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Convergent Solutions of Ordinary and Functional-Differential Pendulum-Like 
Equations 
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Sufficient frequency- domain conditions for complete stability of ordinary and functional-diffe -
rential equations on the cylinder are given. For a class of phase-controlled systems, periodic 
Lyapunov functions and Popov furtctio,ials are constructed. 
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1. Introduction 
In this paper, we investigate the asympto tic behaviour of some classes of ordina.ry and functional-
differential equations with periodic non-linearitics, which are called phase-controlled or pendulum-
like systems [6, 10, 12, 14, 19]. Such systems describe models of phase synchronization [16], coupled 
Josephson junctions [20] and other systems with angular co-ordinates. The set of equilibrium points 
of a phase system is either empty or infinite, it follows that a central issue of investigating such 
systems is to provide sufficient conditions for the solutions to converge (the so-called complete 
stability). Note that complete stability of differential phase systems does not imply Lyapunov 
stability of any of its equilibrium points. Moreover, for autonomous differential phase equations 
there are always Lyapunov unstable equilibria. It is easy to state that it is meaningless to use 
standard Lyapunov functions of the type "quadratic form plus integral of the non-linearity" for the 
stability analysis of such systems. A different technique is required for this class of systems. 

One way to obtain results concerning dissipativity, boundedness and convergence is using posi-
tively invariant quadratic cones [6, 9, 12, 15, 17, 19, 201. 

Another approach to the problem of complete stability is the non-local reduction method [6, 
11, 14, 20]. By this method, stability criteria for n-dimensional systems are expressed in terms 
of the frequency domain response of the linear system component and in terms of solutions of 
second-order comparison systems. 

For certain classes of phase-controlled systems with a gradient non-linearity on a non-compact 
manifold, the convergence of a solution is equivalent to its boundedness [6, 201. 

In the paper [1] Yu.N. Bakaev and A.A. Guzh have shown the possibility of proving the conver-
gence of solutions of autonomous phase-controlled systems by means of periodic Lyapunov functi-
ons. This kind of applying Lyapunov functions or functionals is called by us Bakaev-Guzh technique. 
Using this technique and the Yakubovich-Kalman theorem [6, 71 for the solvability of special matrix 
inequalities, convergence criteria were proved in [6, 8, 12, 15, 20]. 

In his paper [3] R.W. Brockett proposes a method of investigating the convergence of differential 
equations on a flat Riemannian manifold. The author poses certain conditions on the period of a 
closed one-form which guarantee the existence of a continuous Lyapunov function on the w-limit 
set of a bounded solution.
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In the present paper we prove some new results concerning the Bakaev-Guzh technique for 
differential equations which are regarded as feedback equations with a single non-linearity. For this 
class of equations we get also the results of [3]. Furthermore, we give efficient convergence results 
for integro-differential equations by means of the Bakaev-Guzh technique and the Popov a priori 
integral estimates method, which continue the results of [13 - 15]. 

2. Convergence of dynamical systems in metric spaces 
Let us consider in a complete metric space M the dynamical system 

	

z:MxR—* M.	 (1)
The function x satisfies the conditions following [2]: 

(i) z is continuous 
(ii) x(O,a) = a	(a E M) 

x(t i + t2 , a)	x(t i , x(t2 , a))	for all t i , t 2 E R, a E Al. 

For fixed a the function z(-, a) is called a motion of system (1) and the set {x(t,a), t > 0) its 
positive semi-orbit through a. A point a E M which satisfies x(t, a) = a for all t E R will be called 
an equilibrium point. Suppose that system (1) has multiple equilibrium points which are isolated. 
The motion x( . , a) (or the positive semi-orbit of z( . , a)) is said to be convergent if x(t,a) -- p for 
- +	, where p is an equilibrium point. The motion z( . ,a) is bounded (for t > 0) if it has

a relatively compact positive semi-orbit. The following theorem of Lyapunov type gives sufficient 
conditions for all bounded motions of (1) to converge. It was proved in [6] for the case of differential 
equations in R'. 

Lemma 1: Suppose there is a continuous function V : M .-+ R such that for all motions of 
(1) we have

(i) V(x(t1, a)) :5 V(x(t2 , a))	for t ^! t2 
(ii) if V(z(t, a))	consi, then x(t, a)	const on [0, +oo]). 

Then every bounded motion of system (1) is convergent. 

