Determination of a Real Parameter in the Coefficient of a Quasilinear Elliptic Differential Equation

S. HANDROCK-MEyER

Abstract

We study the quasilinear elliptic differential equation $\operatorname{div}\left(\left(b\left(u-u_{0}\right) t+c\right) g r a d u\right)=0$ with boundary value conditions of Dirichlet type in an n-dimensional cylinder. Provided we know the numbers u_{0}, l and c, the solution u on a plane which is parallel to the basic area of the cylinder, an eigenvalue and an eigenfunction of a certain eigenvalue problem, we give an explicit formula for the calculation of the real parameter b.

Key words: Inverse problems, boundary value problems, quasilinear elliptic differential equations
AMS subject classification: 35 R 30, 35 J 25

1. Introduction

Let D be a bounded region of the n-dimensional Euclidean space \mathbb{R}^{n} with piecewise smooth boundary ∂D. Points of \mathbf{R}^{n-1} are denoted by $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$, those of \mathbb{R}^{n} by $x=\left(x^{\prime}, x_{n}\right)$. We consider the quasilinear elliptic boundary value problem

$$
\begin{align*}
L u(x)=\operatorname{div}(a(u(x)) \operatorname{grad} u(x)) & =0 & & \text { in } D \tag{1.1}\\
u(x) & =g(x) & & \text { on } \partial D, \tag{1.2}
\end{align*}
$$

where a is a function of the real function $u=u(x)$ which is strictly positive, continuously differentiable and satisfies the condition

$$
\begin{equation*}
u \in C(\bar{D}) \cap C^{2}(D) \tag{1.3}
\end{equation*}
$$

We prove the validity of a weak maximum principle in the following sense.
Definition [[3]: Let $a(u)$ be strictly positive and continuously differentiable, $u \in C^{1}(D)$. Then, in a generalized sense, u is said to satisfy the relation $L u=0(z 0, \leq 0)$ in D, in dependence on whether $\int_{D} a(u(x)) \operatorname{grad} u(x) \operatorname{grad} \varphi(x) d x=0(\leq 0, \geq 0)$ for all non-negative functions $\varphi \in C_{0}^{1}(D)$.

Theorem 1: Let $a(u)$ be strictly positive and continuously differentiable, u satisfy the condition (1.3) and suppose

$$
\begin{equation*}
\int_{D} a(u(x)) \operatorname{grad} u(x) \operatorname{grad} \varphi(x) d x=0 \tag{1.4}
\end{equation*}
$$

for all non-negative functions $\varphi \in C_{0}^{1}(D)$. Then

$$
\begin{equation*}
\inf _{\partial D} u \leq \inf _{D} u \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{D} u \leq \sup _{\partial D} u \tag{1.6}
\end{equation*}
$$

Proof: We prove (1.6) supposing, contrary to the assertion, that $\sup _{D} u>\sup _{\partial D} u=u_{1}$. Then, for some constant $c>0$, there is a subdomain $D^{\prime} \subset D$ in which $v=u-u_{1}-c>0$ and $v=0$ on ∂D^{\prime}. The relation (1.4) remains true with u replaced by v, and with $\varphi=v$ on $D^{\prime}, \varphi=0$ elsewhere. We have $\varphi: C_{0}^{1}(D)$, but (1.4) can be seen to hold by approximating φ with functions in $C_{0}^{1}(D)$. It follows $\int_{D^{\prime}} a(\operatorname{grad} v)^{2} d x=0$ and hence, since a is a positive function, we infer grad v $=0$ in D^{\prime}. On account of $v=0$ on ∂D^{\prime} we have $v=0$ in D^{\prime}, which contradicts the definition of the function v. Analogously the inequality (1.5) can be proved

We set $u_{0}=\inf _{\partial D} u$ and suppose $u_{0}<u_{1}$. Then we obtain from (1.5) and (1.6) $u_{0} \leq u(x) \leq u_{1}$ for all $x \in \bar{D}$. In the following the coefficient $a(u)$ in the equation (1.1) may be given in the form

$$
\begin{equation*}
a(u)=b\left(u-u_{0}\right)^{I}+c \text { for all }\left[u_{0}, u_{1}\right] \tag{1.7}
\end{equation*}
$$

where l is a natural number and b, c are real constants, with $c>0$ and $b>-c\left(u_{1}-u_{0}\right)^{-1}$. This implies $a(u)>0$ for all $u \in\left[u_{0}, u_{1}\right]$. Further we assume $c=a\left(u_{0}\right)$ and $/$ to be known. Then $a(u)$ is available completely if the constant b is known. Finally, in addition to the assumptions stated, suppose that for every function $a(u)$ of the form (1.7) (i.e.for every $\left.b>-c\left(u_{1}-u_{0}\right)^{-1}\right)$ there exists a unique solution $u=u(x, b)$ of the boundary value problem (1.1) -(1.2). For brevity we write $u(x)=u(x, b)$.

