer to these conditions as 

Note that G(0,0,it,ø) is the set of Lyapunov curves. 
Denote m	mm	m and, for k0,±l..... 

° J = i, ... .13 

Rk(0Rk(0*,{y JIM J}Jl!&)

re C(y1), if m1>k 
= reC(O*\{yl	

r(x)I^C(i+	f IlnIx-yH, If mçk 
j= i tIx_yhI mJ, If m<k
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where r C(Y)) means that there exists a 8>0 such that r is continuous 
in OflS(yJ ,6). Then Rk())=C(C)) for k<m 0. For example, If 0 is a 
rectangle, then m = -l. J1,2,3,4 and Rk((')C(0), k !;;-2; R_,((I) consists 
of functions which may have logarithmic singularities at the corners 
of 0, and Rk(C)), ka0 includes functions with possible singularities up 
to the order I'-yI'	at the corners. 

Denote 

arg(x) = E(x)Arg(x 1 -4 + 

where E C°(1R 2 ) is such that e(x)l for xeS(yJ, 4 ), and E(x) = 0 for 
xe S(yJ ,8); 8 is chosen so that the point yJ and co can be connected by 
a continuous line lying outside of OflS(y1,8). Outside of the line let the 
function Arg be continuous. 

For a derivative D we define an order of differentiations by 

D-D° 1 , 11.....k 
X aX,, X 

where u° = (O,O), I,.....	{1,2} and ak=0E. 

3. The main result and examples. Now we can describe fully the smooth -
ness of the solution to (1). 

Theorem: Let 0cR 2 be an open bounded set with d0-boundary 
Assume that feCrns (0*) , aeCm+2(0*x0*) and 

equation (1) has a solution in L(0). Then the solution UECm02(0*) 
flcrn+s((*\{yiy"}) and , for IaI=k=2,3.....m2, 

Du(x) 
=

m (2) 
- b j3(y(- j )	arg1(x)] + rk_4(x), 

where rk_4eRk_4(() and 

B(YJ)=(b"(;	'") P2	 (y). 

Corollary: if the functions a, f and the d. - boundary of C) are 
infinitely smooth, then the solution ueC(0). 

Remark 1: Similar result Is also valid for a two-dimensional 
Integral operator with logarithmic kernel. Let a and 0 be as In the 
theorem and let u be such that DueR11 _ 3(0'), Os II'm+ l. Then the 
singularities of the function £a(x.y) inix-yl u(y) dy are described by the 
right-hand side of (2).
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-Remark 2; We may weaken the assumptions for f. Namely, if 
DfeR11 _ 4(0) for 0II 1-m+2, then (2) holds. If for every 0 1-Itm+2 the 
derivative DfeR11 _ 3 (ca), then the singularities of the derivatives of 
a solution to the equation (1) are sums of those described In (2) and 
those of the corresponding derivatives of f. 

Example 1: Let C) be the -unit square, O= (OX x (0,1). Write out 
some singularities of the derivatives of the solution at the point y'(O,O) 
(at the other corners they are similar). Since 

	

/0 1 \s (-1) 1 0 1 \	10 1 \2)) B(y1)=P2[(.)l(y)P(.y)]1 1-i o)	_ o) =	-i o) 
and arg 1 (x)=arctan -bx -, lEo, we get - 

a2u(x) - _a(x,yt)u(yl)arctanI +v(x)

	

ax12	-	 - 
a2u(u) = - a(x, y')u(y1)lnIx-y'I + v1(x), ax1ax2 

a3u(x) = a(x,y')u(y')	X2	+ v2( x )X12+ 2 ax13 

and so , on. Here v and v1 are continuous in a neighbourhood of y' and v2 

has no more than logarithmic singularity at the point y'  

Example 2: Let the boundary of C) be such that y2 1 y1 1 3 In a 
neighbourhoodof the point y(0,0). Then,	- 

