Smooth Interpolating Curves and Surfaces Generated by Iterated Function Systems

PETER R. MASSOPUST

We construct C^1- and C^2-interpolating fractal functions using a certain class of iterated function systems. An estimate for the box dimension of the graph of nonsmooth fractal functions generated by this new class is presented. We then generalize this construction to bivariate functions thus obtaining C^1-interpolating fractal surfaces. Finally, C^n-interpolating fractal surfaces are constructed via integration over C^0 fractal surfaces.

Key words: Iterated function systems, fractal functions and surfaces, attractors, box dimensions
AMS classification: 26A15, 26A18, 26B05, 41A46, 41A63, 58F12

1 Introduction

Continuous fractal interpolation functions and surfaces are useful tools for interpolating and approximating highly complex sets or images. Unlike the classical approximations that treat each image component as a single entity arising from a random assemblage of objects, fractal approximations consider the image component as an interrelated single system. At this point we refer to [1] or [2] for a more complete overview of the techniques involved.

The graphs of these fractal functions and fractal surfaces are attractors of iterated function systems whose maps are affine functions, and provide examples of nowhere differentiable univariate or bivariate real-valued functions. The usefulness of such functions in interpolation and approximation theory is hampered by the lack of a degree of differentiability as is so often required from interpolants or approximants.

We introduce classes of iterated function systems whose attractors are C^1- and C^2-interpolating functions and C^n-interpolating surfaces, $n \geq 1$. (Here we abuse common 'language' by referring to these attractors as smooth fractal functions. But we think of a fractal as a set that is generated by a recursive procedure — random or deterministic — yielding a high degree of geometric selfness at all scales of approximation.) These new classes of smooth fractal curves and surfaces have all the power and advantages of their continuous analogs but provide now a new means of smoothly interpolating and approximating highly complex images.

The outline of this paper is as follows: In Section 2 we briefly review some basic results from the theory of iterated function systems, fractal functions and surfaces. Then we consider a broader class of iterated function systems yielding smooth fractal functions provided certain conditions apply. At the end of this section we present upper and lower bounds for the box dimension of those fractal curves in this new class that fail to be smooth. In Section 3 we introduce smooth fractal surfaces. This is done in two ways: Firstly, by extending the results obtained in Section 2 to bivariate functions. This yields a new class of fractal surfaces that are smooth. Secondly, by integrating over C^0 fractal surfaces. This method gives C^n-interpolating fractal surfaces, for any $n \in \mathbb{N}$.

P. L. Massopust: Vanderbilt University, Department of Mathematics, 1326 Stevenson Center, Nashville, Tenn. 37240, USA

ISSN 0232 - 2064 / $ 2.50 © Heldermann Verlag Berlin
2 Smooth Fractal Functions

Before we commence with the construction of smooth fractal curves, let us recall some definitions and results from the theory of iterated function systems and fractal interpolation functions.

Let $X := [0,1] \times \mathbb{R}$, let N be an integer greater than one, and let $w_i : X \rightarrow X$, $i = 1, \ldots, N$, be a collection of contractions on (X, d), where d denotes a metric on X. We set $w := \{w_i : i = 1, \ldots, N\}$. The pair (X, w) is called an iterated function system on (X, d). If there exists a non-negative constant $s \in (-1,1)$ such that $d(w_1(x), w_2(x')) \leq s \cdot d(x, x')$, for all $x, x' \in X$ and $i = 1, \ldots, N$, then (X, w) is called a hyperbolic iterated function system with contractivity constant s. It is well-known that every hyperbolic iterated function system possesses a unique compact attractor. For, if $\mathcal{H}(X)$ denotes the set of all non-empty compact subsets of X and h the Hausdorff metric on $\mathcal{H}(X)$, then the map $W : \mathcal{H}(X) \rightarrow \mathcal{H}(X)$, $A \mapsto W(A) := \bigcup_{i=1}^N w_i(A)$, is a contraction with contractivity s on the complete metric space $(\mathcal{H}(X), h)$. Hence W has a unique fixed point A^* and

$$A^* = \bigcup_{i=1}^N w_i(A^*).$$

Equation (1) expresses the fact that the fractal A^* is a finite union of self-images (at every scale).

In [1] and [4] special attractors were generated; namely, attractors that are graphs of continuous univariate real-valued functions. This construction was generalized in [5] and [8]: the attractors are fractal surfaces in \mathbb{R}^3, i.e., the graphs of bivariate real-valued functions defined on certain two-dimensional simplicial complexes. For the sake of completeness and to set notation and terminology, let us review these constructions.

Let $J := \{(x, y) : 0 = x_0 < x_1 < \cdots < x_N = 1; j = 0, 1, \ldots, N\}$ be a given set of data or interpolation points. Define $w_i(x, y) = (u_i(x), v_i(x, y))$, where

$$u_i(x) := b_i x + x_{i-1}, \quad v_i(x, y) := a_i x + s_i y + c_i$$

and

$$u_i(0) = x_{i-1}, \quad u_i(1) = x_i, \quad v_i(0, y_0) = y_{i-1}, \quad v_i(1, y_N) = y_i,$$

for all $i = 1, \ldots, N$. The coefficients $a_i, b_i,$ and c_i are then given by

a) $a_i = (y_i - y_{i-1}) - s_i(y_N - y_0)$,
b) $b_i = x_i - x_{i-1}$,
c) $c_i = y_{i-1} - s_i y_0$.