The inverse problem to the boundary value problem (1.1)-(1.2) consists in the determination of the coefficient $a(u)$ (i.e. of the real parameter b) under some additional information on u. In the second section we describe (under some restrictions on the domain D) a procedure for the calculation of the number b, which also implies its existence and uniqueness.

The third section contains three special cases and one example.
A quasilinear parabolic equation with a coefficient of the form (1.7) is investigated by MEYER [4,5]. CANNON [2] has considered the equation (1.1) with the Neumann boudary condition $a(u) \partial u / \partial v=g$ on ∂D and the additional condition $u=f$ on C, where C denotes a smooth curve on a portion of ∂D. Some results on inverse problems in quasilinear equations are given by ANGER [1].

2. A method for the determination of the number b

We use the following notations:
$D_{n-1} \subset \mathbb{R}^{n-1}$ is a bounded region with sufficiently smooth boundary ∂D_{n-1},
(d_{1}, d_{2}) is an interval on the x_{n}-axis,
$D=D_{n-1} \times\left(d_{1}, d_{2}\right), \bar{B}=D_{n-1} \times\left[d_{1}, d_{2}\right]$,
Δ_{k} is the Laplacian in the k-dimensional space.
The boundary value problem (1.1)-(1.2) is considered with a coefficient $a(u)$ of the form (1.7) and the special boundary conditions

$$
\begin{align*}
u\left(x^{\prime}, d_{1}\right) & =p_{1}\left(x^{\prime}\right) \text { for } x^{\prime} \in D_{n-1}, x_{n}=d_{1} \tag{2.1}\\
u\left(x^{\prime}, d_{2}\right) & =p_{2}\left(x^{\prime}\right) \text { for } x^{\prime} \in D_{n-1}, x_{n}=d_{2} \tag{2.2}\\
u(x) & =q(x) \text { for } x \in \bar{B}, \tag{2.3}
\end{align*}
$$

where ρ_{1}, p_{2} and q are given functions satisfying the conditions

$$
\begin{equation*}
p_{1}, p_{2} \in C\left(\overline{D_{n-1}}\right), q \in C(\bar{B}) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
p_{i}\left(x^{\prime}\right)=q\left(x^{\prime}, d_{i}\right) \text { for } x^{\prime} \in D_{n-1} \text { and } j=1,2 \tag{2.5}
\end{equation*}
$$

From (2.4) and Theorem 1 it follows

$$
\begin{aligned}
& u_{0}=\min \left\{\min _{x^{\prime} \in D_{n-1}} p_{i}\left(x^{\prime}\right)(i=1,2), \min _{x \in B} q(x)\right\}, \\
& u_{1}=\max \left\{\begin{array}{l}
\left.\max _{x^{\prime} \in \overline{D_{n-1}}} p_{i}\left(x^{\prime}\right)(i=1,2), \max _{x \in \bar{B}} q(x)\right\}
\end{array} .\right.
\end{aligned}
$$

Moreover, suppose that the following additional information on the solution $u\left(x^{\prime}, x_{n}\right)$ of the direct problem is available:

$$
\begin{equation*}
u\left(x^{\prime}, x_{n}^{0}\right)=f\left(x^{\prime}\right) \text { for } x^{\prime} \in D_{n-1} \tag{2.6}
\end{equation*}
$$

where x_{n}^{0} is a fixed point in the interval $\left(d_{1}, d_{2}\right)$ and

$$
\begin{equation*}
f \in C\left(\overline{D_{n-1}}\right) \tag{2.7}
\end{equation*}
$$

Further, we consider the eigenvalue problem

$$
\begin{equation*}
\Delta_{n-1} y\left(x^{\prime}\right)=-\lambda y\left(x^{\prime}\right), x^{\prime} \in D_{n-1} \text { and } y\left(x^{\prime}\right)=0, x^{\prime} \in \partial D_{n-1} \tag{2.8}
\end{equation*}
$$

