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Properties of BMO Functions whose Reciprocals are also BMO 

R. L. JOHNSON and C. J. NEUGEBAUER 

The main result says that a non-negative B MO-function w, whose reciprocal is also in BMO, belongs 
to fly> ' A,and that an arbitrary u E BMO can be written as u = w— 1/w, for w as above. This leads 
then to some observations concerning the John.Nirenberg distribution inequality for F o u, u E BMO 
and F E Lip a. 
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1. Introduction 
We will consider the question of when a function w and its reciprocal 1/w are in BMO. If we 
assume that w : -. R+ and consider this question for various spaces X, we obtain distinct 
results. The answer for L(RTh ) is that if w, 1/w E 11(R5), then p = oo while w, 1 1 w E L 
implies that w 1 which is also equivalent to the fact that w, 1/w € A 1 (for the precise definition 
of the 4, classes see below). It is known that BMO is the right space to consider in place of 
LP as p -. oo in a number of situations and we will give the answer to this question for BMO 
in this paper. 

The definition of BMO is that f € BMO if 

sup	 JQ If(X)_ fq l dx =	<+ 00 
IQ IQI

where f =	fQ f(z)dz, and Q is a cube with sides parallel to the coordinate axes. It is

important to know that the V norm can be replaced by the 11 norm for 0 <p < no, 

(-L r
\l/P

sp IQI JQ 11(z) - fQl"dz)	= IIfII..	IIffl.. 

We need also to recall the John-Nirenberg lemma, the reason for the above result, for functions 
of bounded mean oscillation. If  E BMO, there are constants C1, C2 > 0 independent off and 

9 such that
Ift E Q jf(t).— fI > A) :5 cie_c2)fIQl, 

for all A > 0. Of course, bounded functions are in BMO and In 1 /I x 1 is an unbounded function 
in BMO. The precise space we will study is 

BMO. = {w : R" - R w, 1/w € BMO}. 
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We need to recall the A,, weights which are defined by the condition 

A,,(w) = sup	J w)	1	<+00, 
Q (IQI Q	(IQI Q 

where Q is again a cube. The A,, weights solve the problem of characterizing when the Hardy-
Littlewood maximal function maps L, into L,, where Mf(x) = SUPXEQ f If ()I dy, and 
the result is

J IMf(x)Iw(x) dx C' J jf(x)l"w(z) dx	w € A,,. 

We will also need to consider A 1 = {w lMw(x ) :5 Cw(x)}, with the smallest such C being 
denoted A i (w) and A. = U,,>1 A,,. Since the A,, constants decrease by HOlder's inequality, we 
can set A 00 (w) = lim,,...00 A,,(w). We have the set inclusions 

A 1 9 A,, c Aq c A00, 

where 1 —< p q :5 co. The A,, weights also solve the corresponding problem for the Hilbert 
transform

	

Hf(r) = lim I	dy. 
1_0 J<I2_yl<1/ x - y 

It is known that if w, 1/w E A,,, then w E A2 , and we may limit our study to the case 1 p 2 
by the inclusion properties of A,,. It is also known that [1, p. 474] 

w,1/wE flA,,4=lnwEc1osBMoL00 .	 (I)
P> 1 

We say that w E RH,,0 (reverse HOlder) if 

1	'/°	C 

(rTJQu1P0Y ^ iiJ 
and we abbreviate by RH,,0 (w) the infimum of all such C. We will use the fact, due to Stromberg 
and Wheeden, that w E RH,,0 if and only if w'° E A00 . An alternate proof of this fact can be 
found in 1 3 , Lemma 3.11. 

2. Preliminary results 

Our first result shows that HOlder continuous functions operate on BMO. 

Lemma 1: If F is Holder continuous of order a, where 0 < a < 1 and I € BMO, then 
Fe f E BMO and J IF o f. 2 IIFIILI,, IIfII. 

Proof. If there is a constant c such that Tql l fQ l f(x)'— cldx < A, then it is well known that 
11111. S 2A. We compute

'p	1 J IF(f(x)) - F(fQ)I dx)	^	 j 11(x) - fqI0dx)
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Thus we obtain with p = 1/a, hFo ill. :5 211FhlL,pahhfhl. 
This has been, at least partially, observed by many people. If  € BMO, then If1° E DM0, 

for 0 < a < 1 and max{f,g) and mia{f,g} are in BMO if f,g are in BMO. 
We haven't noticed the converse observed, but it is true. If hF ° Ill. :5 Ahhfhl, then F € 

Lipcs. The proof may be found in [2), but as this is not generally available, we give the proof 
here. Without loss of generality, we may assume F(0) = 0 and consider only cubes centered at 
the origin since BMO is translation invariant. Suppose that Q = [—,]" and that 

,	zj on the double ofQ fx,_ o outsidethe double ofQ. 