I	(-'3ysgny ---------	 -	- 
1	-	-	 - 

The function w Is continuously differentiable, but its second derivative 
is discontinuous at the point y. Therefore m 1 =1 and the solution to the 
corresponding integral equation has continuous derivatives up to order 
3 in the neighbourhood of y. Since	-	- 

Ba(Y') = p2.i [& &)]' P (y') 

(-
0  1 \2 _1211 0\1 0)

	 12 0 1	2
i 0)	\o i)o i	-i o) 

and arg 1 (x)arccot!, xeO, we get 

64uU = -12 a(x,y1 ) u(y) arecot .!t. + VW.ax1ax2	 X2 

a 4 u(x) = a'u(x) 12a(x,y1)u(y')inIx-y'J+v1(x): ox1' 8X4 2 
ox)	12a(x,y1)u( -" I) X2 2 +v2(x), 02 
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where v, v1 and v2 are similar to the previous example. 

Example 3: Let y1 be a cuspidal point of r. Then ø 1 (y.) -1(yl) 
and

Y=Y /0 0 
=	0	 - 

Therefore the leading terms of the singularities will disappear and the 
second derivatives of the solution have no singularities at y t . The third 
derivatives have no more than logarithmic singularity and the derivatives 
of order k (k>3) may have singularities up to power k-3 at the point y'. 

4. The lemmas. In this section we present some auxiliary results we 
need for proving the theorem.	 . 

Lemma 1 (see [11): Let 170 , a part of the d0- boundary of 0, be a 
Lyapunov curve with - beginning and end points y and y 2 , respectively. 
Let the function gEC(0xr0) be such that g(x,)eH°'(l'0). Then 

fg(x,y) Xjf ds = (_l)1 g( x,y1) [ (y-')argj(x)+(_i)'3_(y) Ink _yi ] +v(x), 
I:;,	 J=i 

where veC(O*). 

Denote for x,yeIR 2 , xy 

q(x y) _( t_i )Ik_1 2 \ 
-	2_y2)/Ix_y2) 

Note that 

X2
q(x,y) P- j q(x,y) and Dq(x,y) P c(2(. _)ICtI q(x,y),

ax.

and, for yer, 

	

j- q(x,y)	i-q(x,y) = 2 (y)q(x,y) - w1(y)-q(x,y) 
Y

= -(w2(y).q(x,y) -w1—c)(y)Pq(x,y)) = -P_(y)- q(x,y). 

Therefore, for (x,y)eIR2xF, 
-:	jq(x,y)	P,(y)q(x.y) and D,q(x,y) pa2p,(y).L]q(x,y). 

Define also the operator M by

xeO, yeF, 
SY 

where f may be a scalar or a 2x2 matrix function.
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Lemma 2: Let 0 be an open bounded set with d0-boundary 
FeG(n,m,{m, }) and Oi5k:g m, p>-m0 Assume that geCk,l(O,xO,) and 
DveR 1 ,__ 1 (0). 0:9I131rk. Then 

fg(x y) v(y) D	11 

r
X Ix-.v12 

[ 
Tj _p(X)	 if p^1. 

= J 
E g(x,)v(y)[bj1(y1)(j)ic_mJ_l in Ix -y11 - 

lmj<k	-b,2() (
)k_mj_1 arg(x)]+ 'k-2(X)' if p2!2,ax1 

where 1c1k, 1,i0 1,2, r1ER1(0) and 

B. (yJ)	d''i1 

dsJ1 [w,(y)P,&)]I	., y=y- 

Proof: Instead of D((x,_y,)/Ix_y12) we may consider (a16x1)'q(x,y). 
Examine the integral over some r with beginning and end points y' and Y 2, 

respectively. Fix a point x°eO. Let 8. 1 = 1,2 be such that rns(y'.8) consists 
of only one curve for every 8<8, and let ej=mln{81 , Ix0 _yI/2, Iy1_y2112}. 
Denote l'J = 5flS(y'. E 1), 11,2 and r,= r1\(r'urp. Then we can divide 
the Integral over r, into integrals over F] r and J. Let the end points 
of I'] be y' and . First let us consider the case when k>p+m 1 . Then 
we may integrate the integral over r] by parts p+m 1 +1 times: 