It is known [6] that for every n and for a bounded domain with piecewise smooth boundary the set of eigenvalues of this problem is discrete and all eigenvalues are positive. We assume that we know one of the eigenvalues $\lambda>0$ and the corresponding eigenfunction $y=y\left(x^{\prime}\right)$ of the problem (2.8). Setting

$$
\begin{equation*}
v(x)=v\left(x^{\prime}, x_{n}\right)=\int_{u_{0}}^{u\left(x_{n} ; x_{n}\right)} a(s) d s=\int_{U_{0}}^{u\left(x_{n} ; x_{n}\right)}\left(b\left(s-u_{0}\right)^{1}+c\right) d s \tag{2.9}
\end{equation*}
$$

we obtain from (1.1) and (2.1)-(2.3) the linear boundary value problem

$$
\begin{align*}
& \Delta_{n} v=\Delta_{n-1} v+v_{x_{n} x_{n}}=0, \\
& v\left(x^{\prime}, d_{1}\right)=\int_{u_{0}}^{P_{1}\left(x^{\prime}\right)}\left(b\left(s-u_{0}\right)^{t}+c\right) d s=b g_{1}\left(x^{\prime}\right)+c g_{2}\left(x^{\prime}\right) \tag{2.10}\\
& v\left(x^{\prime}, d_{2}\right)=\int_{u_{0}}^{P_{2}\left(x^{\prime}\right)}\left(b\left(s-u_{0}\right)^{t}+c\right) d s=b g_{3}\left(x^{\prime}\right)+c g_{4}\left(x^{\prime}\right) \tag{2.11}\\
& \left.v\left(x^{\prime}, x_{n}\right)=\int_{n-1}\right) \tag{2.12}\\
& \int_{u_{0}}^{q\left(x^{\prime}, x_{n}\right)}\left(b\left(s-u_{0}\right)^{t}+c\right) d s=b h_{1}\left(x^{\prime}, x_{n}\right)+c h_{2}\left(x^{\prime}, x_{n}\right) \tag{2.13}
\end{align*} \quad\left(x \in D_{n-1}\right) .
$$

From the additional information (2.6) and (2.9) we receive

$$
\begin{equation*}
v\left(x^{\prime}, x_{n}^{0}\right)=\int_{u_{0}}^{f\left(x^{\prime}\right)}\left(b\left(s-u_{0}\right)^{1}+c\right) d s=b r_{1}\left(x^{\prime}\right)+c r_{2}\left(x^{\prime}\right) \quad\left(x^{\prime} \in D_{n-1}\right) . \tag{2.14}
\end{equation*}
$$

We use the following notations ($i=1,2 ; j=1,2,3,4$):

$$
\begin{align*}
& A_{j}\left(x_{n}\right)=\int_{\partial D_{n-1}}\left(\partial y\left(x^{\prime}\right) / \partial v\right) h_{i}\left(x^{\prime}, x_{n}\right) d o \tag{2.15}\\
& \bar{B}_{j}=\int_{D_{n-1}} g_{j}\left(x^{\prime}\right) y\left(\dot{x}^{\prime}\right) d x^{\prime} \tag{2.16}
\end{align*}
$$

$$
\begin{align*}
& E_{i}\left(x_{n}\right)=-1 / 2 \sqrt{\lambda}\left(\mathrm{e}^{-\sqrt{\lambda} x_{n}} \int_{\alpha_{1}}^{x_{n}} \mathrm{e}^{\sqrt{\lambda} t} A_{i}(t) d t-\mathrm{e}^{\sqrt{\lambda} x_{n}} \int_{\alpha_{i}}^{x_{n}} \mathrm{e}^{-\sqrt{\lambda} t} A_{i}(t) d t\right) \tag{2.17}\\
& F_{i}=\int_{D_{n-1}} r_{i}\left(x^{\prime}\right) y\left(x^{\prime}\right) d x^{\prime}, \tag{2.18}
\end{align*}
$$

where y denotes the known eigenfunction of the problem (2.8) and $\partial / \partial v$ the normal derivative in the $(n-1)$-dimensional space. Further, we set $w=e^{\sqrt{\lambda}\left(d_{1}-d_{2}\right)}-e^{-\sqrt{\lambda}\left(d_{1}-d_{2}\right)}$.

Theorem 2: Let p_{1}, p_{2}, q and f be given functions satisfying (2.4), (2.5) and (2.7), respectively. Suppose

$$
\begin{align*}
F_{1}- & {\left[\left(B_{1} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}+E_{1}\left(d_{2}\right) \mathrm{e}^{-\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}^{0}}\right.} \tag{2.19}\\
& \left.+\left(B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{1} \mathrm{e}^{\sqrt{\lambda} d_{2}}-E_{1}\left(d_{2}\right) \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}^{0}}\right] w^{-1}-E_{1}\left(x_{n}^{0}\right) \neq 0
\end{align*}
$$

where λ denotes an eigenvalue of the problem (2.8). Then the inverse problem (1.1), (2.1) $-(2.3),(2.6)$ of the determination of the real parameter b has a unique solution, which can be found explicitely.