The s_i have to satisfy $0 \leq |s_i| < 1$, but are otherwise arbitrary parameters. With the maps w_i as defined above, (X, w) is clearly an iterated function system. If we introduce the norm $|| \cdot ||_\theta$ on \mathbb{R}^2, $|| (x, y) ||_\theta := |x| + \theta |y|$, for some $0 < \theta < \min_i \{ (1 - b_i)/(1 + |c_i|) \}$, then each w_i becomes a contraction in the norm $|| \cdot ||_\theta$. The unique attractor G is the graph of a continuous function $f : I \rightarrow \mathbb{R}$ satisfying $f(x_j) = y_j$, for all $j = 0, 1, \ldots, N$ (here and in what follows, I always denotes the unit interval $[0,1]$). This function is called a fractal interpolation function. By equation (1), G is self-affine, i.e., it is a finite union of affine images of itself. To show that G is the graph of a continuous function interpolating J, one defines an operator $T : \hat{C}(I) \rightarrow \mathbb{R}^I$ by

$$(T \varphi)(x) := v_i(u_i^{-1}(x), \varphi(u_i^{-1}(x))), \quad x \in u_i(I),$$

where $\hat{C}(I) := \{ \varphi \in C^0(I) : \varphi(x_j) = y_j, j = 0, 1, \ldots, N \}$. One proceeds by showing that T maps into $\hat{C}(I)$, is well-defined and contractive in the sup-norm with contractivity $s = \max_i \{|s_i|\}$. For a more detailed introduction to fractal interpolation functions we refer the reader to [1, 2, 4].

Fractal surfaces are defined in an analogous fashion: Given is a set of interpolation points $J = \{(x_j, y_j, z_j) : (x_j, y_j) \in \sigma^2, \ z_j \in \mathbb{R}, \text{ and } z_j = 0 \text{ if } (x_j, y_j) \in \partial \sigma^2, j = 0, 1, \ldots, m\}$ in \mathbb{R}^3. Here σ^2 denotes the standard 2-simplex in \mathbb{R}^2. (This definition follows the developments in [8] rather than [5]. There a more general initial set-up is considered.) Suppose that $\sigma^2 = \bigcup_{i=1}^N \sigma^2_i$ with $\hat{\sigma}^2_i \cap \hat{\sigma}^2_{i'} = \emptyset$, for $i \neq i'$, and such that each $\sigma^2_i = u_i(\sigma^2)$, for some unique affine map u_i, and
such that the vertices of σ^2 are in $\{(x_j, y_j) : j = 0, 1, \ldots, m\}$. We define maps $v_i : \sigma^2 \times \mathbb{R} \to \mathbb{R}$ by

$$v_i(x, y) := a_i x + b_i y + s_i z + c_i,$$

for given $|s_i| < 1$, and the $a_i, b_i,$ and c_i are uniquely determined by $v((x_{i(j)}, y_{i(j)})) = z((i, j))$. Here we defined the labelling map $\ell : \{1, \ldots, N\} \times \{1, 2, 3\} \to \{1, \ldots, m\}$ such that $\{(x_{\ell(i)}, y_{\ell(i)}) : j = 1, 2, 3\}$ are the vertices of σ^2.

Now define an operator T on $C(\sigma^2)$, the set of all $\varphi \in C^0(\sigma^2, \mathbb{R})$ with $\varphi(x_j, y_j) = z_j$, $j = 0, 1, \ldots, m$, by

$$T : C(\sigma^2) \to \mathbb{R}^2, \quad (T\varphi)(x, y) := v_i(u_i^{-1}(x, y), \varphi(u_i^{-1}(x, y))),$$

for $(x, y) \in u_i(\sigma^2)$, $i = 1, \ldots, N$. This operator T maps $C(\sigma^2)$ into itself, is well-defined and contractive in the sup-norm with contractivity $\delta = \max_i\{|s_i|\}$. Its unique fixed point is a fractal surface. At this point we refer the interested reader to [5] and [8] for an elaborate description of these fractal surfaces. Let us note that the graph of f, as constructed above, is the attractor of the iterated function system $(\sigma^2 \times \mathbb{R}, w)$, where $w = (u_i, v_i)$.

2.1 C^1- and C^2-interpolating fractal functions.

We now proceed with the construction of smooth fractal curves. We assume without loss of generality that the attractor of the iterated function system is contained in $X = I \times [-1, 1]$. Let $J := \{(x_j, y_j) : 0 = x_0 < x_1 < \cdots < x_N = 1, y_j \in \mathbb{R}, j = 0, 1, \ldots, N; 1 < N \in \mathbb{N}\}$ be a given set of interpolation points. We define affine maps $u_i : I \to I$ by

$$u_i(x) := b_i x + x_{i-1}, \quad x \in u_i(I),$$

where $b_i = x_i - x_{i-1}$, $i = 1, \ldots, N$. Now let $K_i(\xi, \eta)$ be a symmetric bilinear form on \mathbb{R}^2. For $\xi = (x, y) \in \mathbb{R}^2$ let $v_i(\xi) := K_i(\xi, \eta) + d_i, d_i \in \mathbb{R}$ and $i = 1, \ldots, N$. Then $v_i : X \to \mathbb{R}$, and it can be written as

$$v_i(x, y) = a_i x^2 + 2s_i xy + t_i y^2 + d_i.$$ \hspace{1cm} (5)

The coefficients a_i and d_i are uniquely determined by requiring that

$$v_i(0, y_0) = y_i - 1, \quad v_i(1, y_N) = y_i.$$ \hspace{1cm} (6)