f g( x,y) v(y)(A- )kq( x,y)ø,(y) ds7 

p4 m1 
= -	)'[g(x,y) v(y)Jj(y)]Pq,(y)(_ 

)k_1_1 
a	 y=yl 

q(x,y)	(3) 
1=0 

+f ,qjPmll[g(xy) v(y)w,(y)](- )zc_P_mi_lq(xy)ds 

Since

a 'k-p-m1-1 q(x0,y)
	x0_yi p-in, Ek_p_mjIXo_f1Ik_P_mt' 

yer 

and the derivative of order (p+m 1 +1) of the function v has at most loga-
rithmic singularity at the pointy', we may estimate the absolute value 
of the last Integral as follows: 

(I ln Iy-yt I I + 1) ds 15 1x0_yuIk_1)_m1 

Examine the Integral over F. integrating it k times by parts:
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f 
g(x,y)v(y)(._)kq(x,y)w,(y)dsy 

k-i	 k1i 
= -	'[g(x,y) v(y)w1 (y)]I p (y)( 

1=0	

)	
q(x,y) 

+ f J lr[g(x,y) v( y) ti,, (y)]q(x,y) dsp. 

ri 
From Lemma I we get that the last integral can be estimated at the point 
x0 as follows: 

In a neighbourhood of Il we get the upper bound 

(1+Ilnly-y'iI) , km1+p+l	 c c(i + I lnIx°-yI I) 1 y1kmaP1 k>m1+p+1	o_IIk_P_rni 

Adding the integrals over r, i and 52, the addends at j with 
1=0,1.....p+m1 will reduce. If p+m,<k, then the remaining addends where 
1p+rn1+l.....k are estimable by	 -	- 

C	I(1+IinIxo_yl II) ' ' = m1+p1l 
Ix° y1'•1 	

1 
-	 I0_ti_m1_i. 

1 >m1+P+lJ IO7iIk_p_rnj 

Now let us consider the singularity at the pointy. We got the 
addends which include y1 when calculating the integral over 17,1 (see (3)). 
Since yt is the beginning point of 5 and also the end point of some 5,, 
addends similar to these we have got arise but with the opposite signs. 
As the function v is at least p4-m, times and the functions ti and P.are 
at least m1 times continuously differentiable at the point y' (if they are 

smoother, then there exists yJ , which is different from y1 in d.-metrics, 
but the same in 1R 2 -metrics, where the functions w and P,, are exactly m1 
times continuously differentiable), the addenda where 10.....minim 1 , m1+p} 

will reduce. If p>O, then the addend where 1m 1 1 is the following: 
dm 1	 rn +1	k-rn -2 

g(x,y)	ds'4' [,0(y) I p (y)]Pç	(y)(—)	' q(x,y)l	i. 

Multiplying it by Pm2 and taking the i-th component of the vector, we 
get the leading term appearing In the assertion of the Lemma. Remaining 
terms include as singularities only	 q(x,y), 1 = 0 .....k-rn1-2 and there-

fore are estimable by C/i0_7hIkmt2. Since previous estimations in-
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dude	 In case p1 we must count the leading term Into
the remainder, too. 

We have proved Lemma 2 In the neighbourhood of y' when k>p+m1. 
If k:g p+m 1 , then the proof Is similar, only we do not need to cut off 
the neighbourhood of y1 but can integrate by parts k times over the 
whole curve. If k ^5m 1 , then all singularities will reduce and the remainder 
is continuous in the neighbourhood of y1 ; if k>m 1 , then we get the 
leading term and the remainder analogously to the previous case. In the 
neighbourhoods of the other singular points the proof is similarl 

Lemma 3 ([31): Let C) C 1R 2 be an open bounded set with piecewise 

smooth d0-boundary I'. Assume that KECk((OxO)\lxy) and there 
exists v<2 such that 

K	
l l+lx -yl-,-",
1+IlnJx-yII , viaIO,

hxI^II^k, D:(x,y)I^c  

where
K(x y) = "-	+-'--	

'
	)02 K(x,y). 