Proof: Multiplication of the formula (2.10) by $y\left(x^{\prime}\right)$ and integration with respect to x^{\prime} supplies

$$
\begin{equation*}
\int_{D_{n-1}}\left(\Delta_{n-1} v\left(x^{\prime}, x_{n}\right)+v_{x_{n} x_{n}}\left(x^{\prime}, x_{n}\right)\right) y\left(x^{\prime}\right) d x^{\prime}=0 \tag{2.20}
\end{equation*}
$$

We put

$$
\begin{equation*}
z\left(x_{n}\right)=\int_{D_{n-1}} v\left(x^{\prime}, x_{n}\right) y\left(x^{\prime}\right) d x^{\prime} \tag{2.21}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
z^{\prime \prime}\left(x_{n}\right)=z_{x_{n} x_{n}}\left(x_{n}\right)=\int_{D_{n-1}} v_{x_{n} x_{n}}\left(x^{\prime}, x_{n}\right) y\left(x^{\prime}\right) d x^{\prime} \tag{2.22}
\end{equation*}
$$

Applying (2.8) and (2.13) we obtain by partial integration

$$
\begin{align*}
& \int_{D_{n-1}} \Delta_{n-1} v\left(x^{\prime}, x_{n}\right) y\left(x^{\prime}\right) d x^{\prime} \tag{2.23}\\
& =\int_{D_{n-1}} \Delta_{n-1} y\left(x^{\prime}\right) v\left(x^{\prime}, x_{n}\right) d x+\int_{\partial D_{n-1}}\left(\partial v\left(x^{\prime}, x_{n}\right) / \partial v\right) y\left(x^{\prime}\right)-\left(\partial y\left(x^{\prime}\right) / \partial v\right) v\left(x^{\prime}, x_{n}\right) d o \\
& =-\lambda \int_{D_{n-1}} v\left(x^{\prime}, x_{n}\right) y\left(x^{\prime}\right) d x^{\prime}-\int_{\partial b_{n-1}}\left(\partial y\left(x^{\prime}\right) / \partial v\right)\left[b h_{1}\left(x^{\prime}, x_{n}\right)+c h_{2}\left(x^{\prime}, x_{n}\right)\right] d \sigma .
\end{align*}
$$

Using (2.21) - (2.23) we receive from (2.20) an inhomogeneous linear ordinary differential equation of second order with respect to $z\left(x_{n}\right)$:

$$
\begin{equation*}
z^{\prime \prime}\left(x_{n}\right)-\lambda z\left(x_{n}\right)=s\left(x_{n}\right) \tag{2.24}
\end{equation*}
$$

with right-hand side

$$
s\left(x_{n}\right)=\int_{\partial D_{n-1}}\left(\partial y\left(x^{\prime}\right) / \partial v\right)\left[b h_{1}\left(x^{\prime}, x_{n}\right)+c h_{2}\left(x^{\prime}, x_{n}\right)\right] d \sigma=b A_{1}\left(x_{n}\right)+c A_{2}\left(x_{n}\right)
$$

where $A_{j}\left(x_{n}\right)(j=1,2)$ given by (2.15) are known functions independent of b and c. Moreover, we obtain from (2.11) and (2.12) the boundary conditions

$$
\begin{align*}
& z\left(d_{1}\right)=\int_{D_{n-1}} v\left(x^{\prime}, d_{1}\right) y\left(x^{\prime}\right) d x=b B_{1}+c B_{2} \tag{2.25}\\
& z\left(d_{2}\right)=\int_{D_{n-1}} v\left(x^{\prime}, d_{2}\right) y\left(x^{\prime}\right) d x=b B_{3}+c B_{4} \tag{2.26}
\end{align*}
$$

where $B_{j}(j=1,2,3,4)$ given by (2.16) are known constants independent of b and c. Because $-\lambda$ <0 we conclude that the boundary value problem (2.24)-(2.26) is always uniquely solvable
[7]. The general solution of the equation (2.24) can be written in the form

$$
\begin{equation*}
z\left(x_{n}\right)=C_{1} \mathrm{e}^{\sqrt{\lambda} x_{n}}+C_{2} \mathrm{e}^{-\sqrt{\lambda} x_{n}}+z_{s}\left(x_{n}\right) \tag{2.27}
\end{equation*}
$$

where $C_{i}(i=1,2)$ are arbitrary constants and

$$
z_{s}\left(x_{n}\right)=-1 / 2 \sqrt{\lambda}\left(\mathrm{e}^{-\sqrt{\lambda} x_{n}} \int_{d_{1}}^{x_{n}} \mathrm{e}^{\sqrt{\lambda} t} s(t) d t-\mathrm{e}^{\sqrt{\lambda} x_{n}} \int_{d_{1}}^{x_{n}} \mathrm{e}^{-\sqrt{\lambda} t^{\prime}} s(t) d t\right)
$$

