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Travelling Wave Solutions of a System of Nonlinear Diffusion 
Equations with Integral Term 
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The existence of travelling wave solutions with compact support is shown for a system of 
nonlinear non- local degenerate diffusion equations of population dynamics. Besides the 
behaviour of an important class of particular solutions of this type is investigated analyti-
cally and numerically. 
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Introduction 

Recently, in population dynamics MIMURA and YAMAGUTI (il), NAGAI [12], and NAGAI 
and MIMuRA [13] proposed and studied the Cauchy problem for the nonlinear degenerate 
diffusion equation with integral term 

urs(u°')xx[{SK(x_y)u(y,t)dy}u]x,ml,	
(1) 

where K(x) is a piecewise continuous kernel with a finite jump at x = 0. According to 
GURNEY and NISBET [3] and GURTIN and MAC CAMY [4] the first term on the 
right-hand side of (1) describes a local dispersion of a population whereas the second 
term has been introduced by MIMURA and YAMAGUTI [11] for describing a non-local 
aggregation effect of the population. The balance of both effects makes the existence of 
travelling wave solutions with compact support for equation (I) possible. So IKEDA [5] 
and MIMURA and SATSUMA [10] constructed explicit equilibrium and travelling wave 
solutions with compact support for particular integral terms in diffusion equations of the 
form (1), especially for the case m = 2. Further in NAGAI and MIMURA [14, 15] the 
asymptotic behaviour of the interfaces of solutions with compact support and of the 
solutions themselves is investigated. Besides, IKEDA and NAGAI [6] considered the 
stability of localized stationary solutions of equations of this type. Stability properties of 
more general degenerate diffusion equations with drift functionals modelling aggregation 
are dealt with by ALT [1] and GREENBERG and ALT [2]. 

In the present paper the existence of travelling wave solutions with compact support 
is studied for a related system of diffusion equations to (1) with general sufficiently 
smooth integral terms. Corresponding results for the equation (1) are obtained in the re-
cent paper [16] by one of the authors. Here these results are extended to general systems 
with piecewise constant kernels and to special classes of such systems with general
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piecewise continuously differentiable kernels, respectively. Moreover, the particular 
travelling wave solutions of the equation (I) with piecewise constant kernels given in [16] 
are investigated analytically and numerically. Especially we study the behaviour of these 
solutions as the exponent m in equation (1) tends to the exceptional value m 2 of the 
theory and show numerical results for the convergence of these solutions if m goes to 2 in 
a suitable way. 

The paper is based on the report [8] where also simple examples and extensions to a 
special more-dimensional equation and another type of system of diffusion equations in 
the form (1) can be found.The report was written during the second authors stay at the 
University of Augsburg, Institute of Mathematics, under a contract with the Deutsche 
Forsc hungsge me i nsc haft in December 1988. This author would like to thank Prof Dr. K.-
H. Hoffmann from the University of Augsburg for the invitation to this visit and the 
hospitality during it. 

I. Statement of problem 

We deal with the system of equations

(2) 

for functions u(x, t) (x € R, t> 0; j 1.....n), where k, > 0, rn > I are given parameters 
and Yij E R are unknown parameters to be chosen in such a way that travelling wave solu-
tions of the form 

u p,(x - c 1t), i = I.....n (3) 

with a common compact support interval [0, a] exist, i.e. p1 (s) = 0 on (-o, 0) u (a, +co) 
and pi (s) z- 0 with ">" instead of" "for at least one index ion (0, a). We suppose that 
the functions p1 together with the derivatives ( Y TO' are continuous on Rand the p1 are 
twice continuously differentiable on (0, a). The kernels Ku have the form 

I K . ' )( s) as s < 0 I	u 
Ku(s) = 1 K (

u
 2)(s) ass>0, L' 

where K 15 t ? Kj(j2)are continuously differentiable functions on (-co, 0) and [0, + ), respec - 
tively, having non - positive derivatives (KIS1))., (K(_2)), :5 0 there and non-negative jumps 
at s = 0 

Aii	urn Kjj'ks) - urn K1(12)(s) 2t (i 0 f 1.....n). (5) 

