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A Representation Formula for Three-Dimensional Stokes Flows 

W. KRATZ and A. LINDAE 

In this note there is derived a representation formula for the velocity field and the pressure of 
three-dimensional Stokes flows via three (scalar and unique) harmonic functions. This formula 
yields the complete system of interior solutions of the Stokes equations by R. N. Kaufmann

	

when expanding the harmonic functions in terms of Spherical harmonics.	-	- 
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1. Introduction. In this note we derive a representation formula for the velocity ii 
and the pressure p of a three-dimensional Stokes flow via three (uniquely determined) 
harmonic functions. When expanding these harmonic functions in terms of spherical 
harmonics our representation yields the complete system of the (interior) solutions of 
the Stokes equations by R.N. Kaufmann [2; 31. While the well-known relation between 
the Stokes equations and the biharmonic equation does not lead to a characterization of 
the Stokes functions, the representation here reduces the Stokes system (like [4]) to the 
Laplace equation. The proof of our result is elementary, and although it is similar to the 
proof of another representation (using partly the same identities; see [4]) there seems* to 
be no direct connection between these two results. 

2. The result. To formulate our result we need some notation. We shall use the usual 
inner product and vector product in 1R , and the differential operators grad, div, curl, and 
A denote the gradient, divergence, curl, and Laplacian of scalar functions respectively 
vector fields in li?3 . Moreover, a scalar function 4 (or a vector field componentwise) is 
called harmonic in a domain C C JF 3 if 'I' E C2 (G) with /M)() = 0 for i E C; and 
a vector field ii is called a Stokes function in a domain G C JR if il € C2 (G) and if 
there exists a (corresponding pressure-) function p E C1 (G) such that 

	

t)= grad p(), divJ(F)=O for LeG.	 (1) 

Finally, we have to assume that G is star-shaped with respect to the origin, i.e. I L E C 
for all t € [0, 1] and L e C; and it is not clear whether this assumption can be avoided 
(see [4] and [5]). 

Theorem: Assume that G C JR3 is a star-shaped domain with respect to the origin. 
Then a vector field i on G is a Stokes function with corresponding pressure p in C, 
if and only if there exist (scalar) harmonic functions 'I', 4D , and ' in C such that 

ii(L) = grad(L) + L x grad(L) + curl{r 2i x grad W(L)} where r = U	(2)



and

p()=-6'I'(i)-1Oh()--4.gradh(E), h()=E . gradW() for ±EG.	(3) 

These harmonic functions are uniquely determined by the Stokes function ii (and its 
pressure p) under the normalization p(0) = iIi(0) = (0) = (0) = 0, and they are 
given by the formulae

=	1}p(r)dr,

(4) 
0 

()=—fw(r)dr for ME G, 
0 

where
= i7() - curl {r2 x . gradW(x)} 

W(i) = • Jcurlii(rx)dr with ii() = ii()— gradço().	
(5) 

Remark: If one puts into (2) the spherical harmonics (see, e.g., [6; 7]) for w, ' 
and ill resp. (while setting the other to functions equal to zero resp.), then the complete 
system of interior solutions of (1) by R.N. Kaufman [2; 3] is obtained. Observe that 
Kaufman's system was obtained by methods of representation theory of groups (see [1]), 
while our derivation here is elementary. 

3. Proof of the result. First, we note some identities from the vector analysis, which 
are, of course, partly well known and are contained in [4; Lemma 1]. But these formulae 
may be verified directly as well, and we assume the existence and/or continuity of the 
partial derivatives involved. Throughout, ii denotes a vector field and 0 a scalar function 
on some domain G C iRs . Moreover, £ E C with r = ,and t E R. We require the 
following identities: 

curl (grad }=0, div{ curl il}=O, div{x grad 'I'}=0	 (6) 

x grad {r2 }=r2 xgrad	 (7) 

t{'I(t )} = . grad {1(t )}	 (8) 
dt 

t{iJ(tE)} =—i(i)+ grad {il(t)}	 (9) 

{tii(t)} =grad {.ii}(tE)—tx curlii(ti)	 (10) 
dt 

div (grad } = A ID Algrad I} = grad {iM) , i{ curl ii} = curl {Lii}	(11) 

div{}=3+E . grad 0	 (12) 

curl {} = —Ex grad 40	 (13) 

curl {curl ii) = grad {div il} - L6	 (14) 
(15)



= 2grad 40 + (A ob)	 (16) 

	

grad c} = £. grad {z} -	 (17) 

	

{ix grad $)=x grad {L}	 (18)
(19) 

(20) 

Proof of the Theorem: Assume first that ii and p are given by (2) and (3), where 
4b, and 'I' are harmonic in the domain G. This part of the proof does not require 

that G is star-shaped with respect to the origin. Then, by (6) and (11), we obtain 

div il = i'p +0+0=0. 
Moreover, the formulae (7), (11), (15), (17), (18), and (19) yield 

-	Li1 = grad {z'p}+x grad {A} ± curl [{!X grad (r2 W)}] - 

= curl {x grad (r2 W)}= curl {x grad (6W+4E . grad I)} 
= grad {-6W— lOh-4i . grad h}= grad p. 