is a particular solution of the inhomogeneous equation (2.24). For brevity we write $z_{s}\left(x_{n}\right)=$ $b E_{1}\left(x_{n}\right)+c E_{2}\left(x_{n}\right)$, where the functions $E_{i}\left(x_{n}\right)(i=1,2)$ given by (2.17) are independent of b and c. From (2.17) it follows $z_{s}\left(d_{1}\right)=0$. Inserting (2.27) into (2.25) and (2.26) we obtain a particular solution

$$
\begin{align*}
z\left(x_{n}\right)= & b\left\{\left(B_{1} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{3} \mathrm{e}^{-\sqrt{\lambda} d_{1}}+E_{1}\left(d_{2}\right) \mathrm{e}^{-\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}}\right. \\
& \left.\left.+\left(B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{1} \mathrm{e}^{\sqrt{\lambda} d_{2}}-E_{1}\left(d_{2}\right) \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}}\right] \mathrm{w}^{-1}+E_{1}\left(x_{n}\right)\right\} \tag{2.28}\\
& +c\left\{\left[\left(B_{2} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{4} \mathrm{e}^{-\sqrt{\lambda} d_{1}}+E_{2}\left(d_{2}\right) \mathrm{e}^{-\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}}\right.\right. \\
& \left.\left.+\left(B_{4} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{2} \mathrm{e}^{\sqrt{\lambda} d_{2}}-E_{2}\left(d_{2}\right) \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}}\right] W^{-1}+E_{2}\left(x_{n}\right)\right\}
\end{align*}
$$

with $w=e^{\sqrt{\lambda}\left(d_{1}-d_{2}\right)}-\mathrm{e}^{-\sqrt{\lambda}\left(d_{1}-d_{2}\right.}$. By means of (2.14) we calculate $z\left(x_{n}^{o}\right)$ as

$$
\begin{equation*}
z\left(x_{n}^{0}\right)=\int_{D_{n-1}} v\left(x^{\prime}, x_{n}^{0}\right) y\left(x^{\prime}\right) d x^{\prime}=b F_{1}+c F_{2}, \tag{2.29}
\end{equation*}
$$

where the constants $F_{i}(i=1,2)$ given by (2.18) are known and independent of b and c. Replacing $z\left(x_{n}\right)$ by $z\left(x_{n}^{\circ}\right)$ in the solution (2.28) and using (2.29) we arrive at an algebraic equation for the determination of the real parameter b :

$$
\begin{aligned}
b=c & \left\{\left[\left(B_{2} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{4} \mathrm{e}^{-\sqrt{\lambda} d_{1}}+E_{2}\left(d_{2}\right) \mathrm{e}^{-\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}^{0}}\right.\right. \\
& \left.\left.+\left(B_{4} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{2} \mathrm{e}^{\sqrt{\lambda} d_{2}}-E_{2}\left(d_{2}\right) \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}^{0}}\right] W^{-1}+E_{2}\left(x_{n}^{0}\right)-F_{2}\right\} \\
& \times\left\{F_{1}-\left[\left(B_{1} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}+E_{1}\left(d_{2}\right) \mathrm{e}^{-\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}^{0}}\right.\right. \\
& \left.\left.+\left(B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{1} \mathrm{e}^{\sqrt{\lambda} d_{2}}-E_{1}\left(d_{2}\right) \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}^{0}}\right] W^{-2}-E_{1}\left(x_{n}^{0}\right)\right\}^{-1}
\end{aligned}
$$

From (2.19) the uniqueness of the parameter b follows

3. Special cases

Throughout what follows the compatibility conditions are assumed to be fulfilled.
3.1 We consider the boundary value problem

$$
\begin{align*}
\operatorname{div}\left(\left(b\left(u-u_{0}\right)^{1}+c\right) \operatorname{grad} u(x)\right) & =0 & & \text { for } x \in D \\
u\left(x^{\prime}, d_{1}\right) & =p_{1}\left(x^{\prime}\right) & & \text { for } x^{\prime} \in D_{n-1}, x_{n}=d_{1} \\
u\left(x^{\prime}, d_{2}\right) & =p_{2}\left(x^{\prime}\right) & & \text { for } x^{\prime} \in D_{n-1}, x_{n}=d_{2} \tag{3.1}\\
u(x) & =0 & & \text { for } x \in \bar{B} \\
u\left(x^{\prime}, x_{n}^{0}\right) & =f\left(x^{\prime}\right) & & \text { for } x^{\prime} \in D_{n-1}, x_{n}^{o} \in\left(d_{1}, d_{2}\right),
\end{align*}
$$

where $f \in C\left(\overline{D_{n-1}}\right)$ satisfies the condition

$$
\begin{equation*}
F_{1}-\left[\left(B_{1} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}^{0}}+\left(B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{1} \mathrm{e}^{\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{\cdot \sqrt{\lambda} x_{n}^{0}}\right]_{W^{-1}} \neq 0 \tag{3.2}
\end{equation*}
$$