Inserting the ansatz (3) in (2), we see that there should be y ij = c - c3 and after integra-
ting, we obtain the integro -differential equations for rp i in (0, a) 

k 1 rn 1 pT12(s ) pj ( s ) - . .ku(s -o)p(o)do + c = 0	 (6) 3-10 
with the boundary conditions p,(0)= p1(a) = 0. Introducing further the new unknown func-
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tions 'Ia, p"' 1 and the known parameters p 11(m -1), ). = k1 m,/(m1 -1) = k1 (1 + p), 
the system (6) goes over into the system for 'IJ 

XcD'(s)-	f(S -o) 3Pi(o)dc + c1 0 
i—b 

with the boundary conditions cx(o) = 0 =	(a) again. This in turn is equivalent to the
two-point boundary value problem 

X i (D: , ( S ) +	A 1, G.fi(s) -	fK1 (s -o)DJ'i(o)do = 0	 (7) 

i- I	 i-jo 

in (0, a) with D(0) = 0 = (Di (a) and the relation for the speeds c1 

fK5 )(-o)0f i(o)do - 
J=lo 

The boundary value problem (7) can be reduced to the integral equation system 

Gij 	0 s s s a,	 (8) 
i=jo 

with the kernels 

= (1/X)G0(s,o) - X'fG0(s,p)K;(p - o)dp 

where I  
G0(s o)	

s(a - 0)/a as 0 :s s :5 o ^ a 
=

- s)o/a as 0 s 0 s S 5 a 

is the well-known Green's function. 
In the sequel we substitute s at, 0 = at and T i ( t) = D1 (at) in equation (8) and finally 

obtain the integral equation system 

= Z Jku(t,t;a)yi(t)dt, 0 s t s 1,	 (9)
i-jo 

with the kernels kij 	aG1 (at, at), i.e.

kjj(t,t;a)kj0)(t,t;a)+kj1)(t,t;a), 

where 

kj0)(t,t;a)	g0(t,t) and k j'kt,t;a) = - --fg0(t,p)K1, (a(p - t))dp,
xi 0

with the normalized Green's function 

- t(l - t) as 0 :9 t s t s 1 
t(l - t) as0:stst1. 

The problem of existence of travelling wave solutions of the form (3) for the differen-
tial equations (2) is now equivalent to seek non-trivial non-negative solution systems of 
the integral equations (9) in some finite interval [0, a].
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2. General case 

In the general case 

>2 for i1..... k 
m 1

	

	= 2 for i = k+1.... . 1	 (10) 
<2 for 1=1+1 ..... n 

we restrict ourselves to piecewise constant kernels 

K(s) = J iJ as s <0 
Oij ass>0 

with Lt 1 =aij- I3j a 0 (i,j = I.... . n). Then the two-point boundary value problem (7) is a 
pure differential equation problem and the integral equation system (9) has the form of an 
eigenvalue problem

(11) 
for the vector function 'f = ('V.., 'I') in [0, 11 with the eigenparameter v = a 2 > 0 and 
the operator A,, defined by 

( A0 z)(t) = (	jj/Xj)Jgo(t,t)zJ)J(t)dt)(j 
= 1,... , n) 

for z=(z,,..., z), where 

p1 €(0,1) ifi=1.....k 
p, rl	ifik+1..... I	(0!5k!^1:5n). 
p > I	if j	I + I..... n 

The operator A,, is completely Continuous in the Banach space C"[0,1] of continuous 
n-dimensional vector functions, leaves the cone K"[O,l] of non-negative vector functi-
ons from C"[0, I] invariant, maps the zero element into itself and possesses the linear 
minorants B. defined by 

(B0z)(t) 
=	( 

(0)=J+, 

in the intersection of the cone K[0,1] with the unit ball of C"[O,i] and 

(0) k 
(B0z)(t)=	 I 

in the whole cone K"[O,l], respectively. 
If now I> I or! > k and there exists a subset Is {1.... . i} or Is {k +1.... . l}, respecti-

vely, such that for any j € I there is a j = J1 E I with Aiii> 0, then we have 

(BO u,,)(t)a (8/12X0)(u0)(t),
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where the components of u0 are given by I t(l - t) as i € / 01 = O	
asil	

