Eigenvalue Distribution of Invariant Linear Second Order Elliptic Differential Operators with Constant Coefficients

M. BElGER

Let \mathfrak{G} be a properly discontinuous group of affine transformations acting on an n-dimensional affine space and P a \mathfrak{G}-invariant linear elliptic differential operator with constant coefficients. In this paper the \mathfrak{G}-automorphic eigenvalue problem to P is solved. For the number $N(x)$ of the eigenvalues which are less than or equal to the "frequency bound" x^2 the asymptotic estimation $N(x) = c_0 x^n + c_1 x^{n-1} + O(x^{n-2+2/(n+1)})$ is given with c_0 and c_1 being interesting geometric invariants.

Key words: Eigenvalue problem, eigenvalue distribution, invariant linear elliptic differential operator, lattice remainder, asymptotic estimation, principal vector

AMS subject classification: 47F05, 47A75, 11F72, 11L07, 11H06, 35P20

0. Problem

Let \mathcal{B} be an n-dimensional vector space or later at the same time also an affine space, \mathcal{B}^* its dual, \mathfrak{G} a properly discontinuous group of affine transformations acting on \mathcal{B} and having a compact fundamental domain [3]. For a \mathfrak{G}-invariant positive definite quadratic form \mathcal{Q} on \mathcal{B}^* and for a fixed vector $\psi \in \mathcal{B}^*$ we consider the differential operator

$$P[\psi] = \mathcal{Q}(\frac{\partial}{\partial x} - 2\pi i \psi, \frac{\partial}{\partial x} - 2\pi i \tilde{\psi}), \psi \in \mathcal{B},$$

and the assigned polynom

$$P(\nu) = -\mathcal{Q}(\nu - 2\pi \nu, \nu - 2\pi \nu), \nu \in \mathcal{B}^*.$$

\mathfrak{G}-invariant means for $P[\psi]$ that the following relation is valid:

$$P[\psi \circ S] = P[\psi] \circ S, \text{ for all } S \in \mathfrak{G}. \quad (1')$$

Now look at the \mathfrak{G}-automorphic eigenvalue problem

$$P[\psi] + \mu \psi = 0, \psi \in L_2(\mathfrak{G}). \quad (2)$$
$L_2(\Theta)$ is the Hilbert space over \mathbb{C} of locally square-integrable Θ-automorphic functions. $\text{spec}_\Theta(P)$ denotes the eigenvalue spectrum of (2). We will investigate the eigenvalue distribution $\text{dis}(\text{spec}_\Theta(P))$ over \mathbb{R}^*, where "dis" is defined by the distribution function

$$N(\lambda) = \# \{ \mu \in \text{spec}_\Theta(P) : \mu \leq \lambda^2 \}. \quad (3)$$

Here sometimes λ instead of λ^2 is taken and called in Weyl's considerations "frequency bound" [25]. To establish a good asymptotic estimation of $N(\lambda)$ we will work out the following subjects:

1. Solution of the Θ-automorphic eigenvalue problem (2).
2. Description of $N(\lambda)$ by a certain number of so-called "principal lattice vectors" in a convex domain $\lambda \cdot \Omega \subset \mathbb{R}^n$ (see (23)/(23')).
3. Formulation of $N(\lambda)$ as a finite sum of Weyl sums.
4. Asymptotic estimation $N(\lambda) = c_0 \lambda^n + c_1 \lambda^{n-1} + O(\lambda^{n-2+2/(n+1)})$ with explicit calculation of c_0 and c_1 as geometric invariants. Survey of influence of fixed (fixed point-free) elements of the group Θ on the asymptotic expression for $N(\lambda)$.

1. Solution of the Θ-automorphic eigenvalue problem (2)

1.1 The orthonormal system of Θ-automorphic functions in $L_2(\Theta)$. To introduce such a system we follow the proceeding of P. Günther in [7, § 1 and § 2].

The lattice $\Gamma \subset \mathbb{B}$: We will write the affine transformation $S: \mathbb{B} \rightarrow \mathbb{B}$ ($S \in \Theta$) of the n-dimensional affine space \mathbb{B} as a Seitzian space group symbol $S = (\sigma, t)$ with $\xi = S(\xi) = \sigma \xi + t$ ($\xi, \sigma \in \mathbb{B}$) as transformation formula. The components σ and t are said to be fixed point and translation part of S, respectively. For $R = (\rho, t) \in \Theta$ and $S \in \Theta$ the composition $R \circ S = (\rho \sigma, \sigma t + t)$ is defined by $(R \circ S)(\xi) = S(R(\xi))$. The inverse to S with respect to the identity element $E = (e, 0) \in \Theta$ is $S^{-1} = (\sigma^{-1}, -\sigma^{-1} \cdot t)$, where $e = \text{id}$ and $0 \in \mathbb{B}$ is the null vector. Now we consider the "point group" \mathcal{B} of Θ,

$$\mathcal{B} = \{ (\sigma, f) \in \Theta \text{ for some } f \in \mathbb{B} \} \quad (4)$$

and the "translation group" $\mathcal{L} \subset \Theta$ of all translations in Θ,

$$\mathcal{L} = \{ (e, t) \in \Theta \}. \quad (4')$$

We know about \mathcal{B} and \mathcal{L} the following [1, 3, 5]: \mathcal{L} is an invariant subgroup of Θ. The factor group Θ/\mathcal{L} and \mathcal{B} are isomorphic and $\text{ord}(\Theta/\mathcal{L})$ is finite. Therefore we can introduce

$$r := \text{ord}(\Theta/\mathcal{L}) = \text{ord} \mathcal{B}. \quad (4'')$$

\mathcal{L} has n generators $(e, b_1), \ldots, (e, b_n)$ with n linear independent translation parts b_k which are used to form the basis \mathcal{B} and also to form the \mathcal{B}-invariant n-dimensional lattice

$$\Gamma := \text{orb}_{\mathcal{L}}(e) = \{ t = t^k b_k : t^k \in \mathcal{L} \} \subset \mathbb{B}. \quad (5)$$