The inverse problem (3.1) of the determination of b can be written as an inverse problem for the homogeneous ordinary differential equation of the variable x_{n} :

$$
\begin{equation*}
z^{\prime \prime}\left(x_{n}\right)-\lambda z\left(x_{n}\right)=0 \tag{3.3}
\end{equation*}
$$

with the inhomogeneous boundary condition

$$
\begin{align*}
& z\left(d_{1}\right)=b B_{1}+c B_{2} \tag{3.4}\\
& z\left(d_{2}\right)=b B_{3}+c B_{4}
\end{align*}
$$

and the additional assumption

$$
\begin{equation*}
z\left(x_{n}^{0}\right)=b F_{1}+c F_{2} \tag{3.5}
\end{equation*}
$$

where the constants $B_{j}(j=1,2,3,4)$ and $F_{j}(i=1,2)$ are independent of b and c and are given by (2.16) and (2.18). The solution of the direct problem (3.3)-(3.4) has the form

$$
\begin{align*}
z\left(x_{n}\right)= & b\left[\left(B_{1} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{3} \mathrm{e}^{-\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}}+\left(B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{1} \mathrm{e}^{\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}}\right] w^{-1} \\
& +c\left[\left(B_{2} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{4} \mathrm{e}^{\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}}+\left(B_{4} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{2} \mathrm{e}^{\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}}\right] w^{-1} \tag{3.6}
\end{align*}
$$

Because of (3.2) the inverse problem (3.3)-(3.5) is uniquely solvable:

$$
\begin{aligned}
b= & c\left\{\left[\left(B_{2} \mathrm{e}^{-\sqrt{\lambda} d_{2}}-B_{4} \mathrm{e}^{-\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}^{0}}+\left(B_{4} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{2} \mathrm{e}^{\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}^{0}}\right] w^{-1}-F_{2}\right\} \\
& \times\left\{-\left[\left(B_{1} \mathrm{e}^{\left.\left.\left.-\sqrt{\lambda} d_{2}-B_{3} \mathrm{e}^{-\sqrt{\lambda} d_{1}}\right) \mathrm{e}^{\sqrt{\lambda} x_{n}^{0}}+\left(B_{3} \mathrm{e}^{\sqrt{\lambda} d_{1}}-B_{1} \mathrm{e}^{\sqrt{\lambda} d_{2}}\right) \mathrm{e}^{-\sqrt{\lambda} x_{n}^{0}}\right] W^{-1}+F_{1}\right\}}\right.\right.\right.
\end{aligned}
$$

From this we deduce the uniqueness of the parameter b in the problem (3.1).
3.2 We consider the boundary value problem

$$
\begin{align*}
\operatorname{div}\left(\left(b\left(u-u_{0}\right)^{1}+c\right) \operatorname{grad} u(x)\right) & =0 & & \text { for } x \in D \\
u\left(x^{\prime}, d_{1}\right) & =0 & & \text { for } x^{\prime} \in D_{n-1}, x_{n}=d_{1} \\
u\left(x^{\prime}, d_{2}\right) & =0 & & \text { for } x^{\prime} \in D_{n-1}, x_{n}=d_{2} \tag{3.7}\\
u(x) & =q(x) & & \text { for } x^{\prime} \in \bar{B} \\
u\left(x^{\prime}, x_{n}^{\circ}\right) & =f\left(x^{\prime}\right) & & \text { for } x^{\prime} \in D_{n-1}, x_{n}^{\circ} \in\left(d_{1}, d_{2}\right),
\end{align*}
$$

where $f \in C\left(\overline{D_{n-1}}\right)$ satisfies the condition

$$
\begin{equation*}
F_{1}-E_{1}\left(d_{2}\right)\left[\mathrm{e}^{\left.\sqrt{\lambda\left(x_{n}^{0}-d_{1}\right)}-\mathrm{e}^{-\sqrt{\lambda(}\left(x_{n}^{0}-d_{1}\right)}\right] W^{-1}-E_{1}\left(x_{n}^{0}\right) \neq 0 . . . ~}\right. \tag{3.8}
\end{equation*}
$$