One checks that
F(f(x))— f F(xi) for x E 2Q, 

— 0	outside the double of Q. 

and since IIfII. :5 Hub0 S, one finds f5dhF(xl)—Fqlhdxi	Ad*, where Qi is the one- 
dimensional cube	and by the Caznpanato-Meyer theorem [4], this proves the result. 

We can use the lemma to show that there is a close connection between BMO and B MO.. 

Theorem 1: A real valued function u is in BMO	there exists a w E BMO. such that 
u = w - 11w and ll w ll. + hl/whh.	huh.. 

Proof. If u admits the decomposition, it is clear that u € BMO. If we are given a u E 
BMO, it is easy to see that the equation for w leads tóa quadratic equation with a solution 
of w = 4 (u + V'u2 + 4). The function F(x) = 1 (x + v'x2 + 4) is everywhere differentiable with 
derivative bounded by 1. By Lemma 1, w € BMO. 

Remark. We note that the same proof proves the corresponding result for functions of vanishing 
mean oscillation, which are defined as is BMO but when the sup is taken over cubes of side r, 
and the resulting sup goes to 0 as r —, 0+. 

Another application of Lemma 1 is to the determination of conditions under which the square 
of a function belongs to BMO. By Lemma 1 with F(x) = it follows that such a function 
belongs to BMO. We show that more is true. 

Lemma 2: If f = F(u),F E Lip a,u E BMO, then 

If  € Q : If (x) - F(uq)h > A}	cje11U''0L1P JIulI.1Q1 

Proof. Because u E BMO, by the John-Nirenberg lemma, there are constants c l and c2 such 
that I {t € Q : hu(i) - UQI > A) I :5 cje""lQI. Hence, since

A 
{t E Q 1(t) — F(uQ)h> A) c { t E Q : hu(t) — uqI> (lIFhILP )	}' 

we have the inequality 

h{t € Q : 11(t ) - F(uQ )h > A} I < c 1 e	IIIILip ,,)"/II'II. hQl



6	R. L. JOHNSON and C. J. NEUGEBALJER 

which is the desired result. 

Corollary 1: For any c < c2, 

(e Lip 

	

-	dx <c 
(C2_c) 

IQI. 

	

IIFII 1	U II 

Proof. Let (z) =	- 1, which is increasing with '(x) = xh/a_1e'. As long as A is 
positive, 

	

j
e1 )—P(uq)l dx - IQI =

	

	I {x E Q : 11(x) - F(UQ )I>	 dA Q	 ao 

A	- (—c1 
j 

e	 )	'a— 

a o 
If we choose A less than the fraction, we can use the fact that 

1 (00	 too 

-J	 = / edu = 1 a o	 JO 

to obtain the above estimate. 

If we modify the choice of 0 slightly by putting (x) = e 40 , we see that for a 1, 1p is 
convex and we can apply Jensen's formula to Q,p = 1,1 = 1(z) - F(UQ )I and if we note that 

IIQ - F(uQ)I = j (f(x ) - F(uQ)) < 
j j 

f(z) - F(UQ)I, 

we can make the estimate 

	

0(2IfQ - F(uQ)I) < 0	j 2f(x) - F(UQ)I) 

<	I eA21/(z)_F(IsQ)11
- IQIJQ 

We now combine this with Corollary 1 and obtain 

J = j eA11(z)_F(uQ)+1(uQ)_1QI1 

< 1 

	

=	 j eA2'tf()1'(uq)1hI'. 

	

If we choose A2 1/ = (c2 - E )/(IIF II	011 u11.), we can estimate this and 

/ 
eA11(/o11'	(ci (1L!) + 1) IQl'(2If. - F(uq)I)
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by using Corollary 1 and now we apply Jensen's inequality to get 

	

J et1(z)101'	< (c,	+ i) IQI11 J eA2 " 

:5 
(Ci (--) + 1)2 

We can now state and prove the following. 

Theorem 2: Consider the set of I = F(u),u E BMO,O <a —< 1. The following two statements 
are equivalent. 