We thus obtain

$$a_i = y_i - y_{i-1} - 2s_i y_N - t_i (y_0^2 + y_N^2) \quad \text{and} \quad d_i = y_{i-1} - t_i y_0^2.$$ \hspace{1cm} (7)

In order for $w_i(x, y) = (u_i(x), v_i(x, y)), i = 1, \ldots, N$, to be contractive on X we have to require that $v_i(\cdot, y)$ is Lipschitz for all $y \in \mathbb{R}$, and $v_i(x, \cdot)$ contractive for all $x \in I$. Then

$$|v_i(x, y) - v_i(x', y)| \leq |a_i(x^2 - x'^2) + 2s_i(x - x')| \leq |2a_i + 2s_i| |x - x'| < \ell |x - x'|,$$

for all $x, x' \in I$, all $y \in [-1, 1]$, and $\ell > \max_i\{|2a_i + 2s_i|\}$. Also,

$$|v_i(x, y) - v_i(x', y')| \leq |2s_i(x(y - y') + t_i(y^2 - y'^2)| \leq |2s_i + t_i(y + y')| |y - y'| \leq r |y - y'|,$$

for all $x \in I$, $y, y' \in [-1, 1]$, whenever

$$\max\{|s_i| + |t_i| : i = 1, \ldots, N\} \leq r < 1/2.$$ \hspace{1cm} (8)

Hence the s_i and t_i, as long as they satisfy inequality (8), are free parameters. Now let $0 < \theta < (1 - \max_i\{|b_i|\})/\ell$. It is straight-forward to show that each w_i is contractive in the complete normed linear space $(X, \| \cdot \|_\theta)$, where $\|(x, y)\|_\theta := |x| + \theta |y|$, $(x, y) \in X$. Hence the iterated function system (X, w) has a unique attractor G.
We will show that under certain conditions \(G \) is the graph of a \(C^1 \)-function interpolating \(\mathcal{J} \). To this end, let \(\hat{C}^1(I) \) denote the complete metric space (in the \(C^1 \)-topology) consisting of all \(\varphi \in C^1(I, \mathbb{R}) \) such that \(\varphi(x_j) = y_j, j = 0, 1, \ldots, N \), and \(\varphi'(0) = \alpha \) and \(\varphi'(1) = \beta \), for some given \(\alpha, \beta \in \mathbb{R} \). Define an operator \(T : \hat{C}^1(I) \to \mathbb{R}^I \) by
\[
(T\varphi)(x) := v_i(u_i^{-1}(x), \varphi(u_i^{-1}(x))), \ x \in u_i(I),
\]
i = 1, \ldots, N. Then
\[
(T\varphi)'(x) = \frac{2}{b_i} \left(a_i u_i^{-1}(\cdot) + s_i \varphi(u_i^{-1}(\cdot)) + s_i u_i^{-1}(\cdot) \varphi'(u_i^{-1}(\cdot)) + t_i \varphi'(u_i^{-1}(\cdot)) \varphi'(u_i^{-1}(\cdot)) \right).
\]
If we require that
\[
(T\varphi)'(0) = \varphi'(0), \quad (T\varphi)'(1) = \varphi'(1), \quad \lim_{x \to x_i^-} (T\varphi)'(x) = \lim_{x \to x_i^+} (T\varphi)'(x),
\]
for \(i = 1, \ldots, N - 1 \), then this together with equations (4) and (6) implies that \(T\varphi \in C^1(I, \mathbb{R}) \). Furthermore, since \(u_i \) and \(v_i(x, \cdot) \) are contractive, \(T \) is contractive on \(\hat{C}^1(I) \) in the \(C^1 \)-topology with contractivity factor \(2 \max\{ |s_i| + |t_i| \} \). Thus, by the Contraction Mapping Theorem, \(T \) has a unique fixed point \(f : I \to [-1, 1] \) in \(\hat{C}^1(I) \). Moreover, \(f(x_j) = y_j \), for all \(j = 0, 1, \ldots, N \). We refer to \(f \) as a \(C^1 \)-interpolating fractal function.

In the special case where \(y_0 = y_N = 0 \), the following conditions on the \(s_i \) and on \(\alpha \) have to hold for \(f \) to be of class \(C^1 \):
\[
s_i = -\frac{a_i \varphi'(1)}{\varphi'(1)} \quad (i = 1, \ldots, N - 1), \quad s_N = \frac{b_N}{2} - \frac{a_N \varphi'(1)}{\varphi'(1)} \quad \varphi'(0) = \alpha = 0.
\]
The coefficients \(t_i \), as long as they satisfy (8), are free parameters. Figures 1 — 3 show examples of such \(C^1 \)-interpolating fractal functions. The set of interpolation points for Figures 1 and 2 is \(\mathcal{J} = \{(0, 0), (1/2, 1/2), (1, 0)\} \).