The vector $\alpha \in \mathbb{B}$ is said to be "belonging to $\sigma \in \mathcal{B}$" if $(\sigma, \alpha) \in \Theta$. Together with α then also all vectors $\alpha + \tau$ and only these are belonging to σ. So modulo Γ exactly one vector α is belonging to σ and will be denoted by $\alpha = \{ \}$. In the coset decomposition of Θ relative to \mathcal{L},
\[\Theta = S_1 \circ \mathcal{I} + \ldots + S_r \circ \mathcal{I}, \quad S_\nu = (\sigma_\nu, f_\nu) \]
(6)
the elements of one of the same coset \(S_\nu \circ \mathcal{I} \) have the same fixed point part \(\sigma_\nu \) but different cosets have different such parts. If \((\sigma_1, f_1), (\sigma_2, f_2), (\sigma_\nu, f_\nu) \in \Theta \) it may be advantageous to think of the Frobenius congruence
\[\sigma_2 f_2 + f_1 = f \mod \Gamma. \]
(7)

The dual lattice \(\Gamma^* \subset \mathcal{B}^* \): A usually in crystallography here we turn to the dual situation. Let \(\mathcal{B}^* \) be the dual space of linear functionals on \(\mathcal{B} \), \(\langle \nu, \xi \rangle \) the value of \(\nu \in \mathcal{B}^* \) in \(\xi \in \mathcal{B} \). Relative to \(\Gamma \subset \mathcal{B} \), let
\[\Gamma^* = \{ \nu = \nu_k b^k : \nu_k \in \mathbb{Z} \} \subset \mathcal{B}^*, \quad \langle b^h, b^k \rangle = \delta_h^k, \]
(8)
be the dual lattice in \(\mathcal{B}^* \). As basis \(\mathcal{B}^* \) we use then \(\{ b^1, \ldots, b^n \} \). Instead of \(\sigma \in \mathcal{B} \) here we need the adjoint mapping \(\sigma^* \) to \(\sigma \): \(\sigma^* \) is defined by
\[\sigma^* : \mathcal{B}^* \to \mathcal{B}^* \text{ with } \sigma^* \nu = \nu \circ \sigma. \]

The principal classes \(\mathcal{H} \subset \Gamma^* \): For a fixed lattice functional \(\nu \in \Gamma^* \) we introduce the equivalence class
\[\mathcal{E} := \{ \mu \in \Gamma^* : \mu^* = \sigma^* \mu \text{ for all } \sigma \in \mathcal{B} \} = \{ \mu_1, \ldots, \mu_l \}. \]
(9)
Here is \(l = \text{ord} \mathcal{E} \leq r = \text{ord} \mathcal{B} \) as we can see by help of the decomposition \(\mathcal{B} = \mathcal{K}(\mu) \cup (\mathcal{B} \setminus \mathcal{K}(\mu)) \) relative to the adjoint isotropy group to \(\mu \),
\[\mathcal{K}(\mu) = \{ \sigma \in \mathcal{B} : \sigma^* \mu = \mu \}. \]
(10)
So \(\Gamma^* \) is decomposed completely in a set \(\mathcal{K} \) of classes \(\mathcal{E} \). Among these classes the so-called principal classes \(\mathcal{H} \) play a leading part: For \(\mathcal{K}(\mu) \) we consider the character \(\chi(\mu, \cdot) \) with
\[\chi(\mu, \sigma) = \exp \{ 2\pi i \langle \mu, \sigma \rangle \}, \quad (\sigma, \nu) \in \Theta. \]
(11)
In \((\sigma, \nu) \) the vector \(\nu \) is well-established and
\[\varphi_\nu(\xi) = \exp \{ 2\pi i \langle \nu, \xi \rangle \} \]
(12)
is a \(\mathcal{I} \)-automorphic function on \(\mathcal{B} \). Therefore \(\chi \) is correctly defined. If
\[\chi(\mu, \sigma) = 1 \text{ for all } \sigma \in \mathcal{K}(\mu) \]
(13)
so \(\chi(\mu, \cdot) \) is said to be principal character of \(\mathcal{K}(\mu) \) and \(\mu \) principal vector of \(\Gamma^* \). Now if \(\mu \in \mathcal{E} \) is a principal vector, \(\mathcal{E} \) contains only principal vectors and is called principal class \(\mathcal{H} \). Otherwise \(\mathcal{E} \) contains only non-principal vectors (\(\mathcal{E} \) is a non-principal class). Let \(\mathcal{H} \) be the set of all principal classes \(\mathcal{H} \subset \Gamma^* \).