(1) F E Lip a 
(ii) there exists 0 < c1 ,c2 < oo,0 < A < oo, indepepdent of Q,u E BMO such that 

I{x E Q If (x) - f1 > A} <cie11TTIQI. 

and then A	II FII	. 
Proof. We will first prove that (i) implies (ii). By restricting the range of integration in the 
inequality derived alter Corollary 1, we see that 

IEI M l{x € Q 11(x) - hi > }l !^ e"° 
[Q 

e.4(z)_Q0 dx,

since e	eAIf(z)_1QI"° > 1 on EA . This is the desired result if we choose € =	and A as 
above. 

We next show. that (ii) implies (i). We first observe that (ii) implies that for some constants 
0 < C3, C4 < 00

(c31f(x)_fQI1/° J exp	 )	C4Q.
Allull.	:5 

This implies that
- 1 ( C3If(Z)fQl"° Lq 
= ii JQ	AIIuil.	

<— 14. 

Holder now gives us, since 1/a > 1, 

L > 
(1 ( cIf(x)fQl\"° 

\iQIJ	A°IIuII	I 
Hence

1Q1JQIIMIQI :5CA°IIull. 

The proof is now completed by an application of (2]; see the argument after Lemma I. 

Corollary 2: If bk E BMO, then 

I{x E Q Ib(x) - bqi > A} (
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Proof. Apply the above theorem with u(z) = b', F(z) = X11k which is Lipschitz continuous of 
order 1/k with Lipschitz constant 1. 

Remark. The argument actually shows that if 

J{x € Q : Iu(x) - UQ I > }I :5 c,e_12IQj, 

then
-21/' h/ 

J{x € Q : If(z) - fQI > A} ^ 
(Cl 

+ 1)2 (IPII e	L,p	IQI. 
Our main result connects the behavior of functions in BMO. with the A,, classes. 

Theorem 3: The set of nonnegative functions which are BMO along with their reciprocals is 
contained in the intersection of all the A,, classes for p > 1, i.e. BMO. ç fl,,>1 A,,. 

Remarks.(1) Of course, if b E BMO., then 11b € BMO. ç fl,,>1 A,, and (1) above implies 
In & E cIosBMOL°°. 

(2) The class BMO. is non-empty. For example, b 1 (z) = ma.x(ln 1 1I x I, e) E BMQ and 
1/b 1 E L°° C DM0. Moreover, if we take 

b2(z) = ma.x(ln 1 /I z i, 1/ln(JzIe2)) 

we get an example of a function which is unbounded and whose inverse is unbounded, yet both 
b7 , 1/b2 € DM0. 

(3) The result is sharp in the sense that the function b in the theorem cannot be in A, since 
if it were, 11b would also be in A 1 and then by a result of Johnson and Neugebauer [3, Lemma 
2.2],bi. 

(4) The converse is, however, not true because with the same function b1 as above, b? satisfies 

	

1/b E L°° and lnb? = 2lnb, E CIOSBMOL°° and therefore b? € fl,,> A,, and	€ fl,,>, A,,, but 
b DM0. 

We will prove Theorem 3 as a special case of a more general result, but let us indicate how 
it can be proved directly. The first step is a lemma. 

Lemma 3: Let us denote by

fQ = QJf()Z 
then we have

(fg)Q - fQgQ 
=	

J(f() - fQ )(g(Z) - gq)dx. 

Proof. Compute and use the fact that g - gj has mean value zero. 

We are ready for the first step in this version of the proof of Theorem 3. 

Theorem 4: Suppose b € BMO., then b is in A2.
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Proof. Apply Lemma 3 to b and 11b which gives 

1 - bQ(1/b)Q = jj IQ (b(z) - bq)(1/b(z) - (1/b)Q)dx 

and allows us to make the estimate 11 - be(l/b)qI :5 11 b1141 1 1bII.. Holder's inequality shows that 
1 < bQ (1/b)Q and the above becomes 1	bQ (1/b)Q :5 1 + IIbII.II11btI.. 

Theorem 5: If b E BMO.,, then b E A312. 

For the proof of this statement we have to estimate 

1	i (1 b)
 

First we require another lemma. 

Lemma 4: With the same notation as in Lemma 3, we have 

f(f() - fQ )(g(t) - gq)(h(t) - hQ )(l(t) - IQ)di 

= (fghl)Q - fQ (ghl) Q - gQ (fhl)Q - hq(fgl)Q - IQ(fgh)Q + fQgQ(hl)Q

+fQ hQ(gl )Q + fQ lQ (gh)Q + gQ hQ (fl)Q + gQ1Q(fh)Q

+hQ IQ (fg)Q - 3fQgQhQlq. 