![Figure 1](image1)

![Figure 2](image2)

It is also possible to obtain \(C^2 \)-interpolating fractal functions: one has to require the additional conditions
\[
\lim_{x \to x_i^-} (T\varphi)''(x) = \lim_{x \to x_i^+} (T\varphi)''(x) \quad (i = 1, \ldots, N - 1), \quad (T\varphi)''(1) = \varphi''(1). \quad (11)
\]
If we denote by \(\hat{C}^2(I) \) the complete metric space consisting of all \(\varphi \in \hat{C}^1(I) \) satisfying \(\varphi''(1) = \gamma \), for some fixed \(\gamma \in \mathbb{R} \), and define \(T \) as in equation (9), we see that \(T \) is a contraction on \(\hat{C}^2(I) \) in the \(C^2 \)-topology and that its unique fixed point is a \(C^2 \)-function \(f : I \to [-1, 1] \) interpolating \(\mathcal{J} \).
We refer to f as a C^2-interpolating fractal function. Using again the special case $y_0 = y_N = 0$ as an example, we obtain

$$(T\varphi)^{(i)}(0) = \frac{2a_i}{b_i^2}, \quad t_i = \frac{a_{i+1} \left(\frac{b_{i+1}}{b_i} \right)^2 + a_i \left(1 + \varphi''(1) \right)}{\varphi(1)\varphi'(1) + \varphi''(1)} \quad (i = 1, \ldots, N - 1),$$

$$t_N = \frac{b_N^2\varphi''(1) - 2a_N - 2s_N(2\varphi'(1) - \varphi''(1))}{2\varphi(1)\varphi'(1) + \varphi''(1)}.$$

Figure 4 shows the graph of a C^2-interpolating fractal function.

Figure 3: $\mathcal{J} = \{(0, 0), (\frac{1}{2}, \frac{1}{2}), (\frac{3}{4}, -\frac{1}{4}), (1, 0)\}$

$s_1 = -\frac{5}{8}, \quad s_2 = \frac{7}{8}, \quad s_3 = \frac{5}{8}$,

$t_1 = -t_2 = t_3 = \frac{1}{16}, \quad \varphi'(1) = 18$

Figure 4: $\mathcal{J} = \{(0, 0), (\frac{1}{2}, \frac{1}{2}), (1, 0)\}$

$s_1 = s_2 = \frac{1}{8}, \quad t_1 = -t_2 = -\frac{3}{8}$,

$\varphi'(1) = -4 = -(T\varphi''(0) = \varphi''(1))$.

Remark. Since f is the unique fixed point of T, we have

$$f = a_0(u_1^{-1}(\cdot))^2 + s_1u_1^{-1}(\cdot) + t_1[f(u_1^{-1}(\cdot))]^2 + d_1,$$

and if we set $s_i = s$ and $t_i = 0$ for all $i = 1, \ldots, N$, then it can be shown that the set $\mathcal{V}_0 := \{f : \mathbb{R} \rightarrow \mathbb{R} : \text{for all } j \in \mathbb{Z} \text{ there exists a fractal interpolation function } g \text{ on } [j, j+1] \text{ with } s = s_i \text{ and } b_1 = 1/N \text{ such that } f\bigg|_{(j,j+1)} = g\bigg|_{(j,j+1)} \}$ is a linear space and that the mapping $(y_0, y_1, \ldots, y_N) \mapsto f$ is linear. If one defines linear spaces \mathcal{V}_k, $k \in \mathbb{Z}$, by $f \in \mathcal{V}_k$ if and only if $f(N^{-k-1}) \in \mathcal{V}_0$, then a nested sequence of linear spaces is obtained. This sequence of spaces can then be used to define a multiresolution analysis on $L^2(\mathbb{R})$ (see [7]). The author will discuss this approach in a forthcoming paper.

The set of fractal functions generated by (4) and (5) and which satisfy (6) is denoted by \mathcal{K}^0. We denote by \mathcal{K}^1 those fractal functions in \mathcal{K}^0 that also satisfy (10), and by \mathcal{K}^2 those in \mathcal{K}^1 that obey (11). Clearly, $\mathcal{K}^0 \supset \mathcal{K}^1 \supset \mathcal{K}^2$. Next we present a formula for the box dimension of graph(f) when $f \in \mathcal{K}^0 \setminus \mathcal{K}^1$.

2.2 Estimates for the box dimension of graph f, $f \in \mathcal{K}^0 \setminus \mathcal{K}^1$. Let us briefly recall the definition of box dimension of a bounded set $E \subset \mathbb{R}^m$. The upper and lower box dimensions of E are defined by

$$\dim_B E := \limsup_{\varepsilon \to 0^+} \frac{\log N_{\varepsilon} E}{-\log \varepsilon} \quad \text{and} \quad \underline{\dim}_B E := \liminf_{\varepsilon \to 0^+} \frac{\log N_{\varepsilon} E}{-\log \varepsilon},$$

respectively, where $N_{\varepsilon} E$ denotes the minimum number of ε-cubes necessary to cover E. If $\dim_B E = \overline{\dim}_B E$, then their common value is called the box dimension of E and denoted by $\dim_B E$. We present an upper bound for $\overline{\dim}_B E$ and a lower bound for $\underline{\dim}_B E$ in the case where $E = \text{graph } f$, and $f \in \mathcal{K}^0 \setminus \mathcal{K}^1$ is generated by N maps with $b_i = 1/N$, $i = 1, \ldots, N$.

In [6] it is shown that in the above-mentioned case it is sufficient to consider covers \mathcal{C} of graph f which are of the form $\mathcal{C} = \{(k - 1)/N^n, k/N^n] \times [a, a + 1/N^n] : k, n \in \mathbb{N}, a \in \mathbb{R}\}$. It
should also be clear that one can replace the continuous variable ϵ in (12) by any sequence $\{\epsilon_n\}$ with $\epsilon_n \downarrow 0$ and $\log \epsilon_n + 1 / \log \epsilon_n \to 1$.

The following lemma is needed in the proof of the next theorem.

Lemma 1. Assume that the free parameters s_i and t_i satisfy inequality (8). Let $B_1 := 2 \sum_{i=1}^N |s_i|$.