Hence, 16 is a Stokes function with corresponding pressure p in G. 

Now, suppose that ii is a Stokes function with pressure p, where p(0) = 0. Then, by 
[8], i, p E C(G) with Ep = div {grad p} = div {z.il} = 0, such that p is harmonic 
in C. Moreover, assume that 'I', 'p, and $ are given by (4) and (5). Actually, these 
formulae make sense only, if C is star-shaped with respect to the origin. 
(i) The definition of W, Ap = 0, formula (8), and partial integration imply that 'I' is 
harmonic, and that 

h(s) = . grad W() = _f{v'- 11 p(r)dr, 

. grad h() = - p(E)+ 1 f{v'- 1}p(rx)dr. 

Thus, 'I(0) = - p(0) = 0, and (3) holds, i.e. 

—6W()-10h()-4i. grad h()=p().	 (21) 
(ii) Let i3'() = 7() - tY(.) with i ' () = curl {r2 x grad 'I'(E)}. Then the first part of 
the proof shows that	 - 

Lii=0 and divil=0. 
Hence, by (20), i{E. } = 0. Now, the definiton of p, formula (9), and partial integration 
imply that 'p is harmonic, 'p(0) = 0, and that

(22) 
(iii) Finally, let 6' (i) = i7(E) - 62 (:F) with i 2 () = grad 'p(). Then, by (22), 

Lii=0 , divi=0 and	.t()=0. 
This, the definition of 0 (and w), the formulae (6), (9), (10),-(11), (20), and partial 
integration imply that w(0) = (0) = 0, Lw = 0, so that cIt' is harmonic, that 
grad w(F) = curlir() , and that

x grad ()= ii).	 (23) 
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Hence, equality (2) holds, and it remains to show the uniqueness of W,	, and 'I'. For
this, let W, 4, and '4 be harmonic with (0) = (0) = '11 (0) = 0, such that 

grad () + 1 x grad	+ curl {r2 j x grad 

and
6''(x)+ 10h(x)+4x . grad h(i) 0 where h(i) = E . grad 'I'() 

First, fix i E G, and put y(t) = 'I'(ti). Then y € C[0,1], y(0) = 0, and iy'(t) = 
h(i £), t2 y"(t) = Li grad h(t £) - h(t ) by (8). Hence, 

6y(t)+141y'(t) +4t 2 y"(i) = 0 ,	 (24) 

and this Euler equation has the unique solution y(t)	0 (which is in C.[0, 1]). This 
implies 'I'	0, which yields 

Similarly, let y(t) = (t £). Then y(0) = 0, and	grad E) = 0 yields by (8) 

ty'(i)=O
	

(25) 

and this shows p	0, so that i x grad 4D(s) = 0. Hence, by (13), curl {4} = 0 
and the formulae (12), (14), and (16) show 

0 = curl curl {I} = grad {div($)} -	= grad 15 + grad 4} 

Putting y(i) = (t E) similarly as above, we obtain from (8) ty'(t) = tgrad(t) 
=: g(t E), i (t y'(t))' = t igradg(t E), and therefore 

t2y"()+6iy'(t)=0 .	 (26) 

Since y(0) 0(0) = 0, it follows	0, and this completes the proof.	 U 

Remark: The explicitly solvable Euler equations (24), (25), and (26) but with cor-
responding inhomogenity were actually used to derive the formulae (4) and (5), which 
express 'I', W, and 1 in terms of 16 and p such that (21), (22), and (23) hold. 
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Radon measures are the central objects In topological measure theory. In the framework of 
locally compact spaces, there are two equivalent canonical definitions. As a set function, a 
Radon measure is an inner compact regular Borel measure, finite on compact sets. As a func-
tional, It is simply a positive linear form, defined on the vector lattice of continuous real-
valued functions with compact support. 

In the last decades, in particular because of the developments of abstract probability 
theory and mathematical physics attention has been focussed on measures on general topolo-
gical spaces, which are no longer locally compact, e.g. spaces of continuous functions or 
Schwartz distributions. It is the main goal of the authors to introduce a new concept of a 
Radon integral, embedded in a general functional-analytic theory of integration in an abstract 
Riemann spirit. The authors present a unified approach to both the integration-theoretical and 
set-theoretical aspects of measure theory, based on two concepts: that of a regular linear 
functional on a function cone, and that of an upper functional as an abstract version of an 
upper integral, possibly without convergence properties. The general concept covers also such 
different aspects as Radon measures in the sense of Choquet, contents on lattices of sets, 
Loomis abstract Riemann integration for positive linear forms on vector lattices, as well as 
the Daniell and Bourbaki integration theory. 

The monograph should be addressed to mathematicians doing research in measure and 
integration theory, functional analysis, stochastics and mathematical physics. Furthermore, 
graduate students working on advanced topics in the field will benefit from it. 
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