Proof: Let x( . ,x0 ) be a bounded motion of (1). Property (i) of the function V allows us to 
conclude that there exists the limit

lim V(z(t, So)) = a(s0). 
t 0 

It follows from boundedness that the set fl of w - limit points of z ( . , xo) is not empty. Consider 
now a motion x(-,y), where y €	for all t > 0. The set fl 0 is positively invariant [2], 50 
x(t, y) € ci for all t > 0. Then V(x(t, y)) = a(s0 ) for all t > 0. From property (ii) of the function 
V it follows that x(t,y)	y € fl. Thus all the w - limit points of the trajectory x(t,x0) are 
equilibrium points of (1). As equilibrium points of (1) are isolated, it is clear that y is a single w - 
limit point of z (, x ) I 
3. Frequency-domain stability criterion for a feedback system 

with periodic non-linearity 
Let us consider a feedback system in the second canonical form [3, 6] 

= Az+bço(a) 
& = cz+p(o),	 (2)
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where A is an n x ii matrix all of whose characteristic roots have negative real parts, b and c are 
n-column vectors, p is a constant (p j4 cA 1 b) . The asterisk denotes Hermitian conjugate (in 
particular, transposition in the case of real vectors and matrices and complex conjugate in the case 
of numbers). Furthermore, p: R —- R is continuously differentiable, periodic with period A , and 
has only finitely many zeroes on [0, ). Then 

	

'(c) !^ l2 for all a  H,	 (3) 

where j with z 1 z2 < 0 are either certain numbers or ±00. If j = —oo, we will take ji l  = 0; 
if L2 = +00 , we will take ,u 1 = 0 . We suppose that the pairs (A, b) and (A, c) are controllable. 
(The pair (P, q) , where P is an m x m matrix and q is an rn-vector, is called controllable if 
det[q,Pq,.. .Pm_lq] 0.) Let us define the function 

K(p)= —p + c(A — pI)'b	 (4) 

for p e C with det(A — p1,,) j4 0 . (I,, is the n x n—unit matrix.) The main result of this section 
is formulated in terms of the function K and has the character of a frequency inequality. Now 
we will establish the following statement, which is a slight modification of the Yakubovich-Kalman 
frequency theorem [6, 7]. 

Lemma 2: Suppose that A is an n x n matrix all eigenvalues of which have negative real 
parts, b and c are n-column vectors, p,7,ö,e,,a1 0 0, 12 54 0 are scalars. Suppose that (A,b) is 
controllable. Then there exists a real (n + 1) x (n + 1) matrix H = H such that 

2[f, i]H [ Az + liii]	—(cz + pi)i 

- r[(cz + pit) —	'e][ —t' + (cz + p77)]	 (5) 

—	— e(c*z + pi)2 

for all z E R", i E R if and only if the inequality 

Re{K(iw)} - r[K(iw) + 1i'iw)[K(iw) + 1z'it' ]} — eIK(u')I2 > .5	(6) 

holds for all w € R . Let the matrix H from (5) be of the form I	I where H,, is an

n x n matrix. If, in addition, r + 77> 0 and (A,c) is controllable, then H11 > 0 

Proof: Let us consider new objects 

Q=[
 

A b ], d	c ], I	:	E R 
n+1' 

Inequality (5) is equivalent to the inequality 

2yH[Qy + l] !^ yldy — r[—dy + 'e][i' - dy] 

- 45(ly) 2 — (dy) 2 (y E Rn+1' E R). 

Because of the controllability of (A, b) the pair (Q,l) is controllable [6]. Let us consider the Her-
mitian form

G(y,) = eyddy + yldy + r[dy - '][—i&' + dy] + 6ylly
(7) 

for all yEC",EC.
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By the Yakubovich- Kalman theorem [6,7) there exists an (n + 1) x (n + 1) matrix H such that the 
inequality (7) is true if and only if the inequality 

G[(iwI+ 1 - Q)'l,j < 0 

is true for allw E R and 6 C. The latter coincides with (6). Thus, the main statement of Lemma 
2 is proved. 

	

Let in (5) , = 0 and	0. Then 

2z1t1j Az < —(r + e)(cz)2	(z € R'). 