The inverse problem (3.7) of the determination of b can be written as an inverse problem for the inhomogeneous ordinary differential equation of the variable x_{n} :

$$
\begin{equation*}
z^{\prime \prime}\left(x_{n}\right)-\lambda z\left(x_{n}\right)=b A_{1}\left(x_{n}\right)+c A_{2}\left(x_{n}\right) \tag{3.9}
\end{equation*}
$$

with the homogeneous boundary conditions

$$
\begin{equation*}
z\left(d_{i}\right)=0 \quad(j=1,2) \tag{3.10}
\end{equation*}
$$

and the additional assumption

$$
\begin{equation*}
z\left(x_{n}^{0}\right)=b F_{1}+c \dot{F}_{2} \tag{3.11}
\end{equation*}
$$

where the functions $A_{i}\left(x_{n}\right)$ and the constants $F_{j}(i=1,2)$ are independent of b and c and are given by (2.15) and (2.18). The solution of the direct problem (3.9)-(3.10) has the form

Because of (3.8) the inverse problem (3.9)-(3.11) is uniquely solvable:

$$
b=c\left[E_{2}\left(d_{2}\right)\left(e^{\sqrt{\lambda}\left(x_{n}^{0}-d_{1}\right)}-\mathrm{e}^{-\sqrt{\lambda}\left(x_{n}^{0}-d_{1}\right)}\right) w^{-1}+E_{2}\left(x_{n}^{0}\right)-F_{2}\right]\left[-E_{1}\left(d_{2}\right)(\ldots) w^{-1}-E_{1}\left(x_{n}^{0}\right)+F_{1}\right]^{-1}
$$

From this we deduce the uniqueness of the parameter b in the problem (3.7).
3. Let $n=1$. Then we have the boundary value problem

$$
\begin{align*}
\left(\left(b\left(u-u_{0}\right)^{1}+c\right) u^{\prime}\right) & =0 & & \text { for } x \in\left(d_{1}, d_{2}\right) \tag{3.12}\\
u\left(d_{i}\right) & =g_{i} & & \text { for } i=1,2 \\
u\left(x_{0}\right) & =h & & \text { for a fixed } x_{0} \in\left(d_{1}, d_{2}\right) \tag{3.13}
\end{align*}
$$

Let $g_{1} \neq g_{2}$. It is easily seen that the solution u is a strictly monotone increasing function if $g_{1}<g_{2}$ and a strictly monotone decreasing function if $g_{1}>g_{2}$. Without loss of generality we suppose g_{1} $<g_{2}$. Then we have $u_{0}=\min \left\{g_{1}, g_{2}\right\}=g_{1}$ and $u_{1}=\max \left\{g_{1}, g_{2}\right\}=g_{2}$. Using the transformation

$$
v(x)=\int_{\mathcal{E}_{1}}^{u(x)} a(s) d s=\int_{\mathcal{E}_{1}}^{u(x)}\left(b\left(u-u_{0}\right)^{1}+c\right) d s
$$

we obtain from (3.12)

$$
v^{\prime \prime}(x)=0 \text { and } v\left(d_{1}\right)=0, v\left(d_{2}\right)=\int_{g_{2}}^{g_{2}}\left(b\left(s-g_{1}\right)^{1}+c\right) d s
$$

with the solution $v(x)=\left(x-d_{1}\right)\left(d_{2}-d_{1}\right)^{-1} v\left(d_{2}\right)$. We replace v by u to obtain

$$
\int_{g_{1}}^{u(x)}\left(b\left(s-g_{1}\right)^{1}+c\right) d s=\left(x-d_{1}\right)\left(d_{2}-d_{1}\right)^{-1} \int_{g_{1}}^{g_{2}}\left(b\left(s-g_{1}\right)^{1}+c\right) d s
$$

and then receive the algebraic equation

$$
\begin{aligned}
b=c(l+1) & {\left[\left(x-d_{1}\right)\left(d_{1}-d_{2}\right)^{-1}\left(g_{2}-g_{1}\right)-\left(u(x)-g_{1}\right)\right] } \\
\times & \times\left[-\left(x-d_{1}\right)\left(d_{2}-d_{1}\right)^{-1}\left(g_{2}-g_{1}\right)^{1+1}+\left(u(x)-g_{1}\right)^{j+1}\right]
\end{aligned}
$$

for the determination of the parameter b. Because of (3.13), b is uniquely determined.
4. Now an example for $n=2$ and $I=1$ follows. Let $\left.D=\left\{\left(x_{1}, x_{2}\right)\right\} 0<x_{1}, x_{2}<1\right\}$. We consider the boundary value problem

$$
\begin{array}{rlrl}
\operatorname{div}\left(\left(b\left(u-u_{0}\right)+c\right) \operatorname{grad} u(x)\right) & =0 & & \text { for }\left(x_{1}, x_{2}\right) \in D \\
u\left(x_{1}, 0\right) & =u\left(x_{1}, 1\right) & =x_{1}\left(1-x_{1}\right) & \\
\text { for } 0<x_{1}<1 \\
u\left(0, x_{2}\right) & =u\left(1, x_{2}\right) & =0 & \\
u\left(x_{1}, x_{2}^{0}\right) & =f\left(x_{1}\right) & & \text { for } 0<x_{2}<1 \\
0 & <x_{1}<1, x_{2}^{0} \in(0,1),
\end{array}
$$