The orthonormal system of \(\Theta \)-automorphic functions: Let \(\mathcal{F} = \{ \mu_1, \ldots, \mu_l \} \subset \mathcal{H} \) be a principal class and \(\text{rep}(\mathcal{E} / \mathcal{K}(\mu_1))_L = \{ \mu_1, \ldots, \mu_l \} \) a system of representatives of the left coset decomposition of \(\mathcal{B} \) with respect to \(\mathcal{K}(\mu_1) \). Then \(\mu_1, \ldots, \mu_l \in \mathcal{B} \) shall be vectors belonging to \(\sigma_1, \ldots, \sigma_l \), respectively, i.e. \(S_\nu = (\sigma_\nu, f_\nu) \) for \(\nu = 1, \ldots, l \).
Definition: The sum

\[\psi_0 = \frac{1}{i} \sum_{v=1}^{L} \varphi u_1 \circ S_v \] \hspace{1cm} (14)

is said to be a \(h \)-corresponding function on \(\mathfrak{B} \).

Remark 1: For each \(v \in \mathfrak{B}^* \) the function \(\varphi_0 \) is satisfying the relation

\[\varphi_0 \circ S = \varphi_0(t) \varphi_0 \circ S \] \hspace{1cm} (15)

Especially for the translations \(S = (e, t) \in \mathfrak{X} \) and lattice vectors \(v = u \in \Gamma^* \) we see that \(\varphi_0 \) is \(\mathfrak{X} \)-automorphic, even \(\varphi_0 \in L_2(\mathfrak{X}) \) (\(L_2 \)-space of \(\mathfrak{X} \)-automorphic functions).

Remark 2: If \(\sigma \) runs through \(\mathfrak{B} \), so \(\sigma^\top u_1 \) runs through \(h = \{ u_1, ..., u_l \} \) - but in general not simply \((I \leq r) \). But if \(\sigma \) runs only through \(\text{rep}(\mathfrak{B}/\mathfrak{X}(u_1)) \), so from \(u_1 \) every vector \(u_v \in h \) arises exactly one time by \(u_v = \sigma^\top u_1 \).

The \(h \)-corresponding functions \(\psi_0 \) are elements of \(L_2(\Theta) \). As functions normed to one just the \(\psi_0 \) build a complete orthonormal system \(\{ \psi_0 : h \in \mathfrak{B} \} \) in \(L_2(\Theta) \) \([7 \S 2/(2.8)] \).

1.2 The \(\Theta \)-automorphic eigenfunctions and \(\text{spec}_{\Theta} \) of \(P \). To prove that the \(h \)-corresponding functions \(\psi_0 \) are the eigenfunctions of \(P \) we must investigate the action of \(P \) on \(\varphi_0 \circ S \).

Lemma 1: The \(\Theta \)-invariant differential operator \(P \) from (1) acts on the functions \(\varphi_0 \circ S \) from (14) or (15) according to

\[P[\varphi_0 \circ S] = P(2\pi v) \varphi_0 \circ S \] \hspace{1cm} (16)

Proof: The operator \(P \) can be written as

\[P = P^h \partial_h \partial_k - 4\pi i P^h \partial_h - 4\pi^2 P^o. \] \hspace{1cm} (17)

Here \(P^h \) are the coefficients of the quadratic form \(\Psi \) from (1'), furthermore \(P^h = P^h \partial_k \), \(P^o = P^h \partial_h \partial_k \), where \(P = P^h \partial_h \) and \(\partial_h = \partial/\partial x^h \), \(x^k = x^h b^h \) - explained altogether respectively to \(\text{bas} \mathfrak{B} \) or \(\text{bas} \mathfrak{B}^* \). Now we apply \(P \) on \(\varphi_0 \), \(v = v_j b^j \): Using (12) and (8) we obtain

\[\partial_h \varphi_0(x) = \partial/\partial x^h (\exp 2\pi i \langle v_j b^j, x b^k \rangle) = \varphi_0(t) \cdot 2\pi i \partial/\partial x^h (v_j \cdot x^j) = 2\pi i v_h \varphi_0(t) \]

\[\partial_h \varphi_0(x) = (2\pi i)^2 v_h v_k \varphi_0(t). \]

Now (17) and after that (1') gives

\[P[\varphi_0] = (-P^h(2\pi v, 2\pi v_k) + 4\pi P^h(2\pi v_k) - 4\pi^2 P^o) \varphi_0 \]

\[= -2(2\pi v - 2\pi v, 2\pi v - 2\pi v) \varphi_0 = P(2\pi v) \varphi_0. \]

So (16) follows from the \(\Theta \)-invariance of \(P \), i.e. from (1') \(\blacksquare \)

If we now take into account the \(h \)-corresponding function \(\psi_0 \) from (14), formula (16) gives
\[
P[\psi_h] = \frac{1}{l} \sum_{\nu=1}^{l} P(2\pi \nu) \varphi_{\nu} \circ S_{\nu} = P(2\pi u) \psi_h, \quad u \in h. \tag{18}
\]

Definition: If \(u \in \ell \), we can write
\[
P(2\pi \ell) = P(2\pi u), \tag{19}
\]
(where \(P(2\pi \ell) \) can be understood as a class norm \(\| \ell \|^2 \) of \(\ell \)).

The justification for (19) comes from the \(\mathfrak{B} \)-automorphy of \(P \) from (1'),
\[
P(\sigma \nu) = P(\nu) \quad \text{for all } \sigma \in \mathfrak{B}, \nu \in \mathfrak{B}^{*}, \tag{20}
\]
and of the fact that all \(u \in \ell = \{ u_1, \ldots, u_j \} \) arise e.g. from \(u_1 \) by means of the equivalence \(u = \sigma' u_1, \sigma \in \mathfrak{B} \).