Hence, because the eigenvalues of the matrix A have negative real parts and (A,c) is controllable 
itfollows[6] that Hij>Ojfr+e>0 

Lemma 3: Suppose that for the matrix A , the column vectors b, c and scalars p, p, jz 2 from 
(2) and (3) there exists an (n + 1) x (n + 1) matrix H and scalars 5 > 0,r > 0, e > 0 such that 
(5) and at least one of the following two conditions holds:

A f,(a)da (i) 4r5> 0, where fr 
= 1A	-	 - ' (a))(a)Ida 

A 
(ii) 4e > zi, where VO	J0 ço(ada 

= jA (a)[da 

Then there exists a smooth scalar function V(z,a) (z € R", a 6 R) with the following properties: 

1) V(z,a+E)=V(z,a) (Z€R,O€R) 
2) V does not increase along solutions of system (2) 
3) if for a solution z( . ), a( . ) of (2) there holds V(z(t), 0(t))	const (t > 0), 

	

then z(t)	const (t > 0) 

Proof: We consider the case of 4r5 > &i because the other case was investigated in [6]. Let us 
define the function

= [z(a)]H[ 

where the (n+ 1) x (n+ 1) matrix If satisfies (5). Note that W(z, p(a)) is periodic in a with period 
A. From Lemma 2 it follows that

W(z,o)=zH11 z (z€R') (8) 

where H 11 is a positive definite matrix. Let us calculate the derivative W(z(t),a(a(t))) along 
solutions of (2). With the aid of (5) it is easy to establish that 

l'V(z(t), (a(t))) < —(a(t))&(t) - 5ço2(a(t)) 

—r&2 (t)[l - j,'(a(t))J[l - 

Its right part may be transformed with the help of new functions 

= ,/(1 —Iz''(a))(l —jç'y(a))
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and
f (a)da 

Fi (a) = (aj(a) — 1)(a),	
f p1(a)ço(o)da 

in such a way that the above inequality takes the form 

V(z(i), cp(o(t))) < —a(o(t))i(a(t))ô(t) - 5,2(c(t))	
(_rcp(o(t))à 2(t) + F1(o(t))à(t) 

Notice that because of the special choice of a we have f Fi (a)da = 0. Let us consider the number 

A ça1(a)p(a)da 
A 

k 

and construct the new function 

F2 (01 ) = a 1 (a)(a) - viIai(a)(o)I 

It can be easily checked that f F2 (a)da = 0. Consider the function 

V(z,a) = W(z,ç(a)) 
+ 10a

 (F2 (-) — Fi(a)]da. 

This function is i-periodic because of the special properties of F1 and F2 . In virtue of (9) and 
condition (i) of the lemma the following chain of relations takes place: 

ffl V(z(t), (a(t)) =	W(z(t), (o)) + [F2 (cr(t)) — F1 (o(t))]&(t) 
Tt 

< —6p2 (a(t)) — r&2(t)p?(o(t)) — 

^ _'31&2(t)(a(t))— 32p2(o(t)) 

where th, 132 are certain positive numbers. Hence it follows that V(z(t),a(i)) does not increase 
along trajectories of system (2). Furthermore, if V(z(t), a(t)) const , then (a(t)) 0 

As the zeroes of the function p are isolated and a( . ) is continuous, it is clear that a(t) a0 
where ao is a zero of W. Then it follows that W(z(t), (ao)) = W(z(t), 0) const . As all eigenvalues 
of the matrix A have negative real parts, it follows from system (1) that in our situation z(t)I -* 0 
as t —* 00 . Hence W(z(t),O) = 0 . Then it follows from (8) that z(t) 0 I 

Theorem 1: : Consider the system (2) and the function K( . ) defined by (4). Let M 1, 12 be 
such that (3) is satisfied. Suppose there exist numbers 6 > 0, e > 0, r 0 such that the inequality 
(6) is true for all w € R and at least one of the conditions (i) or (ii) of Lemma 3 is fulfilled. Then 
all solutions of the system (2) are convergent. 

Proof: Under the above propositions the right part of system (2) is invariant with respect to 

the transformation F Z 1 — I Z 1 so that this system can be regarded as being defined on the 

cylinder R'+1 /r RxS' ,with F= {jd, j E Z} and d [
	]. 