(12) 

and 6 mini,, Aiji I X 0 = 2k0 , k0 max, 1 k. 
Applying Theorem 5.7 of [9] to the problem (11), we obtain 

Theorem 1:/fl> 1 in (10) and there exists a non-void subset 1€ {1 ,..., l} such that for 
any iE I there is aj = ji E I with A . . >0, beside Aij a 0 for all i,j 1,...,n, then the equation 
(11) has a continuous branch with length 1 of eigenfunctions in the cone K '[0,1], i.e. the 
integral equation system (9) possesses a set of non -negative continuous solutions to all 
possible a > 0 which has a non - void intersection with the boundary of any open set in 
C°[0, 1] containing the zero point and is contained together with its closure in the open 
unit ball ofC"[O,l]. 

If I> k in (10) and there exists a non-void subset / E { k +1 .....l} such that for any 
1€! there is af r j1 E Iwith &> 0, beside Aij a 0 for all i,j I.....n, then the equation (11) 
has a continuous branch with length = of eigenfunctions in the cone K "[0,1], i.e. the set 
of non-negative continuous eigenfunctions in the integral equation system (9) contains 
such ones with arbitrary large norm. 

3. Special cases 

In the special cases, where all rn 1 > 2 or all m i satisfy I < rn < 2 or all mr 2 (i = I.....n),€
respectively, more concrete existence assertions can be given for general kernels K.

analogously to the case of one equation (1). Namely, by the above assumptions the kernels 
in (9) are non-negative continuous functions on [0,11 x [0,1] x [0, o) satisfying the 

near operators B, defined by 

(B 1 y)(t) fkjj(t,t;a)y(r)dt 

are compact mappings in the Banach space C[o,i] of continuous functions which leave the 
cone K [0,1] of non-negative functions from C[0, 1] invariant. Moreover, if t j > 0, for 
any y E K [0, 1], y * 0, there exist positive numbers p 1 and p 2 such that the inequality 

- t) :5 (B ,jy)(t) :5p2 t(1 - t), te[0,1], 

holds (cf. [161). 
The integral equation system (9) has the form of the operator equation 

'l'=AT, A'YB'F, inK"[O,I]	 (13) 

where 'I'	('+',..., 'i'm ), 1F	(F/'t'f',") and the linear operator Bis defined by

(Bz)(t) (J1(B1z)(t))1_1 

for z = (z l,.- . , z,,). Clearly, for any a > 0 the operator A is a completely continuous mapping
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in C"[0, 1] which leaves the cone K"[0, 1] invariant and maps the zero element into itself. 
As in [161 applying the Theorem 4.12 with Theorems 6.3 and 6.6 and the Theorem 4.14 

of [9] to the equation (13), respectively (cf. [9: Chapt. 7, § 4.6]), we obtain 

Theorem 2: If all m1>2(i=l..... n), or all m i satisfy  <rn <2 (i = I.... . n) and there 
exists a non -void subset I  {1.... . n} such that A i i > 0 for i E I, beside Aij a 0 for all i,j 

n, then for any a> 0 the integral equation system (9) has a non - trivial non-negative 
continuous solution 'V. If for i € I there is 0 for eachj = I.... . n, the solution 'F has the 
property

- t	T i( t)si2 t(1 - t),i€1,	 (14) 

where 0 < y, :^ 12 < Co' In the first case with Aij  0 for all i,j = 1..... n this solution is uni-

quely determined in K11[O, II and can be calculated by successive approximations start-
ing from an arbitrary non-zero function To € K "[0, 1]. 

If all rn = 2 (i = I.... . n), i.e., p, I (i I..... n ), the proof of the corresponding theorem 
in [161 can be taken over, where we use Theorem 2.5 of [9] with u0 defined by (12) with a 
non - void subset 1 {i......i}, I :5 p :5 n, of n) for obtaining the existence of a po-
sitive eigenvalue of the linear operator A for any a > 0 and the u 0 -positivity of A with u0 
defined by (12) with I {1 ,...:, n} for getting the uniqueness and simplicity of this positive 
eigenvalue, respectively. 