Remark 3: If the class norms of \(\ell_1, \ell_2 \) are different, \(P(2\pi \ell_1) \neq P(2\pi \ell_2) \), the same is always right for the classes, \(\ell_1 + \ell_2 \). But the inverse assertion is not right; if \(\ell_1 + \ell_2 \), notwithstanding may be \(P(2\pi \ell_1) = P(2\pi \ell_2) \).

Theorem 1: To each principal class \(h \in \mathfrak{H} \) we can assign exactly one eigenvalue \(\mu = \mu_h \) of the \(\mathfrak{B} \)-automorphic eigenvalue problem (2), namely
\[
\mu_h = -P(2\pi h) \tag{21}
\]
with
\[
m_{\mathfrak{B}}(\mu_h) = \text{card} \{ h' \in \mathfrak{H} : P(2\pi h') = P(2\pi h) \} \tag{22}
\]
as multiplicity; thereby the \(h \)-corresponding function \(\psi_h \) belongs to \(\nu_h \) as the eigenfunction. The set \(\text{spec}_{\mathfrak{B}}(P) = \{ \mu_h : h \in \mathfrak{H} \} \) is the complete \(\mathfrak{B} \)-automorphic eigenvalue spectrum of the \(\mathfrak{B} \)-invariant differential operator \(P \) from (1).

Proof: The correspondence \(h \mapsto \psi_h \) from (14), and (18), prove the first part of the theorem. The completeness of \(\text{spec}_{\mathfrak{B}}(P) \) follows from the completeness of the orthonormal system \(\{ \psi_h : h \in \mathfrak{H} \} \) of \(L_2(\mathfrak{B}) \). Let \(\psi = \sum c_h \psi_h \) (summation over \(h \in \mathfrak{H} \)) be an arbitrary \(\mathfrak{B} \)-automorphic eigenfunction of \(P \) to the eigenvalue \(\mu \neq \mu_h \) for all \(h \in \mathfrak{H} \). Then from (2), (18), (19) and (21) for each \(h \in \mathfrak{H} \) there follows \(c_h (\mu_h - \mu) = 0 \). Consequently there would be \(c_h = 0 \) and therefore \(\psi = 0 \) which is a contradiction.

2. \(N(\lambda) \) as the number of principal classes \(h \) contained in a certain convex domain \(\lambda \cdot \mathfrak{D} \subset \mathfrak{D}^{*} \)

The operator \(P \) has the following geometric appearance.

Definition: The domains in \(\mathfrak{B}^{*} \)
\[
\mathfrak{D} = \{ \nu \in \mathfrak{B}^{*} : -P(\nu + 2\pi \nu) \leq (1/2\pi)^2 \} \tag{23}
\]
\[\lambda \cdot \mathbb{D} = \{ \mathbf{v} \in \mathbb{B}^* : -P(\mathbf{v} + 2\pi \mathbf{p}) \leq (\lambda/2\pi)^2 \} \]

\[\mathbf{p} + \lambda \cdot \mathbb{D} = \{ \mathbf{v} \in \mathbb{B}^* : -P(2\pi \mathbf{v}) \leq \lambda^2 \} \]

in this order are said to be gauge domain, homothetical expansion of \(\mathbb{D} \) with \(\lambda > 0 \) as factor, parallel translated domain by the vector \(\mathbf{p} \in \mathbb{B}^* \) (from (1)).

The \(\mathfrak{g} \)-invariance of \(P \) means for these domains

Lemma 2: The gauge domain \(\mathbb{D} \) and so also all its homothetical expansions \(\lambda \cdot \mathbb{D} \) are \(\mathfrak{g} \)-invariant. Therefore for an equivalence class \(\mathfrak{f} \in \mathfrak{A} \) there is valid

either \(\mathfrak{f} \subset (\mathbf{p} + \lambda \cdot \mathbb{D}) \) or \(\mathfrak{f} \cap (\mathbf{p} + \lambda \cdot \mathbb{D}) = \emptyset \).

(24)

Now if we look at \(N(\lambda) \) from (3) and \(\mu_\mathfrak{f} \) from (21) we could ask for the geometric locus containing all \(\mathfrak{f} \) with \(\mu_\mathfrak{f} \leq \lambda^2 \). The formulas (21), (19), (1'), (23') and (24) yield

Proposition 1: The number of eigen values \(\mu_\mathfrak{f} \leq \lambda^2 \) is given by

\[N(\lambda) = \text{card} \{ \mathfrak{f} \in \mathfrak{A} : \mathfrak{f} \subset (\mathbf{p} + \lambda \cdot \mathbb{D}) \} \]

(25)

3. \(N(\lambda) \) as a finite sum of Weyl sums

3.1 A proposition of P. Günther. Let

\[\mathbb{B}^*(\sigma) = \ker(\sigma^* - \text{id}) \quad \text{and} \quad \mathbb{D}^*(\sigma) = \mathbb{D} \cap \mathbb{B}^*(\sigma) \]

(26)

be the eigenspace to the eigenvalue 1 of \(\sigma^* \) and the \(\mathbb{Z} \)-module of all lattice functionals of \(\mathbb{B}^*(\sigma) \), respectively (look at (8)). According to [7: Proposition 2.21], for a function \(f: \mathbb{B}^* \rightarrow \mathbb{C} \) it is valid

\[\sum_{\mathbf{u} \in \mathfrak{D}} \frac{1}{\text{card} \mathfrak{D}} \sum_{\mathbf{u} \in \mathfrak{D}} f(\mathbf{u}) = \frac{1}{\pi} \sum_{\sigma \in \mathbb{B}} W(\sigma) \]

(27)

so far as

\[W(\sigma) := \sum_{\mathbf{u} \in \mathbb{D}^*(\sigma)} \chi(\mathbf{u}, \sigma) f(\mathbf{u}) \]

(28)

is absolutely convergent for all \(\sigma \in \mathfrak{B} \).