If $B_1 > 1$ and J is not collinear, then $\lim_{n \to \infty} N^{-n} N(n) = \infty$.

Proof. The proof is essentially the same as the one for the corresponding lemma in [6] with only minor changes (e.g., a_2 instead of a_1) and will not be repeated here. \[\square \]

Theorem 1. Let $f \in K^0 \setminus K^1$ be the unique fixed point of the operator T defined by (9) with $b_1 = 1/N$, for all $i = 1, \ldots, N$, and let G be its graph. Suppose that the free parameters s_i and t_i satisfy inequality (8). Let $B_1 := 2 \sum_{i=1}^N |s_i|$ and $B_2 := 2 \sum_{i=1}^N (|s_i| + |t_i|)$.

If J is not collinear and $B_1 > 1$, then

$$1 + \log N B_1 \leq \dim_B G \leq \overline{\dim}_B G \leq 1 + \log N B_2.$$

If either J is collinear or $B_2 \leq 1$, then $\dim_B G = 1$.

Proof. Let $C_n \in C$ be a minimal cover of G consisting of $N(n)$ $1/N^n \times 1/N^n$ squares with disjoint interiors. Consider the intervals $I_{n,k} := [(k-1)/N^n, k/N^n]$, $k = 1, \ldots, N^n$. Then $G \mid_{I_{n,k}}$ is contained in a rectangle R of width $1/N^n$ and height $\max \{ f \mid_{I_{n,k}} \} - \min \{ f \mid_{I_{n,k}} \}$. Let $N(n,k)$ denote the least number of squares from C_n needed to cover R. Note that $N(n) = \sum_{k=1}^{N^n} N(n,k)$. Let $i \in \{1, \ldots, N^n\}$. The image of R under the map u_i is then contained in a rectangle of width $1/N^n$ and height $h_i = \max \{ f \mid_{I_{n,k,i}} \} - \min \{ f \mid_{I_{n,k,i}} \}$, where $I_{n,k,i} := u_i(I_{n,k})$.

Setting $y_k = \max \{ f \mid_{I_{n,k}} \}$ and $y_{k-1} = \min \{ f \mid_{I_{n,k}} \}$, one easily shows that

$$h_i = \left| \frac{a_i k^2}{N^n} + \frac{2 s_i y_k}{N^n} + t_i y_k^2 - \frac{a_i (k-1)^2}{N^n} - \frac{2 s_i (k-1) y_{k-1}}{N^n} - t_i y_{k-1}^2 \right|.$$

Hence, if $N(n+1,k,i)$ denotes the minimum number of $1/N^{n+1} \times 1/N^{n+1}$-squares from C_{n+1} needed to cover $u_i(R)$, we have

$$N(n,k,i) \leq N(n+1) \left[2 |s_i| h + \frac{2 |s_i|}{N^n} (k - 1) + \frac{|s_i|}{N^n} (k - 1) \right].$$

Since the cardinality of a minimal cover $C_{n+1} \in C$ is given by $N(n+1) = \sum_{i=1}^{N^n} \sum_{k=1}^{N^n} N(n,k,i)$, we have

$$N(n+1) \leq (N B_2) N(n) + \sum_{i=1}^{N^n} (|a_i| + 2 |s_i|) N^{n+1}.$$

Thus, by induction on n,

$$N(n) \leq (N B_2)^n N(1) + c_1 N^{n+1} (1 + B_2 + \cdots + B_2^{n+1}),$$

where $c_1 := \sum_{i=1}^{N^n} (|a_i| + 2 |s_i|)$. Therefore, if $B_2 \leq 1$, $N(n) \leq c_2 n N^n$, where $c_2 := N(1) + c_1$, and thus $\dim_B G \leq 1$, i.e., $\dim G = 1$. If $B_2 > 1$, we have $N(n) \leq c_3 (B_2 N)^n$, where $c_3 := N(1) + c_1/(1 - B_2)$. Thus $\dim_B G \leq 1 + \log N B_2$.

Now let us obtain the given lower bound for $\dim_B G$. We note that — after possibly interchanging the min and max in the definition of y_k — $G \mid_{I_{n,k}}$ must contain a rectangle of height at least

$$|v_i((k-1)/N^n, y_k) - v_i(k/N^n, y_{k-1})|.$$
This height, however, is at least equal to
\[
|t_i(y_i^2 - y_{i-1}^2) + 2s_i(y_k - y_{k-1})| - \left| \frac{s_i(k - 1)^2}{N^{2n}} - \frac{s_i}{N^n} \right| - \left| \frac{s_i}{N^n} \right|
\]
\[
= |y_k - y_{k-1}| |t_i(y_i + y_{k-1})| + 2s_i| - \left| \frac{(2k - 1)s_i}{N^{2n}} \right| - \left| \frac{s_i}{N^n} \right|
\]
\[
\geq 2|s_i| |y_k - y_{k-1}| - \left| \frac{(2k - 1)s_i}{N^{2n}} \right| - \left| \frac{s_i}{N^n} \right|.
\]

Hence, after summing over \(k\) and \(i\), and by induction on \(n\), we obtain
\[
\mathcal{N}(n + 1) \geq \left(\sum_{i=1}^{N} 2|s_i| \right)^n \mathcal{N}(1) - c_4 N^{n+1},
\]
for some \(c_4 > 0\). By Lemma 1 we can choose \(n\) large enough to ensure that the right-hand side of the above inequality is positive. Therefore, \(\mathcal{N}(n) \geq c_5 (N B_1)^n\), for some \(c_5 > 0\). Thus,
\[
\dim_B G \geq 1 + \log_N B_1.
\]

3 Smooth Fractal Surfaces

In this section we present two methods for constructing smooth fractal surfaces. The first one is an extension of the method given in the previous section, the second one defines smooth fractal surfaces as indefinite integrals of \(C^0\)-fractal surfaces.