Theorem 3: If all m = 2 (i = I.... . n), and there exists a subset I {i..., i},I :5 p :5 n, 

of{1,...:, n} such that 1 112 >O,t. 123 >0..... i jpjj >0andt.,11>O for eachjr1 .... n , be-
side Aij 2: 0 for all i,j =1.... . n, then there is an a > 0 such that the integral equation sy-
stem (9) has a non-negative continuous solution '1' with the property (14). If 0 for all 
i, j = I..... n to this a> 0 the corresponding solution 'F is uniquely determined apart from an 
arbitrary positive constant numerical factor. 

Corollary: In the last case the value of a is uniquely determined, too, if in (14) the 
partial kernels K J' are convex functions in (-m, 01 and the kernels Kare concave func-
tions in [0,co). 

REMARK: The eigenvalues v( a) of the operator A fulfil the estimation 

(a) z	 i l i2 6 i2 	./x..x. ' ip U/p) 
where X i = 2k i since in i = 2. 

4. Particular solutions 

For the equation (1) in the case of a piecewise constant kernel 

ía as  <0 
K(x) =

	

	 (15)
113 asx>0 

with A r a - 13 > 0 for rn * 2 the solution tD is given implicitely by
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IS- s ) )_ u/2 ds	if 0 ^ x s a/2
(16) 2(Dx/a)x 

	
O 

Dx+J)(1 - s x ) -1/2 ds if a12 :5 x :5 a, 

where D = y5F(l + 1/x)/r(1/2 + 1/A), A = m/(m - I), and the parameters a and B are 
connected by the relation 

aB'2 i'YAD/.	 (17) 

The speed c and the total population 1 =Jp(s)ds are given by the formulae c = (a +13)1/2 
and / 4AD/aBtt , respectively. 

For m = 2 we have the explicit solution 

p(x)D(x)b sin 17x,0:^xTr/1'7,	 (18) 

which is determined up to an arbitrary positive constant factor b = 1/B. The corresponding 
speed c and total population fare c = b/7K(a + 3) and I 2bI7, respectively. 

We briefly describe the behaviour of the solution (16) as m - 2, i.e. A - 2, where D 
- ,t/2. For a = r/[&7 by (17) we have 

B ( 
ADx	( A 1(1 + 1/A) )A72 

=
^_iT 1(1/2 + 1/A) 

Introducing r = 1 - A/2, we obtain

\ B	( - r + 7L[r 3/2 -	-r'(1)j 1 r) i/r 

= (1- r + [I - 1n2]r)h/r = (I - 1n2 .r)1/r as rO 

(cf. [7, p. 11]) so that B -+ 112. Therefore, the solution (16) converges to the solution (18) 
with b 2 and Jr 4v'7. 

Moreover, for given value 1> 0 the corresponding solution (16), that is the solution in 
the interval [0, ax] with ax = j2/X-11/A1 22_3/')A Dx,tends to the solution (18) with 
the same value of 1, i.e. with b (J/2)1K7. 

5. Numerical results 

In the last section we discuss the numerical approximaton of travelling waves for the re-
presentative special case of piecewise constant kernels (15) in equation (1) and indicate 
the dependence of the wave on the parameter m. For m 2, because of (16), we only need 
to evaluate the function 

F(y)=j '(1_s A )- 1/2 ds for y€[0,1]. 

An approximation of F	is not necessary, as the knowledge of 

(F(y1 )/(2 D/a), (y1/B)1 /( m -0) 

for sufficiently many y1 € [0,1) is sufficient to get a parametric representation of z 
= [0,a/2] (e.g. by linear splines). For the approximation of F(y) for y€ [0,1]we use the
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representation 

F(y) 1/x 5t 11 (1 - f) 1 /2 dt 11B(y); 1/X,1/2), 

where B is the incomplete Beta Function. We have a weak singularity at t 0 and at t I, 
if y = 1. Therefore we write 

F(y) I/f	-	- t )/	
(19) 

and arrive at an integral with specific weak singularities at the lower and upper limit of 
integration. The remaining integrand is continuous. We approximate (19) by Gauss-Jacobi 
integration for these weight functions. The used weights and abscissae have been compu-
ted by the routine DOIBCF from the NAG FORTRAN LIBRARY, MARK 12. For m = 2 we 
use directly (18). 

