On a Free Boundary Problem Modelling Thermal 0xidation of Silicon

Guan Zhicheno ${ }^{1}$:

Das Modellproblem der Thermaloxidation von Silikon als einphasiges Nicht-Gleichgewichtsproblem betrachtend, benutzen wir das Schaudersche Fixpunktprinzip züm Nachweis der Existenz und Eindeutigkeit der klassischen Lösung.

Рассматривая проблему моделирующую термальное окисление кремния как однофазовую неравновесную, мы испольауем теорему Шаудера о неподвижной точке для доказательства существования и единственности классического решения.
Considering the problem modelling thermal oxidation of silicon as one-phase non-equilibrium problem, we use Schauder's fixed point theorem to prove the existence and uniqueness of the classical solution.

1. Introduction. A. B. Crowley [1] presented many physical situations that can be reduced to non-equilibrium two-phase Stefan problems, that is, the standard equilibrium condition $v=0$ at the free boundary $x=s(t)$ is replaced by the kinetic law. $s(t)=\beta(v(s(t)), t) . \operatorname{In}[5]$, it has been shown for this'problem that if $|\beta(\xi)| \leqq C_{1}|\xi|+C_{2}$ for all $\xi \in \mathbb{R}$, a solution exists, but the uniqueness of the solution is an open question. In [3], the authors considered the non-equilibrium one-phase problem which arises in groundwater mass transport and non-equilibrium chemistry and showed that if $\beta(\xi)=\xi^{n}+a_{n-1} \xi^{n-1}+\cdots+a_{1} \xi$ for some $n \in \mathbb{N}$, under some conditions, the unique solution exists. In [2], the authors considered a problem that is somewhat similar to the one in [3], modelling thermal oxidation of silicon and using results on evolution equations in Hilbert spaces. They proved the existence and uniqueness of weak solutions and got estimates for growth of thickness of the oxide layer. But the conclusion $u \geqq 0$ in Lemma 1 there could not be obtained, because the coefficient $a u_{1}$ of the term $\left(\bar{u},(x \bar{u})_{x}\right)_{H}$ in the equation above [2:(4.1)] may be negative. In this paper, we use Schauder's fixed point theorem to prove the existence and uniqueness of classical solutions to this problem.

Let $b(t)>0, \Omega_{t}=(0, b(t)), Q=\left\{(x, t): x \in \Omega_{t}, \quad t \in(0, T)\right\}$, where $T \in(0,+\infty)$, then as in [2], we consider the model problem

$$
\begin{array}{ll}
\left(v_{t}-D v_{x x}\right)(x, t)=0 & \text { in } Q \tag{P}\\
v(x, 0)=v^{0}(x) & \text { in }\left(0, b^{0}\right), \\
-D v_{x}(0, t)+h\left(v(0, t)-v^{*}\right)=0 & \text { in }(0, T), \\
D v_{x}(b(t), t)+(\dot{b}(t)+k) v(b(t), t)=0 & \text { in }(0, T), \\
b(0)=b^{0}, \quad \dot{b}(t)=m v(b(t), t) & \text { in }(0, T), \\
v \in C^{2,1}(Q) \cap C(\bar{Q}), \quad v_{x} \in C\left(\bar{\Omega}_{t} \times(0, T)\right), & b \in C^{1}[0, T]
\end{array}
$$

[^0]where v is a non-negative function and the constants D, h, k, m, v^{*}, b^{0} are positive as in [2]. In the following sections, without loss of generality, we can assume $D=h=k$ $=m=v^{*}=b^{0}=1$. We shall prove the existence and uniqueness of the classical, solution to problem (P), in consequence, and obtain the same results as in [2].
2. Existence theorem. Let the closed convex subset $E=\left\{b \in C^{1}[0, T]: b(0)=1\right.$, $0 \leqq \dot{b}(t) \leqq K\}$ in the Banach space $C^{1}[0, T]$, where $K>0$ is a constant, be to be determined. At first, for a given $b \in E$, we consider the auxiliary problem
(AP1)
\[

$$
\begin{array}{ll}
\left(v_{t}-v_{x x}\right)(x, t)=0 & \text { in } Q, \\
v(x, 0)=v^{0}(x) & \text { in }(0,1), \\
-\ddot{v}_{x}(0, t)+v(0, t)-1=0 & \text { in }(0, T), \\
v_{x}(b(t), t)+(v(b(t), t)+1) v(b(t), t)=0 & \text { in }(0, T), \tag{2:2}\\
v \in C^{2,1}(Q) \cap C^{0}(\bar{Q}), \quad v_{x} \in C\left(\bar{\Omega}_{t} \times(0, T]\right), & b \in C^{1}[0, T]
\end{array}
$$
\]

Then we have
'Lemma 1: If $v=v(x, t)$ is a smooth solution to problem (AP1); then $\left|v_{x}\right| \leqq C_{1}$ and $\left|\dot{v}_{t}\right|,\left|\dot{v}_{x x}\right| \leqq C_{2}$ in $\bar{Q},\left\|v_{x}\right\|_{C^{1}, 1 /(\bar{Q})} \leqq C_{2}$, where C_{1} and C_{2} are positive constants depend-: ing only on $\left\|v^{0}\right\|_{C^{2}[0,1]}$ and $|v|_{\infty}=\max \bar{Q}|v|,\left\|v^{0}\right\|_{C^{*}[0,1]}, \delta_{1}=\min b(t), \delta_{2}=\max b(t)$ and $K=\max |b(t)|$, respectively.