3.1 Construction via iterated function systems.

Let \(Q = [0, 1] \times [0, 1]\), let \(e_1 = (1, 0), e_2 = (0, 1)\), and let \(N\) be a fixed integer greater than one. Let \(\Gamma = \{(m/N)e_1 + (n/N)e_2 : m, n \in \mathbb{Z}\}\) be a lattice in \(\mathbb{R}^2\). Suppose that for each lattice point \((x_i, y_j) \in \Gamma \cap Q\) we are given a real number \(z_{ij}\), \(i, j \in \{0, 1, \ldots, N\}\). The set \(\mathcal{J} := \{(x_i, y_j, z_{ij}) : i, j = 0, 1, \ldots, N\}\) can be thought of as a given set of data or interpolation points on \(Q\). We will define a smooth fractal surface interpolating \(\mathcal{J}\).

Let \(u_{ij} : Q \to Q\) be given by
\[
u_{ij}(x, y) = \begin{pmatrix} \frac{1}{N} & 0 \\ 0 & \frac{1}{N} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{i-1}{N} \\ \frac{j-1}{N} \end{pmatrix},
\]
and let \(v_{ij} : Q \times \mathbb{R} \to \mathbb{R}\) be defined as
\[
u_{ij}(x, y, z) = A_{ij}x^2 + B_{ij}y^2 + C_{ij}z^2 + D_{ij}xy + E_{ij}yz + F_{ij}zx + G_{ij},
\]
such that
\[
u_{ij}(0, 0, z_{0,0}) = z_{i-1,j-1}, \quad \nu_{ij}(0, 1, z_{0,N}) = z_{i-1,j}, \quad \nu_{ij}(1, 0, z_{N,0}) = z_{i,j-1}, \quad \nu_{ij}(1, 1, z_{N,N}) = z_{i,j},
\]
\(i, j = 1, \ldots, N\), and that the following join-up conditions are satisfied:

For \(j = 1, \ldots, N\) and \(y \in \left[(j-1)/N, j/N\right]\)
\[
u_{ij}(0, y, \varphi(0, y)) = \nu_{i-1,j}(1, y, \varphi(1, y)), \quad i = 2, \ldots, N,
\]
\[
u_{ij}(1, y, \varphi(1, y)) = \nu_{i+1,j}(0, y, \varphi(0, y)), \quad i = 1, \ldots, N - 1,
\]
\(i, j = 1, \ldots, N\), and that the following join-up conditions are satisfied:

For \(j = 1, \ldots, N\) and \(y \in \left[(j-1)/N, j/N\right]\)
\[
u_{ij}(x, 0, \varphi(0, 0)) = \nu_{i-1,j}(x, 1, \varphi(1, 1)), \quad j = 2, \ldots, N,
\]
\[
u_{ij}(x, 1, \varphi(1, 1)) = \nu_{i+1,j}(x, 0, \varphi(0, 0)), \quad j = 1, \ldots, N - 1.
\]

Here \(\varphi\) denotes any \(C^0\)-function interpolating \(\mathcal{J}\).
Conditions (13), (14), and (15) uniquely determine some of the coefficients A_{ij}, \ldots, G_{ij}. For instance, if $z_{0,0} = z_{0,N} = z_{N,0} = z_{N,N} = 0$, we obtain

$$
\begin{align*}
A_{ij} &= z_{i,j-1} - z_{i-1,j-1}, \\
D_{ij} &= (z_{ij} - z_{i,j-1}) - (z_{i-1,j} - z_{i-1,j-1}),
\end{align*}
$$

$$
\begin{align*}
B_{ij} &= z_{i-1,j} - z_{i-1,j-1}, \\
G_{ij} &= z_{i-1,j-1},
\end{align*}
$$

(16)

for $i,j = 1, \ldots, N$. If $\varphi \equiv 0$ on ∂Q, then $A_{ij} = B_{ij} = D_{ij} \equiv 0$, and the join-up conditions are automatically satisfied. If $\varphi(0,y) \equiv \varphi(1,y)$ and $\varphi(x,0) \equiv \varphi(x,1)$, then in addition to equation (16) we also have to have

$$
\begin{align*}
A_{1,j} &= A_{1,j-1}, \\
C_{ij} &= C_{i-1,j} = C_{i,j-1}, \\
B_{1,j} &= B_{1,j-1}, \\
E_{ij} &= F_{ij} = 0
\end{align*}
$$

in order for the join-up conditions to be satisfied.

Now let $\hat{C}^0(Q) := \{ \varphi \in C^0(Q, \mathbb{R}) : \varphi(x_j, y_j) = z_{ij}, i,j = 0, 1, \ldots, N \}$. We define a mapping $T : \hat{C}^0(Q) \to \mathbb{R}^Q$ by

$$
(T\varphi)(x,y) := v_{ij}(u_{ij}^{-1}(x,y), \varphi(u_{ij}^{-1}(x,y))), \ (x,y) \in u_{ij}(Q).
$$

(17)

Suppose, without loss of generality, that $\|\varphi\| \leq 1$ on Q and that $s := 2 \max_{i,j} |C_{ij}| + \max_{i,j} |E_{ij}| + \max_{i,j} |F_{ij}| < 1$.