We define a metric on R x 51 

induced by the metric ds2 = dx? + . . . dz + da2 ,where (z, a(mod is)) are the co-ordinates in 
RTh x 5'. Because of p cA'b the set of equilibria of (2) on RTh x S1 is {z = 0, a = ü with 
(a) 0, ü E [0, is)) and consists of isolated points only. Since A is a Hurwitzian matrix and is 

bounded, any solution of (2) is bounded with respect to z. According to Lemmas 2 and 3 on the 
Riemannian manifold R" x 51 there exists a continuous function V that satisfies all the conditions
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of Lemma 1 

Example: In order to compare Theorem 1 with the results of the paper [3] consider the scalar 
second-order equation

(10) 

with a > 0, w(x) = (x + 1), W continuously differentiable and '(x) a/k for x E R and 
some k > 0. Suppose that W has a finite number of zeroes in [0, 1]. For equation (10) we have 
K(p) = (p+ a)' and inequality (5) takes the . form 

2(7k6)+(aE62)^0	(wER). 

Let us choose e = 0, 6 = k(ak + 1) 1 , r = a(ak + 1)_' . Then the latter inequality is true for all 
w e R and the only condition of global stability of (10) is the condition (i) from Lemma 3, i.e. 

4ka	
(	

f()dti 
1+ ka2>	

—	(a I)Id ) fl 

The latter coincides with the global stability conditions obtained in paper [3]. R.W. Brockett also 
considered system (2) in the case when the inequalities (3) were not taken into consideration (i.e. 
r = 0). He established complete stability conditions that coincide with the conditions obtained by 
means of Theorem 1 in the case (ii) (comp. [3]). 

4. Complete stability of functional-differential equations 
In this section we extend the results of the previous section to the Volterra integro- differential 
equations

&(t) = a(t) + p(a(t — h)) — 	7(t — h)i(r))dr	 (11)

with constants p,h > 0 , a continuous function a such that 

a E L i [0,cx],	a(t) —- 0 as t —- co	 (12)

and with a function -y such that 

	

(t)e" belongs to L2 [0,00] for some K > 0.	 (13) 

The function W is assumed to be s-periodic and to satisfy all conditions for p in section 2. For 
equation (11) an initial function is defined by 

o(t) = co(t) for t E [—h,0] with ao e C'([—h,O]).	 (14)

The linear part of (11) is characterized by the function 

K(p) =	+ 
1 00

r(t)edt	( P E C, Rep> — K).	 (15) 

Notice that the system (1) can be easily reduced to equation (11) with a function (3) being identi-
cally equal to function (15).
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Theorem 2: Consider equation (11) and the function K defined by (15). Let ul, /2 be such 
that (3) is satisfied. Suppose there exist numbers 5 > 0, e > 0, r 0 such that the inequality 

5(w) := Re{K(w.) - r[K(iw) + ziw][K(iw) + p 1 iw] - e I K ( iw) 1 2 ^ 6	(16) 

is true for all w € R and at least one of the inequalities (i) 4r5> v2 or (ii) 4e5 > vo is fulfilled, 
where the numbers v and v0 are defined in Lemma 3. Then any solution of (11) approaches a zero 
of the function W and the derivative of this solution tends to zero as t - 00. 

Proof: Here we use the method of a priori integral estimates [5]. The case when condition (ii) 
holds was considered in the paper [13]. So we will suppose that condition (i) is fulfilled. Let a be a 
solution of (11) with initial condition (14). Let us denote i(t) = (a(t)) and consider for arbitrary 
T> 1 the auxiliary function 

I iz( t )i( t )	if t <T	 0 if t < 0 
z.i(t) 

=	,).r(T)ea(T_)	if t > T	
with	i(t) 

=	
t if t € [0, 11 
1 if i>1 

where ,3 is a positive constant. So, on the interval [1, Ti the function i' coincides with the function 
Let us also introduce the function 

UT( t ) = p?r(t - h) - j (t - r)ir(r)dr. 

Notice that
o7(t) = 6(t) + oo(t),	t € [1,T]	 (17) 

where
ao(t) = —a(t) + p[Jz(t - h) - 1](t - h) +j 7(t - r)[l - (r)](r)dr. 

Because of the special form of W and the property (13) the functions i, , r and aT are in 
L2 [0, + 00 ) for each T > 0. So, they have the L 2 (—oo, +00)-Fourier transforms r(iw), T(iw), and 
aT(zw), respectively. Consider the functional 

RT 
= j {CTIiT + 5 + e4 + r (Al	 - aT)(/L2 1 1?T - UT)}dt. 

By virtue of the Parsival equality we get 

RT	f	{&.(iw)i}r(iw) + 5Ir(iw)I2 
+r('.(u) - 6 (iw))(j'r(iw) - &T(iW))}dW. 