For all computations we take	2, = -1, 200 points for y, 50 points of integration. 

	

Fig.1 Travelling waves for	 Fig.2 Travelling waves for 

	

fixed a: In close to 2	 fixed I in close to 2 

In Figure 1 we fix a to a 7t//&7, the interval for which travelling waves exist for 
m = 2. The displayed curves correspond to (with decreasing maximum): in 1.8, 1.9, 2.0, 
2.1, 2.2, where for m = 2 we have b 2 as predicted above. The convergence for m -+ 2 is 
clearly to be seen, the total population I (and hence the speed c = (a + 3)/2 I) increase 
with decreasing in. 

In Figure 2 we fix Ito I = 4 17K, corresponding to m 2 for a 7t/I7 from Fig-
ure 1. As above we show the curves for (with decreasing maximum): m 1.8, 1.9, 2.0, 2.1, 
2.2. Again the convergence for m — 2 can be observed. The length of support a varies only 
slightly, decreasing for m 4' 2 and for m 1' 2, as can be seen from Table 1. 

a
	

2.2 -	2.1	2.0	1.9	1.8 

	

L.11.I.236	fi676 2.5651	2.5680 I 2.S79OJ 
Table 1: The value of a for fixed I (corresponding to Figure 2) 

Finally we illustrate, for fixed I, namely I = I, the behaviour as m- co and m — 1. In 
Figure 3 the waves corresponding to (with decreasing a): m = 2.5, 5, 10, 100, 1000 are
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shown. The length of support a decreases to I and the waves approximate a rectangular 
shape. For the porous medium equation this phenomenon is connected with the notion 
"mesa problem". In Figure 4 we display the waves corresponding to (with increasing a) 
m	1.9, 1.8, 1.7, 1.6. 

	

Fig. 3 Travelling waves	 Fig.4 Travelling waves 

	

for increasing m	 for decreasing m 
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Book review 

A. Friedman: Mathematics in Industrial Problems, Part 3 (The (MA Volumes in Mathema-
tics and its Applications: Vol. 31). Berlin - Heidelberg - New York: Springer - Verlag 1990, 
187 pp., 96 III. 

As the title shows, this is already the third volume in the IMA series which is devoted to 
the applications of mathematics in industrial problems. It bases on presentations in the 
seminar on Industrial Problems at IMA from October 1989 to May 1990. The contributions 
are ordered chronically and cover a wide range of applications. Each of theni is self-con-
tained. 

The book consists of 18 chapters with almost the same structure: The problem is des-
cribed, then the mathematical model follows and the solution known so far. Finally there 
is a list of open problems. References are given for each chapter separately. The last 
chapter shows that work on open problems goes on, it contains solutions (Or references to 
solutions) to some of the open problems from Part 2. 

Most of the problems belong to mathematical analysis. They arise from physical, 
chemical and technological models. Only a minor part of the book deals with problems 
from other mathematical disciplines as probability theory, statistics or optimization. 

Contents: 1. Internal oxidation of binary alloys; 2. Fundamental problems in the theo-
ry of shaped charged jets; 3. Mathematical modeling of dielectric waveguides; 4. A dif-
fusion problem from rock porosity measurements; S. Applications and modeling of dif-
fractive optical elements; 6. An approach to optimal classification; 7. Polymer-dispersed 
liquid crystal films for light control; 8. Singularity problems in the stress analysis of 
semiconductor packging; 9. Pulse reflection from a randomly stratified medium; 10. 
Theory of polymer melt viscoelasticity; 11. The advection equation in air quality modeling; 
12. Diffusion in swelling media: modeling and applications; 13. Mathematical modeling of 
semiconductor lasers; 14. Conformation of random polymers; 15. Current-voltage relati-
ons for electrolytic solutions; 16. Scaling and optimization for list-matching; 17. Topics in 
tomography. 
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