Proof: Setting $v_{x}=z$, we see that z satisfies (2.1). By the maximum principle; we get the first estimate. In order to prove the second one, we consider the function $w=\exp \left(-\lambda_{1} t-\lambda_{2}\left(\delta_{1}-x\right)^{2}\right) v_{t}(x, t)$ satisfying the following problem:

$$
\begin{aligned}
& \quad w_{t}-w_{x x}+4 \lambda_{2}\left(\delta_{1}-x\right) w_{x}+\left(\lambda_{1}-2 \lambda_{2}-4 \lambda_{2}{ }^{2}\left(\delta_{1}-x\right)^{2}\right) w=0, \\
& \\
& \therefore \quad w_{x}+(0, t)+\left(1+2 \lambda_{2} \delta_{1}\right) w(0, t)=0, \\
& \left.\therefore \quad w_{2}\left(x-\delta_{1}\right)+2 v+1+b(t)\right) w=-(2 v(b(t), t)+1) \dot{b}(t) v_{x}(b(t), t),
\end{aligned}
$$

Choosing λ_{1} and λ_{2} such that $2 \lambda_{2} \delta_{1}-2|\dot{v}|_{\infty}+1-K>0$ and $\lambda_{1}-2 \lambda_{2}-4 \lambda_{2}{ }^{2}$ $\times\left(\delta_{2}-\delta_{i}\right)^{2}>0$, by the maximum principle, we conclude the second estimate, and the third one analogously by (2.1). The last one is obtained by [4: Lemma 3.1]

Introducing new independent variables ξ and τ by $\xi=x / b(t)$ and $\tau=\int_{0} d \sigma / b^{2}(\sigma)$,
(AP2)

$$
\begin{array}{ll}
\left(u_{\tau}-u_{\xi \xi}\right)(\xi, \tau)-\xi \dot{a}(\tau) u_{\xi}(\xi, \tau) / a(\tau)=0 & \text { in }(0,1) \times\left(0, T^{*}\right), \\
-u_{\xi}(0, \tau)+a(\tau)(u(0, \tau)-1)=0 & \text { in }\left(0, T^{*}\right), \\
u_{\xi}(1, \tau)+a(\tau) u(1, \tau)(u(1, \tau)+1)=0 & \text { in }\left(0, T^{*}\right), \\
a(0)=a^{0}:=1 ; u(\xi, 0)=u^{0}(\xi):=v^{0}(\xi) & \text { in }(0,1),
\end{array}
$$

$$
u \in C^{2.1}(\Omega \times S) \cap C(\bar{\Omega} \times S), \quad u_{\xi} \in C(\bar{\Omega} \times S)
$$

where $a(\tau)=b(t), \quad u(\xi, \tau)=v(x, t), \Omega=(0,1), S=\left[0, T^{*}\right], S=\left[0, T^{*}\right]$,

$$
T^{*}=\int_{0}^{T} d \sigma / b^{2}(\sigma)
$$

Now assume

$$
\begin{align*}
& v^{0} \in C^{2}[0,1], v^{0}(x) \geqq 0 \text { for all } x \in[0,1] \tag{Al}\\
& v_{x}^{0}(1)+\left(v^{0}(1)+1\right) v^{0}(1)=0, \quad-v_{x}^{0}(0)+v^{0}(0)-1=0 . \tag{A2}
\end{align*}
$$

Lemma 2: Under the assumptions (A1) and (A2), the problem (AP1) is uniquely solvable.

Proof: We first assume $b \in C^{\infty}[0, T]$. Then carefully checking the conditions and proof of [4: Theorem 7.4]; we conclude that in order to prove that the problem (AP2), and consequently (AP1), has a unique smooth solution, one only needs to prove that the solution u to problem (AP2) has the estimate $|u| \leqq M$ in $\bar{\Omega} \times S$, where M is a generic constant depending only on given data. In the present case, we cannot employ [4: Theorem 7.3], because the last condition in [4:(7.36)] is not satisfied, but the estimate $0 \leqq u \leqq M$ in $\bar{\Omega} \times S$. holds. In fact, using the maximum principle, we easily get $u(\xi, \tau) \leqq \max \left(1,\left\|v^{0}\right\|_{L \infty(0,11}\right)$ and the negative minimum value of $u(\xi, \tau)$, in $\bar{\Omega} \times S$ could be only achieved on $\xi=1$ as $u^{0}(\xi) \geqq 0$ and $a(\tau)>0$. If. this happens, by virtue of the third equation in (AP2), there exists a $\tau_{1}>0$ such that $u\left(1, \tau_{1}\right)=$ min $u(\xi, \tau) \leqq-1<0$. Therefore, there exists a $\tau_{0} \in\left(0, \tau_{1}\right]$ such that