3.2 The characteristic function \(\chi_\lambda \) of \(\lambda \cdot \mathbb{D} \). Let \(\chi \) be the characteristic function of \(\mathbb{D} \) and \(\chi_\lambda \) that of \(\lambda \cdot \mathbb{D} \). From the definition of \(\chi_\lambda \) and the \(\mathfrak{g} \)-invariance of \(\lambda \cdot \mathbb{D} \) (Lemma 2) you can easily see

Lemma 3: For \(\mathbf{v} \in \mathbb{B}^* \) we have

\[\chi_\lambda(\mathbf{v}) = \chi(\frac{1}{\lambda} \cdot \mathbf{v}) \text{ for all } \lambda > 0 \]

(29)
\[\chi(x^o \sigma \psi) = \chi_{\lambda}(x) \quad \text{for all } x \in \Omega, \quad (29') \]

i.e. \(\chi_{\lambda} \) is \(\Omega \)-automorphic on \(\mathbb{B}' \).

Now regard \(\chi_{\lambda} \) as a partial function on \(\mathcal{P} + \Gamma^* \subset \mathbb{B}' \). Then \(\chi_{\lambda} \) is a class function depending only on the equivalence classes \(\mathcal{P} + \Gamma \) of the lattice \(\mathcal{P} + \Gamma^* \) for all \(\lambda \in \Omega \):

\[\chi_{\lambda}(\mathcal{P} + \Gamma) = \begin{cases} 1 & \text{if } \Gamma \subset \mathcal{P} + \lambda \cdot \mathcal{D} \\ 0 & \text{if } \Gamma \not\subset \mathcal{P} + \lambda \cdot \mathcal{D} \end{cases} \quad (30) \]

(see also (24)). Now we set going proposition (27)/(28) choosing \(f(u) \) in accordance with \(f(u) := \chi_{\lambda}(-\mathcal{P} + u) = \chi_{\lambda}(-\mathcal{P} + h) \) for \(u \in h \in \Omega \). Then

\[W(\omega) := \sum_{\mathcal{P} \in \Gamma'(\omega) \cap (\mathcal{P} + \lambda \cdot \mathcal{D})} \chi(u, \sigma) \quad (31) \]

is a finite and so an absolutely convergent series. Because of (30) and (25) the left-hand side of (27) is equal to \(N(\lambda) \) so that

\[N(\lambda) = \frac{1}{2} \sum_{\omega \in \Omega} W(\omega). \quad (32) \]

3.3 Splitting of \(N(\lambda) \) into isodimensional summands

Let be

\[n(\sigma) := \dim \mathbb{B}'(\sigma) \quad (34) \]

and

\[\mathbb{B}_m := \{ \sigma \in \Omega : n(\sigma) = m \}, \quad m = 0, 1, \ldots, n. \quad (34) \]

For \(\sigma \in \mathbb{B}_m \) the \(\mathbb{Z} \)-module \(\Gamma^*(\sigma) \) from (26) has \(m \) linearly independent generators. Now (32) can be dissected according to

Proposition 2: \(N(\lambda) \) is the sum of isodimensional summands:

\[N(\lambda) = \frac{1}{2} \sum_{m=0}^{n} \sum_{\sigma \in \mathbb{B}_m} W(\sigma) \quad (35) \]

where \(W(\sigma) \) with \((\sigma, \mathcal{P}) \in \Omega \) are the Weyl sums (31)/(11), or for a specific purpose formulated,

\[W(\sigma) = \sum_{\mathcal{P} \in \sigma \bmod \Gamma'(\sigma)} \exp \{ 2\pi i \langle u, \mathcal{P} \rangle \}. \quad (36) \]

The special kind of summation in (36) in comparison with that of (31) follows from (23').

Definition: In (35) the summand with \(m = n \) is said to be principal part and that with \(m = n - 1 \) secondary part of \(N(\lambda) \).

Remark 4: All the other summands of \(N(\lambda) \) with \(m \leq n - 2 \) will be proved subordinate and get into the remainder during the asymptotic estimation of \(N(\lambda) \) in Subsections 4.2/4.3 (see (49)).
4. The asymptotic estimation of $N(\lambda)$

4.1 Formulation of the Weyl sum $W(\sigma)$ in coordinates relative to $\text{bas}\Gamma^*(\sigma)$. Let be

\begin{equation}
\text{bas}\Gamma^*(\sigma) = \{c^1(\sigma), \ldots, c^m(\sigma)\}, \quad \text{bas}\Gamma^* = \{b^1, \ldots, b^n\},
\end{equation}

\begin{equation}
c^v(\sigma) = c_h^v(\sigma)b^h, \quad c_h^v(\sigma) \in \mathbb{Z} \quad (h = 1, \ldots, n; \nu = 1, \ldots, m).
\end{equation}

Because of $c^v(\sigma) \in \Gamma^*(\sigma)$ there is $(\sigma^T - \text{id})c^v(\sigma) = 0$. Therefore $c^v_\nu(\sigma)$ for each ν is a solution of the system of linear equations $(\sigma_\nu^j - \delta_\nu^j)c^v_\nu(\sigma) = 0$ ($j = 1, \ldots, n$) and naturally $\sigma^T b^j = \sigma_j^j$. Agreement: Latin indices run through $1, \ldots, n$ and Greek indices through $1, \ldots, m$ - only with the exception of $\sigma \in \mathcal{B}$.