Theorem 2. T maps $\hat{C}^0(Q)$ into itself, is well-defined and contractive in the sup-norm with contractivity s.

Proof. The results follow immediately from the definition of T, conditions (13), (14), and (15) and the assumption on s. \hfill \blacksquare

The unique fixed point of T is the graph of a C^0-function $f : Q \to \mathbb{R}$ that interpolates J. The graph of f is called a *fractal surface*. The following figures display the fifth level approximation of two of these surfaces with $z_{00} = z_{02} = 20 = z_{22} = 0$, $z_{01} = z_{10} = z_{12} = z_{21} = 1/2$, $z_{11} = 1$.

![Figure 5: $C_{ij} = 9/20$.](image1)

![Figure 6: $C_{ij} = 1/4$.](image2)

If we impose the following C^1 join-up conditions, we can guarantee that f is a C^1-function:

Suppose $\varphi \in \hat{C}^1(Q) := \{ \psi \in C^1(Q, \mathbb{R}) : \psi(x_j, y_j) = z_{ij}, i,j = 0, 1, \ldots, N \}$. Let

$$
\nabla(v_{ij}(u_{ij}^{-1}(\cdot, \cdot), \varphi(u_{ij}^{-1}(\cdot, \cdot)))) = \nabla(v_{i,j-1}(u_{i,j-1}^{-1}(\cdot, \cdot), \varphi(u_{i,j-1}^{-1}(\cdot, \cdot)))) ,
$$

(18)
for all \((x, y) \in [i/N, (i + 1)/N] \times [j/N]\), and similarly for the three other edges. In the case where \(z_{0,0} = z_{0N} = z_{N0} = z_{NN} = 0\), this implies that \(E_{ij} = F_{ij} = 0\) and that \(\nabla \varphi|_{\partial Q} \equiv 0\). If we consider the class \(\hat{C}^1(Q) := \{\varphi \in C^1(Q) : \nabla \varphi|_{\partial Q} \equiv 0\}\), then we have the next result.

Theorem 3. Let the mapping \(T : \hat{C}^0(Q) \to \mathbb{R}^Q\) be defined as in (17). Suppose that condition (18) is satisfied. Then \(T\) maps \(\hat{C}^1(Q)\) into itself, is well-defined and contractive in the \(C^1\)-topology with contractivity \(s\).

Proof. This follows directly from Theorem 2 and the above considerations.

3.2 Smooth fractal surfaces via integration

In this subsection we consider fractal surfaces defined on \(Q\) that are generated by choosing \(\psi_{ij}\) as in Subsection 3.1, but require \(\psi_{ij}\) to be of the following form: \(\psi_{ij}(x, y, z) = \psi_{ij}(x, y, z_0)\) is a symmetric quadratic form for all \(x, y, z_0 \in \mathbb{R}\), and \(\psi_{ij}(x, y, z) = \psi_{ij}(x, y, z_0)\) is a linear form for all \((x, y) \in Q\) and \(z_0 \in \mathbb{R}\). Furthermore, we require that conditions (13), (14), and (15) also hold for this choice of \(\psi_{ij}\). In the special case \(z_{0,0} = z_{N0} = z_{0N} = z_{NN} = 0\), we obtain the next expressions for \(A_{ij}, B_{ij}, D_{ij}\), and \(C_{ij}\), if

\[
\psi_{ij}(x, y, z) = A_{ij}x^2 + B_{ij}y^2 + C_{ij}z + D_{ij}xy + G_{ij}.
\]

Note that (14) and (15) follow whether \(\varphi \equiv 0\) on \(\partial Q\) or \(\varphi|_{[0,1] \times \{0\}} = \varphi|_{[0,1] \times \{1\}}\) and \(\varphi|_{\{0\} \times [0,1]} \equiv \varphi|_{\{1\} \times [0,1]}\).

Defining an operator \(T\) as in (17) and assuming \(s = \max_{i,j} |C_{ij}| < 1\), we obtain the following theorem whose proof is straightforward.

Theorem 4. The unique fixed point of \(T\) is a \(C^0\)-function \(f : Q \to \mathbb{R}\) such that \(f(x_j, y_j) = z_{ij}\), for all \(i, j = 0, 1, \ldots, N\).

The reason for choosing this particular form of the \(\psi_{ij}\) will become clear shortly. Let

\[
\bar{f}(x, y) := \bar{z}_{0,0} + \int_0^x \int_0^y f(s, t) \, dt \, ds,
\]

for some \(\bar{z}_{0,0} \in \mathbb{R}\). Denote the integral operator \(\int_0^x \int_0^y f^j(s, t) \, dt \, ds\) by \(I^j(\cdot)(\cdot\cdot)(\cdot\cdot)\), and let \(u_{ij}(x, y) = (\kappa_i(x), \lambda_j(y))\), where \(\kappa_i(x) := (1/N)x + (i - 1)/N\) and \(\lambda_j(y) := (1/N)y + (j - 1)/N\), \(i, j = 0, 1, \ldots, N\). Then

\[
\bar{f}(u_{ij}(x, y)) = \bar{z}_{0,0} + I^j(\kappa_i(x), \lambda_j(y)) (f) + I^j(\kappa_i(x), \lambda_j(y)) (f) + I^j(\kappa_i(x), \lambda_j(y)) (f) + I^j(\kappa_i(x), \lambda_j(y)) (f)
\]