	

"ax, ày,	ax2 ay2  

Then for ueCk(If) the function K(x,y)u(y)dy is k times continuously 

differentiable in 0 and 

	

D °'I'K( x ,y) u (y) dy =	( 

( 1 )f D	Kj_(x,y)Du(y)w,,(y)ds, XEO, kI=k. 
10	r 

Fix a point x°E0. Denote 
8 =1/2 min 1x 0 _yu l, pO,l,... and O= OflS(x°,8 

1=1..... n	 p	 p 
mj :Cm, + 

Let 

Note that
I l: p+j . l<P, 

^ c t 1+1 , l=p, 
I 

l>p 

and, for pO,l..... 
Rmo+p(0•) {rE C(0\{y'.....y"} re C(y) if m 2tk, r(x°)!^ CA}. 

where C is independent of x1c0.
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Lemma 4: Assume that k(x,y) g(x,y) lnIx-y +g(x,y) 
4i2. 

where 

g,g1 eC" 1(O'x0). Let VEC(0) be such that DVeRm+jai_j(Q) for each 

1I !9p . Then 

Dk(x,y)v(y)dy ERp,m(O•)  

Proof: Let the point x° and 8.....8, be fixed as above. Then 

f k(x,y) v(y) dy = f k(x.y) v(y) dy + f k(x,y) v(y) dy + 
C)

+	f k(x,y)v(y)dy + f k(x.y) v(y) dy. - 
•	Op 

Differentiate the integrals at XEO and after that estimate them at the 

point x0 . We can differentiate the first integral under the integral sign: 

D f k(x°,y) v(y)dYI 	C J' ID,ct k(x0.y)dy 
n\no	n\00

diamO 

^ c j' 15. c f	271r-2 ^ Cti,. 
X y 

As veCk(0), k1,2.....p. we can differentiate the integrals over 

k times by Lemma 3. We obtain that. •	 . 

I
D	f	k(x,Y)v(7)dY I	 -.• 

•	 it 
=	 ) f k_(x,y)Dv(y)dy 

0k 0 n k-1"k 
k-i 
+)	f .

k.j-,(x,y)'DOv(y)cj,,+(y) dsyl. 

1 = 0 is CI 	ak_I'\0k) 

Estimate the integrals in the first sum: 

	

f	D at- at *kk_(xo,y)Dv(y)dyI 

15 Ct	f	dy	
1( 11	

kp1

sk k-1"0k.	
^ CA _1	 k<Pj 

15 . C4  

We can differentiate the integral over O, p 4 1 times by Lemma 3. Thus 

DAk(x.Y)V(Y)dY	
j) JkB(x.)Dv(Y)d 

	

p	 p 

-	+ (')J D1'
0 an •	 lo 13:50 1	 p
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Note that all double Integrals are continuous on 0*flS(x0,8). 

Now let us add all the boundary Integrals arisen within the proof: 

	

( 	f D"° *kj_(x,y)DPv(y),, (y)ds,,. 

	

1=0	dO1	 + 

Observe the Integral over 8n,. We may present it In the form

Vk 
' f h(Xj)Dx lnIx-yl D v(y) Ca1 (y) ds,., 

k= O an1 

where hk EC +k (O*xO*), v'9 = k and I01:91, hence Dv eC111I (Q). For 
k:91+1-II we may Integrate by parts kI times to obtain 

	

f hk( x,y)	)k 
'q( x,y) D vy) w1 (y) ds 

an1

	

=-::	
jJc1[h(xy)Dy(y)	(y)]P,(y)(	)k_kI_2	°q(xy)IY=Y_ 

	

k 1 =O yea Y,	 1+1	 1	 YY. 