For $u \in \Gamma^*(\sigma)$ and for $p \in \mathcal{B}^*(\sigma)$ as the invariant vector from (1'), we write

\begin{equation}
u = u_\nu c^v(\sigma) = u_\nu c_h^v(\sigma)b^h = u_h b^h \quad \text{and} \quad p = p_\nu c^v(\sigma) = p_\nu c_h^v(\sigma)b^h = p_h b^h.
\end{equation}

Then we have

\begin{equation}
\langle u, f \rangle = u_\nu s^v(\sigma) \quad \text{with} \quad s^v(\sigma) = \langle c^v(\sigma), f \rangle.
\end{equation}

Now looking at (17) we introduce the symmetric $m \times m$ - matrix $(P_{uv}(\sigma))$ with

\begin{equation}
P_{uv}(\sigma) = P_{hk} c_h^v(\sigma)c_h^u(\sigma), \quad \Delta(\sigma) := \det(P_{uv}(\sigma)).
\end{equation}

By (38) this makes possible to write P in form of

\begin{equation}
- P(2\pi u) = (2\pi)^2 P_{uv}(\sigma)w_\nu w_\mu, \quad w_\nu = u_\nu - p_\nu.
\end{equation}

Therefore Proposition 2 in coordinates relative to $\text{bas}\Gamma^*(\sigma)$ can be formulated as

Proposition 3: $N(\lambda)$ (so as in Proposition 2) is the sum of the Weyl sums

\begin{equation}
W(\sigma) = e^{2\pi i p_\nu s_v(\sigma)} \sum_{w_\nu = -\rho_\nu \mod(1)} e^{2\pi i w_\nu s_v(\sigma)}. \quad (42)
\end{equation}

Remark 5: For $\sigma = e$ (identity in \mathcal{B}) we obtain

\begin{equation}
n(e) = n, \quad \Omega_n = \{e\}, \quad \mathcal{B}^*(e) = \mathcal{B}^*, \quad \Gamma^*(e) = \Gamma^*, \quad c^v(e) = b^v
\end{equation}

\begin{equation}
c_h^v(e) = \delta_h^v, \quad u_\nu = u_\nu, \quad p_\nu = p_\nu, \quad P_{uv}(e) = P_{uv}, \quad \Delta(e) = \det(P_{uv}).
\end{equation}

4.2 Landau’s estimation of lattice remainder applied to the Weyl sum $W(\sigma)$. In (42) we have the sum of the unimodular weights $\exp\{2\pi i w_\nu s_v(\sigma)\}$ which load the lattice functionals $\omega \in \Gamma^*(\sigma)$ within the $m = n(\sigma)$ - dimensional ellipsoid $(p + \lambda : \Delta) \cap \mathcal{B}^*(\sigma)$. The estimation of such a sum $W(\sigma)$ is a classical problem which was worked out above all by E. Landau ([14: Chapter 1/(7) and (10)] and [19]). As we know this leads to the result

\begin{equation}
W(\sigma) = \frac{\delta_\sigma}{2^m m^m \sqrt{\Delta(\sigma)}} \Gamma(m^2) \lambda^m + O(\lambda^{m^2 + \frac{2}{m + 1}}) \quad (44)
\end{equation}
\(\delta_\sigma = 1 \) if \(s^{\nu}(\sigma) \in \mathbb{Z} \) and \(\delta_\sigma = 0 \) otherwise. \(\tag{45} \)

Definition: \(\delta_\sigma \) will be called *Landau's \(\delta \)-symbol* which is assigned to \(\sigma \) (see Proposition 4).

4.3 \(N(\lambda) \) and the \(m \)-dimensional volumes \(\text{vol}_m(\lambda \cdot \mathbb{D} \cap \mathbb{B}^*(\sigma)) \)

Let be \(\sigma \in \mathfrak{g}_m \) and \(m = n(\sigma) \). Let \(\mathbb{B}^*(\sigma) \) be equipped with a measure \(\mu^* \) of the normalization \(\mu^*(\mathfrak{B}(I^*(\sigma))) = 1 \) (\(\mathfrak{B}(\cdot) \) - "fundamental domain of\(\cdot \)). So we can introduce the \(m \)-dimensional volume of \(\mathbb{D} \cap \mathbb{B}^*(\sigma) \),

\[
\text{vol}_m(\mathbb{D} \cap \mathbb{B}^*(\sigma)) = \int_{\mathbb{D} \cap \mathbb{B}^*(\sigma)} d\mu^*(\sigma) = \int_{\mathbb{D} \cap \mathbb{B}^*(\sigma)} d\sigma / \int_{\mathbb{B}(I^*(\sigma))} d\sigma. \tag{46}\]

Remark 6: In an affine space \(\mathbb{B}^* \) the affine volume \(\int_{\mathbb{D}} d\sigma \) is a relative invariant of weight \(-1\). The quotient of two such volumes, so as in (46), is an absolute invariant.