Taking now into consideration that 

UT(iw) = K(iw)i .j.(iw) and T(iw) = iwi}r(iw)	 (18) 

we get
p +00 

RT _-_J	(S(w)-8)I-(iw)I2dw. 2r 
Inequality (16) guarantees that

R<0.	 - (19) 
With the help of (17) the functional R T can be represented in the form 

RT = IT+ ROT +R1r+R2T+R3T, 
8	Analysis, Rd. 11, Heft 1(1992)



114	GA. LEONOV. V. REIT1ANN and V, B. SMIRNOVA 

where
T	2	2	—1	—1 

= f0 (o 'i+ea +6i + r(ii 1 '7-0)(2 11—a)}dt 

ROT = —f1{&(ij—i') +6(112 - 4)+ 
r 1-1(,)2 - 

—ro(z +,ç1)(i_ i)}dt 

RIT = f1 " {ao ?fl' + (e + r)o + 2(5 + r)&ao - T?77'7 (p + p 1)}dt 

R2T = fT{aT'+ 64+ T1 1L ) 1 4 - T17T C7T( L2 1 +pj')}dt 
00  R3T = Jr (e + r)o 2di. 

Note that on the interval [0, T] the function a' is substituted by its expression according to formula 
(17). The functional RIT contains all the terms with the function oo. And at least on the interval 
[0, T] the function qT is substituted by ij. But these two functions do not coincide on the interval 
10, 11. That is why the functional ROT appears. Let us consider each of the functionals R!CT (k = 
0, 1,. . . , 3) separately. It is evident that IROTI < Co, where Co does not depend on T. Notice that 
ri and & are bounded on [0,+oo) and 00 E Lj(0,+oo) because of the properties of a and . It 
gives us the opportunity to affirm 

/ {ao+2(e+r)&ao—rao(p 1 +jz)}dt	< Ci 
Jo 

and consequently
T 

Ri	> —C1 + 
J (e + r)adt > —C1, 

0 

where C1 does not depend on T. From the form of 7rr it is obvious that for each T > 0 the functions 
ir and i'r are bounded from above by the function e_t. That is why JR2T1 < C, with C2 not 
depending on T. Notice that at least R3T> 0. Taking account of all the above estimates we obtain 
from (19) that

(20) 

where C does not depend on T. 
Let us now transform the functional IT with the help of the functions wj and F1 , introduced in 

the previous section. Notice that

= 

Then
In = JT{5&2 + 6112 + r17c7 2 + cIri! 11&}dt + f " ( o• ri - cxiij&)dt 

= J"{th2 + 6112 + ri&2 + ci11111&}dt - j" Fi(a)do, 

where 11 1 (t) = p i (a(t)) and ci is defined in the previous section. The last integral is bounded by a 
constant independent of  because f Fi (a)dc = 0. So it follows from (20) that 

IT 
'Ti	I {e&2 + 6112 + 7-7726,2+ cr rii ri&}dt < C4	 (21) 

Jo 

where C4 does not depend on T. Let us now use the function F2 from the previous section and 
write

'Ti = fT{E&2 + 6112 + T 11 &2 + vi ciliiiijl &} dt + f ' ( cir1ij - 

= fT{&2 
+ 6112 + ri&2 + vi Cl IriiriI &} dt + J0 ( F2(c)dti.
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J

As f
a(T) o(o) Fj (a)dcr is bounded by a constant independent of T, we get from (21) that 

(th2 +672 +r&2 +vjaI77177I}dt < C5, 
0 

where C5 is independent of T. Hence, because of (i) it follows that 

&(.) E L2[0,+oo) and	(a( . )) € L2[0,+00).	 (22) 

It is easy to show that the functions &(.) and (o( . )) are uniformly continuous on [0, +oo). Indeed, 
(a(t)) has a bounded derivative as &(t) and '(a) are bounded. As to &(t) we need only to 

prove the uniform continuity of f y(t— r)i(r)dr which immediately follows from (13), the uniform 
continuity of il and the absolute continuity of the integral. Now it follows from (22) according 
to Barbalat's lemma [18] that ö(t) -* 0 as t - +oo and (a(t)) -* 0 as t -* -4-oo. Since, by 
assumption, the zeroes of are isolated, the foregoing relation implies a(t) - ao as t - +x where 

(ao) = 0 U 
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