	

+ f .2) k-1 [	Dv(y)w1 (y)]q(x,y) ds 
an1 

where Y, is the set of angular points of dO 1 (the set of Intersection 
points of r and the circle with center x° and radius * 8d. Consider 
the last integral. On dO J fldO we may use Lemma I. On the remaining 
part of dO1 we may estimate the components of q(x°,y) by 1/6,. As 

(_—)	ERml+kl(0*), the absolute value of the Integral Is estim-asy
able at the point x° by 

C[k-2 
A	

1 — 
-1 8k-k1 -1 +A II k2 (I ln8J 1 +	2t8l)] ^ CAJ,k 1 

For k >1+2-II, integrating by parts we must take into account the 
singularities which the derivatives of order k-i of Dv may haveat the 
points y60, where m1 <km0-I1-l. In that case we have to cut out small 
neighbourhoods of these points iFflS(y's). where E1 s Ix0_yiI/2 is 
chosen so that the circle S(J.E) would not contain other singular points 
of the boundary except the ones which are the same In R2-metrics. 
Outside the neighbourhoods we may integrate by parts k-i times. In 
addition to the addenda similar to those we have got in case ke-1-2-1I, 
we then obtain 

k-2 

	

:.	
±rkt[h*(X,y) D"v(y)ø1 (y)]P,(y)(- )kkI2q(xy)I	(4) 

where i is the set of the end points of the neighbourhoods and the
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sign +(-) is chosen when the point y° is one of the beginning (end) 
points of the domain of integration. 

Now let us consider the integral over, i. In the neighbourhood of 
Y the function Devl y) is m1 -m0-1I times continuously differentiable. 
Therefore we can integrate by parts m-m0 --II times. Adding the result 
to the addends of sum (4) where y°Er1 we get 

= k1 m1 m0

- 

II y°cYnrj 

+ J) mJ mO_lal [hk ( X y)D y)((y)](A... )k_1_ (mj 

rj 

Since the distance from the point x° to the part of the boundary 5 is 
at least 8 m _m0/'2 , the last expression is estimable at the point x° as 
follows:

k-2 
'	:	 1	 1 

	

'I13I+k 1 -1 8 k-k j -1	mj-mo-1 8 1C-(mj -m0-8I) J S 

k1=mj-m0-II	 mJ-mo	 mJ-mo	5 
,-	1^ CI,,. 

Since all boundary integrals are also continuous in O,n S(xo ,8 ) , the 
lemma is proved I 

S. The proof of the theorem. Let the assumptions of the theorem be 
fulfilled. At first we prove that then U€Cm02(fl*). Differentiating both 
sides of the equation (1) with respect to x1 and denoting 

K(xy) ôa(x.Y),0i_, +a(xy'" 
' 'lx-yI 

we obtain 

	

ôu(x) = fx(x,y)u(y)dy + all X)	 (5) 
C)	

ax, 

Further we use mathematical Induction. We know that u e C'(Cf). We 

must show that if uECk (O* ) and k!5m0+1, then uECkt(0). The function 

K satisfies the assumptions of Lemma 3 for v1. If ueCk((*) . then we 
may differentiate formula (5) by Lemma 3. Therefore, for Ilk, xO, 

Jça(x.f)DU(J)dY

(6) 
k-i

"(X)
+	( l ) 1f	 Jça_(x,y) Du(y),	ds, + D	ax 

1 =0 8cx1



316 U. KANGRO 

In the first sum all addenda are continuous on (Pas weakly singular 
integrals. In the second sum the integrand is the following: 

(aJ+l)[D:1.1.v aa,_(x,y) D;ln xyJ Du(y)w,(y) 
_I_cx_oI1+)	

ox1 

+
a ll 

Taa i_ (x ,y) D	x-y12 
Du&)	(v)]. 