Proof. We expand the integrand and compute the resulting terms. 
Take f = h = b,g = I = . We obtain 

1	1	1	1 
1 -	- ()qbQ - bQ()Q - ()qbQ

+ IbQ ( 1 )Q + (bq)2()Q + bQ()Q + ()Qbq + ((')Q)2(62)q + bQ()Q}

_3(bQ)2((3)Q)2 

= 1 1 (b(t)_bQ )2 ((i)_())2dt. 

This allows us to estimate 

1 + (bQ)2()Q + (()Q) 2 (b2 )Q - 3(bQ )2 (( . )Q) 2 < IIbII,4iI.II,4 

which means that 

	

1 + (bQ )2()Q + ((!)Q)2(b2)Q < 3(b	
(1)2 +

	 12 1 

In particular, bQ( i )Q1/2	lb .Ifl. + ,/ A2 (b), which proves that 

A312 (b) 5 V13- + ('J + 1)IIbIj.IlII.. 

The remainder of the direct proof of Theorem 3 proceeds like this. To prove that b, 11b are 
in A413 do the corresponding formula with 8 terms of which 4 are b and 4 are 11b, etc
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3. A9 weights whose reciprocals are A9 weights 

We will now obtain Theorem 3 as a special case of the next result. 

Theorem 6: Suppose 1 <p, < 2. Then the following are equivalent. 

W, 1/w E A7,0	 (2) 

LQ 
= IQI J !w - wQ I Po_ h I! - ()Qr 1 < c < +m.	 (3) 

PROOF. Suppose (2) holds. Let r = p'0 - 1 > 1. Note that 

	

1!	 1	1 LQ	IQIJ'	_(wQ)jI—._(_)QI 

< 1 + (wT)(!) + w(-!.)Q + w(—) 

	

< 1 + A(!) + A p. 	+ A2 (W)' c < +, 
because w E A7,0 implies w € A2. 

Conversely, if (3) holds, then we first note that w € A2 . This follows from the next sequence 
of inequalities:

	

i/ if	1	1 c	> LQ 

1!	1	1 ^	J(w_wQ)((_)Q__) 

= WQ(—)Q - 1 - wQ (!)Q + WQ(_)Q. 

We use the fact that if r > 1, then la - VI	 - V. Write 
1	1  (w - wQ)(— - ( — )q) = w( 1 —)Q + 1 — WQ —(wq( 

1 —)Q + 1) 

which allows us to estimate the integrand below by 

(w - WQ)(— - ()q	^	i-	
+	

- (WQ(—)Q + 

_j- {w'(_ +	- (wQ (_)Q + i) 

Now we take the average of this over Q which gives 

J_1. {wr ! + (-. )Q w} c + (A2 (w) + 1)', 

and we conclude that w, € A PO 

Theorem 3 follows from this result; in fact, we obtain the estimate 
1 PI 

LQ :5 

and as BMO is characterized by 1 1f1j . ,p for any p> 0, we can have any pa> 1 which proves the 
result. 

Although we proved Theorem 6 for A7,, it immediately implies a result about RH.
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Theorem 7: The following statements are equivalent for 1 < r <oo: 

w,l/wERH,.	 (4) 

W,l/WEAj1/,.	 (5) 
toT E A2 .	 (6) 

Proof. (4) - (5): Since w r ,1/wY E A,,wehavethat WT,1/tOT E A2 , and hence w, 1/w E A+j,,.. 
(5) - (4): to 6 A111, - 1/to E RH. Similarly, to E RJI. 
(4) - (6): Since wt , 1/WY E A, we have that toT E A2 as above. 
(6) - (4): Since wT 6 A2 , ID 6 A1 + 1/ -, 1 1w E RH. From the fact that wt E A2 , it follows 

that w r e A2 and this implies that we can apply the above remark to 1/w. 

Theorem 8: Suppose u € BMO and a> 0. Then u2 + a € fl,,>1 A,,. 
-Proof. For any ,\ > 0, write .\u = wj, - 1/w, for some wj, E BMO.. Then A2U2 = w + ,- —2. 

By Theorem 7, w E A and since wj, 6 fl,,>1 A,,, by Lemma 2.4 in [3), w E fl,,>1 A,, and a 
similar result holds for *. This shows that ) 2 u2 + 2 € fl,,>1 A,, and hence, u2 + y 6 fl,,>1 A,,. 11
Since ..\ is an arbitrary positive number, the result follows. 
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