In the case that \(\mathbb{B} \) and \(\mathbb{B}^* \) are Euclidean spaces, and so especially \(\mathbb{B}^*(\sigma) \) is an Euclidean space with the metric fundamental tensor \(g^{\nu\mu}(\sigma), g(\sigma) = \det(g^{\nu\mu}(\sigma)) \), we define as usual

\[
\text{vol}_m(\mathbb{D} \cap \mathbb{B}^*(\sigma)) = \int_{\mathbb{D} \cap \mathbb{B}^*(\sigma)} \sqrt{g(\sigma)} d\mu^*(\sigma) \quad \text{with} \quad \text{vol}_m(\mathfrak{B}(I^*(\sigma))) = 1. \tag{47}\]

If \(W(\sigma) \) from (44) is belonging to a group element \(\sigma \in \mathfrak{g}_m \) with \(\delta_\sigma = 1 \), the factor before \(\lambda \) in (44) is the volume of an \(m \)-dimensional ellipsoid, namely of

\[
\lambda \cdot \mathbb{D} \cap \mathbb{B}^*(\sigma) = \left\{ \mathbf{v} = v^\nu e^\nu(\sigma); P^{\nu\mu}(\sigma)v^\nu v_\mu \leq \left(\frac{\lambda}{2\pi} \right)^2 \right\}. \tag{48}\]

Therefore \(W(\sigma) \) from (44) has the form

\[
W(\sigma) = \delta_\sigma \cdot \text{vol}_m(\mathbb{D} \cap \mathbb{B}^*(\sigma)) \lambda^m + O(\lambda^{m-2+n+1}). \tag{49}\]

Here the order of the remainder term in Proposition 2 (resp. Proposition 3) allows to carry out the summation for \(m = n \) (yielding then the principal part of \(N(\lambda) \)) and only just for \(m = n - 1 \) (producing the secondary part). Now we ascertain that \(m = n(\sigma) = n \) is true only for \(\sigma = e \) and we have \(\mathbb{D} \cap \mathbb{B}^*(e) = \mathbb{D} \) (see also Remark 5). Because the null vector \(t = \mathbf{0} \in \mathbb{B} \) is belonging to \(\sigma = e \) we get \(s^{\nu}(e) = \langle e^{\nu}(e), e \rangle = 0 \in \mathbb{Z} \) and hence \(\delta_\sigma = 1 \). We lodge all summands of \(N(\lambda) \) for \(m < n - 2 \) in (35) (Proposition 2) in \(O(\lambda^{n-2+n+1}) \). So Proposition 2 can be explained now as

Theorem 2: *The eigenvalue number \(N(\lambda) \) is satisfying the estimation*

\[
N(\lambda) \leq \frac{1}{\lambda^{n-2}} \text{vol}_n(\mathbb{D}) + \sum_{\delta_\sigma = 0} \text{vol}_{n-1}(\mathbb{D} \cap \mathbb{B}^*(\sigma)) \delta_\sigma \lambda^{n-1} + O(\lambda^{n-2+n+1}) \tag{50}\]

where Landau's symbol \(\delta_\sigma \) is to be taken from Proposition 4.

Remark 7: With regard to Remark 6 the assertion (50) of Theorem 2 can be understood also as a result of affine spectral geometry.

4.4 Landau's \(\delta \)-symbol and the influence of the fixed elements from \(\Theta \) on \(N(\lambda) \)

The decomposition \(\mathbb{B} = \mathbb{B}(\sigma) \oplus \mathbb{B}^*(\sigma) \) of the vector space \(\mathbb{B} \) into the subspaces
\[B(\sigma) = \ker(\sigma - \text{id}) \quad \text{and} \quad B^1(\sigma) = \text{im}(\sigma - \text{id}) \quad (51) \]

and the sublattices

\[\Gamma(\sigma) = \Gamma \cap B(\sigma) \quad \text{and} \quad \Gamma^1(\sigma) = \Gamma \cap B^1(\sigma) \quad (52) \]

with \(n(\sigma) = \dim B(\sigma) = \dim \Gamma(\sigma) \) makes possible to formulate the following fixed point properties.

Lemma 4: The affine transformation \((\sigma, f) \in \Theta\) acting on \(B \) has a fixed point \(\xi_0 \in B \) if and only if \(f \in B^1(\sigma) \).

Proof: From \((\sigma, f)\xi_0 = \xi_0\) there follows \((\sigma - \text{id})\xi_0 = -f\), i.e. \(-f \in B^1(\sigma)\) and so also \(f \in B^1(\sigma) \). Conversely, for \(f \in B^1(\sigma)\) there is also \(-f \in \Gamma(\sigma)\) and so by (51) there is a vector \(\xi_0 \in B \) with \(-f = (\sigma - \text{id})\xi_0\), that is \((\sigma, f)\xi_0 = \xi_0\).

Corollary: Assume \((\sigma, f) \in \Theta\) has a fixed point in \(B \). Then \((\sigma, f + t) \in \Theta\) has a fixed point in \(B \) if and only if \(t \in \Gamma^1(\sigma) \).

Proof: Let be \(f \in B^1(\sigma) \) (Lemma 4), that is \(f = \sigma\xi_0 - \xi_0, \xi_0 \in B \). a) Assume \((\sigma, f + t)\xi_1 = \xi_1, \xi_1 \in B, \) so there is true that \(\sigma(\xi_0 + \xi_1) - (\xi_0 + \xi_1) = -t \in B^1(\sigma) \) and then \(t \in \Gamma^1(\sigma) \). Because \((\sigma, f)\) and \((\sigma, f + t)\) are in \(\Theta \), by (7) there follows that \(t \in \Gamma \) and then by (52) \(t \in \Gamma^1(\sigma) \). b) Vice versa from \(t \in \Gamma^1(\sigma) \) there follows \(t \in B^1(\sigma) \), so we have \(-t, -f \in \Gamma^1(\sigma)\), i.e. \(-t = \sigma\xi_2 - \xi_2 = -f \in \Gamma^1(\sigma)\). So there is true that \(\sigma(\xi_2 + \xi_3) + t + f = (\sigma, f + t)(\xi_2 + \xi_3) = \xi_2 + \xi_3 \).