+1 

Since aECm+2(0*) , the function DaJ Y Oa ,/Ox, is at least Iil+t 
times continuously differentiable. According to the induction assumption 
pueck_ll((*)cCiTl41(o*). Then by Lemma 2, where k= I yj - 1 and p may 
be arbitrarily large, the integral from the first sum Is continuous on Cf. 
Analogously in the second sum the coefficient of D ( xry ,)/I x -y1 2 belongs 
to C 1$1(I) and therefore by Lemma 2 the integral from the second sum 
Is also continuous on Cf. Consequently ueCi*1(0*). 

Since UGCm0*2(Q*) we can differentiate formula (6) by Lemma 3 
once more. We get the formula similar to (6) where km0 +2. The first 
sum is continuous on 0* again. If we write out the integrand in the 
second sum, we shall get that all the addenda except the one where 1=0 
and y = u-a' are continuous, on From Lemma -2 where-k= Iii = m0 +1 -we 
obtain the fact that the exception has a logarithmic singularity at those 
points y 1 where mm0: 

I a ( X ,y)D' 2 u(y)w,(y)ds 

a(x,y) u(y)[b,j(y)lnIx-y + b,2 (y1) arg,(x)] + r 1 (x) rm I C C(0). 
J=1 

m1=m0

I do'	 =yJ+ 
B(7) = pU22 

ds01 [w,,7)Pc(y)]çj :'(y') 

As J+Pw1P, (therefore we may substitute P' t W j P,ç, for ø11 P,) and 
b,çb 11, I41,2 1 where B'(yJ)=P'B(yJ), we have got the assertion of the 
theorem for km0+3.1  

Now let us use mathematical 'induction again. Suppose' that the 
theorem is valid for some k = m0+3+0 (pk0;m0 +p+4'9m+2); Show that then 
the theorem is true for derivatives of order k+I. Examine formula (6) 
where km0 2. Denote k(X7)=Ka_(Xy), v(y)Du(y). These functions 
satisfy the conditions of Lemma 4 and therefore the derivative of order 
p+l from the first sum in foñnula (6) belongs to Rp+m(0)Rk_3(0). 
In boundary integrals we can differentiate under the integral sign:
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DvfD:_Kal_(x,y)Du(y)wi (y)ds 
1+1	--r

=	
(v+a;ccI) f[D:4ullT aai_(x,y) D;lnIx-yI 

y^vx-c) 1	r	 ax,	- - 
+1-11'1-y a,_ 0 (x,y) D' iYi 1 

tx-yI-1	
u(.r)w,(y)ds. vIp1.

1-1	y

Examine the coefficient at Dlnlx-yI. The factor which includes the 
derivatives of the function a Is at least IyIl times continuously diffe-
rentiable. Since according to the induction hypothesis D'uER11^11_3(0) 
if IijIig p+2, by Lemma 2 where k111-1 and p2-1, we get that for 
1I : 0 the integral belongs to RI.fI_2())CRP+m(O*)=Rk_3(O*) and for 
101 > 0 to R 1 . 1 . 11 _ 3 (O ) CRp,m_ i (Q) - R,_ 4 (C) ). 

Estimating the addend which Includes D ( x1-7,)1Ix-y1 2, we, use 
Lemma 2, where kIyI and Similarly to the previous part of 
proof we get the result that for II>0 corresponding integrals belong to 
Rk _ 3 ( 0 ) . If II = O, then the integral belongs to R IvI _ i (O*)• If Iy1<p+m02, 
then RI.rI. i ( 0 ) cR k _ 3 (0 ) . If Iylp+ni0+2, then yv+ix-u and the addend 
is the following: 

fa(xy)D
'Xj-)'j

U(Y) (j , ) (y) ds. 

After using Lemma 2 we obtain the fact that the integral is equal to 
the expression

a k_mj_211 
a( x.y- ) u(yJ)[b11(y1)(---) 

mj<k-1

- b12(yi)(-- 
\k-mj-2 

argjx)] + rk.3(x). a;) 
where rk3eRk ... 3(6) and 

	

B(yJ)p)2+1_1 dmJ' [wi(y)r,(y)]r"	m+* 
- Pç	(Y') dsJ'  

We have got the assertion of the theorem for ki k1R 
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