where $f \in C[0,1]$ satisfies the condition

$$
\begin{equation*}
F_{1}-R\left(x_{2}^{0}\right) B_{1} \neq 0 \tag{3.14}
\end{equation*}
$$

with $R\left(x_{2}^{0}\right)=\left(\mathrm{e}^{\pi\left(x_{2}^{0}-1\right)}-\mathrm{e}^{\pi x_{2}^{0}}+\mathrm{e}^{-\pi x_{2}^{0}}-\mathrm{e}^{-\pi\left(x_{2}^{0}-1\right)}\right)\left(\mathrm{e}^{-\pi}-\mathrm{e}^{+\pi)^{-1}}\right.$ and B_{1} and F_{1} given by (2.16), (2.18). The solutions of the eigenvalue problem $y^{\prime \prime}\left(x_{1}\right)+\lambda y\left(x_{1}\right)=0, y(0)=y(1)=0$ are known: $\lambda_{k}=k^{2} \pi^{2}, y_{k}\left(x_{1}\right)=\sin \left(k \pi x_{1}\right), k \in \mathbb{N}$. For the iollowing calculations we choose $\lambda_{1}=\pi^{2}$, $y_{1}\left(x_{1}\right)=\sin \left(\pi x_{1}\right)$. By virtue of Subsection 3.1, we have

$$
\begin{align*}
& z z^{\prime \prime}\left(x_{2}\right)-\pi^{2} z\left(x_{2}\right)=0 \\
& z(0)=z(1)= \\
& \quad b \int_{0}^{1}\left(x_{1}^{3}-x_{1}^{4}\right) \sin \left(\pi x_{1}\right) d x_{1} \tag{3.15}\\
& \tag{3.16}\\
& \quad+c \int_{0}^{1}\left(x_{1}-x_{1}^{2}\right) \sin \left(\pi x_{1}\right) d x_{1}=b B_{1}+c B_{2} \\
& z\left(x_{2}^{0}\right)=1 / 2 b \int_{0}^{1}\left(f\left(x_{1}\right)\right)^{2} \sin \left(\pi x_{1}\right) d x_{1} \\
& \\
& +c \int_{0}^{1} f\left(x_{1}\right) \sin \left(\pi x_{1}\right) d x_{1}=b F_{1}+c F_{2} .
\end{align*}
$$

Setting in (3.6) $B_{1}=B_{3}$ and $B_{2}=B_{4}$ we get the solution of the direct problem (3.15) in the form $z\left(x_{2}\right)=\left(b B_{1}+c B_{2}\right) R\left(x_{2}\right)$. Putting $x_{2}=x_{2}^{0}$ and using (3.14),(3.16) it finally results that $b=$ $2 c\left(R\left(x_{2}^{0}\right) B_{2}-F_{2}\right)\left(F_{1}-R\left(x_{2}^{0}\right) B_{1}\right)^{-1}$ is uniquely determined.

REFERENCES

[1] ANGER, G.: Inverse Problems in Differential Equations. Berlin: Akademie-Verlag 1990.
[2] CANNON, J.R.: Determination of the Unknown Coefficient $k(u)$ in the Equation $\nabla k(u) \nabla u$ = O from Overspecified Boundary Dara. J. Math. Anal. Appl. 18 (1967),112-114.
[3] GILBARG, D. and N.S. TRUDINGER: Eliptic Partial Differential Equations of Second Order. Berlin-Heidelberg-New York: Springer-Verlag 1977.
[4] MEYER, S.: Die Existenz einer Lösung fuir ein inverses Problem der Warmeleitungsglejchung im quasilinearen Fall. Wiss. Z. Techn. Hochschule Chemnitz (Karl-Marx-Stadt) 26 (1984), 259-264.
[5] MEYER, S.: Die Eindeutigkeit der Lösung eines inversen Problems für die Wärmeleitungsgleichung im quasilinearen Fall. Wiss. Z. Techn. Hochschule Chemnitz (Karl-Marx-Stadt) 27 (1985), 117 - 120.
[6] MiCHLIN, S.G.: Lehrgang der mathematischen Physik. Berlin: Akademie-Verlag 1972.
[7] SPERB, R.P.: Maximum Principles and Their Applications. New York: Academic Press 1981.

Received 22.12.1989; in revised form 13.06.1990
Author's address:

[^0]
[^0]: Dr. Sybille Handrock-Meyer
 Sektion Mathematik der Technischen Universität Chemnitz
 Reichenhainer Str. 39/41
 D (Ost) - 9022 Chermnitz