Proposition 4: Let be \((\sigma, f) \in \Theta\). Then \(\delta_0 = 1 \) is true if and only if there is a lattice functional \(t_0 \in \Gamma \) with the property that \((\sigma, f + t_0)\) has a fixed point \(\xi_0 \in B \), i.e. that \(f + t_0 \in B^1(\sigma) \).

Proof: We have to take into consideration that \(\langle u; \xi \rangle = 0 \) if \(u \in B^*(\sigma) \) and \(\xi \in B^1(\sigma) \) (see (26) and (51)); for understanding use dual bases in \(B = B(\sigma) \oplus B^1(\sigma) \) and \(B^* = B^*(\sigma) \oplus B^{*-1}(\sigma) \).

a) Assume \(\delta_0 = 1 \) for a fixed \(\sigma \in \Theta \), i.e. \(s^\sigma(\xi) = \langle c^\sigma(\xi), f \rangle \in Z \) for all \(v = 1, \ldots, m \) (see (45), (39) and (37)). Then for an arbitrary \(u = u, c^\sigma(\xi) \in \Gamma^*(\sigma) \) there is true that \(\langle u, f \rangle \in Z \). If we now decompose \(f = f_1 + f_2 \) into \(f_1 \in B(\sigma) \) and \(f_2 \in B^1(\sigma) \) we obtain \(\langle u, f_2 \rangle = 0 \) because \(u \in B^*(\sigma) \). Then we have \(\langle u, f \rangle = \langle u, f_1 \rangle \in Z \) and therefore \(f_1 \in \Gamma(\sigma) \). For each \(\xi \in \Gamma^1(\sigma) \) there is \(t_0 = -f + u \in \Gamma \) and then \(f + t_0 = f_0 + r \in B^1(\sigma) \).

b) Conversely, let there exists a \(t_0 \in \Gamma \) with \(f + t_0 \in B^1(\sigma) \); we prove that \(s^\sigma(\xi) \in Z \) for all \(v = 1, \ldots, m \), i.e. \(\delta_0 = 1 \). We write \(s^\sigma(\xi) = \langle c^\sigma(\xi), f \rangle = \langle c^\sigma(\xi), f + t_0 \rangle - \langle c^\sigma(\xi), t_0 \rangle \). Here \(\langle c^\sigma(\xi), t_0 \rangle \in Z \), because of \(t_0 \in \Gamma, c^\sigma(\xi) \in \Gamma^*(\sigma) \) and so \(c^\sigma(\xi) \in \Gamma^* \). Now using the introductory remark of the proof we find \(\langle c^\sigma(\xi), f + t_0 \rangle = 0 \) because \(f + t_0 \in B^1(\sigma) \), \(c^\sigma(\xi) \in \Gamma^*(\sigma) \) and so \(c^\sigma(\xi) \in B^*(\sigma) \). Summariting we get \(s^\sigma(\xi) \in Z \).

4.5 Survey of the influence of fixed (fixed point - free) elements of group \(\Theta \) on the asymptotic expression for \(N(\lambda) \). We ask for the intrinsic reason of the appearance of the principal term \(c_0 \lambda^n \) and the secondary term \(c_1 \lambda^{n-1} \) in \(N(\lambda) = c_0 \lambda^n + c_1 \lambda^{n-1} + O(\lambda^{n-2} + \lambda^{(n+1)}) \) we can answer (Proposition 4):
(i) For $\sigma \in \mathcal{O}_m$ the fixed elements $(\sigma, \xi + t_o) \in \mathcal{O}$ produce in (49) resp. (50) the volume terms $\text{vol}_{m}(\mathcal{O} \cap \mathcal{O}^*(\sigma)) \lambda^m$ whereas fixed point-free elements from \mathcal{O} make contributions only to the remainder term $O(\lambda^{m-2+2/(m+1)})$. So we have the following knowledge:

(ii) The identity $(e, e) \in \mathcal{O}$ produces the principal part of $N(\lambda)$ (because $\delta_e = 1, e \in \mathcal{O}_n$).

(iii) The fixed elements $(\sigma, \xi + t_o) \in \mathcal{O}, \sigma \in \mathcal{O}_{n-1}$, produces the summands of the secondary part of $N(\lambda)$.

Concluding remark: The theory developed above can be applied e.g. for crystallographic groups, especially for the 230 space groups. For short it is recommendable to investigate an $n = 2$-dimensional group, e.g. $\mathcal{O} = \Delta^2_{p31m}$ acting on $\mathcal{B} = \mathbb{E}^2$ and having $\mathcal{P} = c(\partial_1^2 + \partial_1 \partial_2 + \partial_2^2)$ ($\partial_j = \partial/\partial x^j$) as the \mathcal{O}-invariant operators for all $c > 0$. The 10 possible examples for \mathcal{O} in the case $n = 2$ demonstrate a considerable improvement if we turn from $N(\lambda) \sim c_0 \lambda^n$ to $N(\lambda) \sim c_0 \lambda^n + c_1 \lambda^{n-1}$ (see the Dissertation B of the author: Zur asymptotischen Verteilung der Eigenwerte \mathcal{O}-invarianter linearer elliptischer Differentialoperatoren mit konstanten Koeffizienten. Universität Leipzig 1989).

REFERENCES

Received 20.02.1992; in revised form 27.07.1992