Since \(f \circ u_{ij} = \psi_{ij}(\cdot, \cdot, \cdot)\), we have

\[
\bar{f}(u_{ij}(x, y)) = \left(\bar{z}_{0,0} + I^j(\kappa_i(x), \lambda_j(y)) (f) + I^j(\kappa_i(x), \lambda_j(y)) (f) + I^j(\kappa_i(x), \lambda_j(y)) (f) + I^j(\kappa_i(x), \lambda_j(y)) (f)\right)
\]

Hence \(\bar{f}\) is the unique fixed point of the operator \(\Psi : C^1(Q, \mathbb{R}) \to C^1(Q, \mathbb{R})\),

\[
\Psi \varphi := \bar{u}_{ij}(u_{ij}^{-1}(\cdot, \cdot), \varphi(u_{ij}^{-1}(\cdot, \cdot))),
\]

where \(\bar{u}_{ij}(x, y, z) = R_{ij}(x, y, z) + \frac{C_{ij}}{N^2}z\), or equivalently, graph \(f\) is the unique attractor of the iterated function system \((Q \times \mathbb{R}, \bar{\psi})\) with \(\bar{\psi} = \{\psi_{ij} : Q \times \mathbb{R} \to Q \times \mathbb{R} : \psi_{ij} = (u_{ij}, \bar{u}_{ij})\}, i, j = 0, 1, \ldots, N\).
Since the operator \(I_{(0,0)}^{(x,y)}(\cdot) \) is continuous, \(\tilde{f} \) is continuous at its interpolation points \(((x_i, y_j, \tilde{z}_{i,j}) : \ i, j = 0, 1, \ldots, N)\). To determine the \(\tilde{z}_{i,j} \), notice that \(u_{i,j}(0, 0) = (x_i, y_j, \tilde{z}_{i,j}) \), and thus \(\tilde{f}(u_{i,j}(0, 0)) = \tilde{z}_{i,0} + I_{(0,0)}^{(x_i, y_j, \tilde{z}_{i,j})}(f) =: \tilde{z}_{i,1,j-1} \). Therefore,

\[
\tilde{z}_{i,j} = \tilde{z}_{i,1,j-1} + C_{ij} I_{(0,0)}^{(x_i, y_j, \tilde{z}_{i,j})}(f) + \frac{1}{N} I_{(0,0)}^{(1,1)}(v_{i,j} | x = 0) + \frac{1}{N} I_{(0,0)}^{(x_i, y_j, \tilde{z}_{i,j})}(f) = C_{ij} N^2 (\tilde{z}_{i,N,N} - \tilde{z}_{i,0,0}) + \frac{1}{N} I_{(0,0)}^{(1,1)}(v_{i,j} | x = 0) + (\tilde{z}_{i,1,j-1} - \tilde{z}_{i-1,j-1}) + \tilde{z}_{i,j-1}.
\]

Hence the \(\tilde{z}_{i,j} \) can be expressed in terms of \(\tilde{z}_{0,0}, C_{ij}, \) and \(I_{(0,0)}^{(1,1)}(v_{i,j} | x = 0), (i, j) \neq (0, 0) \). Let us summarize these results in a theorem.

Theorem 5. Let graph \(f \) be a fractal surface generated by the iterated function system \((Q \times R, w)\), where \(w_i = (u_{i,j}, v_{i,j}) \) with

\[
u_{i,j}(x, y, z) = \left(\begin{array}{c} \frac{N}{i} \\ \frac{1}{N} \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} \frac{i-1}{N} \\ \frac{j-1}{N} \end{array} \right),
\]

and

\[
u_{i,j}(x) = A_{ij} z^2 + B_{ij} y^2 + C_{ij} z + D_{ij} z y + G_{ij},\]

such that \(\max_{i,j} |C_{ij}| < 1 \). Let

\[
\tilde{f}(x, y) = \tilde{z}_{0,0} + \int_0^x \int_0^y f(s, t) \, dt \, ds, \quad \text{for some } \tilde{z}_{0,0} \in R.
\]

Then graph \(\tilde{f} \) is the attractor of the iterated function system \((Q \times R, \tilde{w})\) with \(\tilde{w}_{i,j} = (u_{i,j}, v_{i,j}) \), where

\[
\tilde{v}_{i,j}(x, y, z) = \tilde{z}_{i-1,j-1} + C_{ij} N^2 z + \frac{1}{N^2} \int_0^x \int_0^y v_{i,j}(s, t, 0) \, dt \, ds, \quad i, j = 1, \ldots, N.
\]

Furthermore, the \(\tilde{z}_{i,j} \), \((i, j) \neq (0, 0)\), are recursively and uniquely determined by \(\tilde{z}_{0,0} \) which is a free parameter, \(C_{ij} \), and \(\int_0^x \int_0^y v_{i,j}(s, t, 0) \, dt \, ds \). Also, \(\nabla \tilde{f}(x, y) = (g_y(x), h_x(y)) \), where

\[
g_y(x) = \int_0^y f(x, t) \, dt \quad \text{and} \quad h_x(y) = \int_0^x f(s, y) \, ds.
\]

Moreover, \(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \tilde{f} = \frac{\partial}{\partial y} \frac{\partial}{\partial x} \tilde{f} = f \).

Proof. The last part of the theorem follows from Calculus.

It should now be clear how one can construct \(C^n \)-interpolating fractal surfaces, \(n \in \mathbb{N} \); the above procedure can be iterated an arbitrary number of times.

REFERENCES

Received 21.01.1992; in revised form 08.02.1993.