$$
\begin{equation*}
u\left(1, \tau_{0}\right)=-1 \tag{2.3}
\end{equation*}
$$

$u(1, \tau)>-1,0 \leqq \tau \leqq \tau_{0} \leqq \tau_{1}$. Then observing the problem (AP2) in $\Omega \times\left(0, \tau_{0}\right)$ and again using the maximum principle, we have $u(\xi, \tau)>-1$ in $\Omega \times\left(0, \tau_{0}\right)$. Noting (2.3) and employing the strong maximum principle, we obtain

$$
\begin{equation*}
u_{\xi}\left(1, \tau_{0}\right)<0 . \tag{2.4}
\end{equation*}
$$

Hence, (2.3) and (2.4) contradict (2.2). This means that $u(\dot{\xi}, \tau)$ cannot achieve the negative value on $\xi=1$. So, $u(\xi, \tau) \geqq 0$, and the problem (AP2), and hence (AP1), has a unique smooth solution if $b \in C^{\infty}[0, T]$. But by means of Lemma 1 we obtain the conclusion of Lemma 2 -

Lemma 3: If $v^{0} \in C^{C}[0,1]$ and $v^{0}(\dot{x}) \geqq 0,0 \leqq x \leqq 1$, then the problem (AP1) has a unique and bounded solution $v \in V^{1,0}(Q) \cap C^{1 / 2,1 / 4}(\bar{Q})$ with $\left|v_{x}(x, t)\right| \leqq M_{i}$ a.e. in Q and, for all $\varphi \in W^{1,1}(Q)$,

$$
\begin{align*}
& \int_{0}^{\Delta T T_{0}} v(x, T) \varphi(x, T) d x+\int_{0}^{1} v^{0}(x) \varphi(x, 0) d x \\
& -\int_{0}^{T} v(b(t), t) \varphi(b(t), t) b(t) d t+\int_{0}^{T}(v(0, t)-1) \varphi(0, t) d t \\
& +\int_{0}^{T} \varphi(b(t), t)(v(b(t), t)+1) v(b(t), t) d t \\
& -\iint_{0}\left(v(x, t) \varphi_{t}(x, t)-v_{x}(x, t) \varphi_{x}(x ; t)\right) d x d t=0 . \tag{2.5}
\end{align*}
$$

Proof: Taking approximations $v_{n}{ }^{0}$ of v_{0}^{0} satisfying conditions (A1), (A2) and $v_{n}{ }^{0}$ $\rightarrow v^{0}$ in $C^{1}(0,1)$, we get the solutions corresponding $v_{n}(x, 0)=v_{n}{ }^{0}(x)$ by Lemmas 1 and 2 with the estimates

$$
\begin{equation*}
\left|v_{n}\right| \leqq M, \quad\left|v_{n x}\right| \leqq C_{\mathrm{i}} \text { in } \bar{Q} . \tag{2.6}
\end{equation*}
$$

Then, from (2.1), we have

$$
\begin{aligned}
& 0=\iint_{Q} v_{n t}^{2}-\iint_{Q} v_{n x x} v_{n t}=\iint_{Q} v_{n t}^{2}-\oint_{\partial Q}\left(v_{n x} v_{n t} d t+v_{n x}^{2} / 2 d x\right) \\
& =\iint_{Q} v_{n t}^{2}+2^{-1} \int_{0}^{b(t)} v_{n \dot{x}}^{2}(x, t) d x-2^{-1} \int_{0}^{1}\left(v_{n x}^{0}(x)\right)^{2} d x \\
& \left.-2^{-1} \int_{0}^{t} v_{n x}(b(t), t) \dot{b}(t) d t+\left[3^{-1} v_{n}^{3}(b(t), t)+2_{1}^{-1} v_{n}^{2}(b(t), t)\right]\right]_{t}^{0} . \\
& -\left.\int_{0}^{t}\left[\left(v_{n}+1\right) v_{n x}\right]\right|_{x=b(t)} \dot{b}(t) d t+\left.2^{-1}\left(v_{n}-1\right)^{2}(0, t)\right|_{0} ^{0} .
\end{aligned}
$$

Using (2.6), we obtain $\left\|v_{n t}\right\|_{L^{2}(0)}^{i} \leqq C$. Therefore, there exists a subsequence of $\left\{v_{n}\right\}$ (still denoged by $\left\{v_{n}\right\}$) such that $v_{n} \rightarrow v$ in $C^{1 / 2-\varepsilon, 1 / 4-s}(\bar{Q})(0<\varepsilon<1 / 4), v \in C^{1 / 2.1 / 4}(\bar{Q})$, $v_{n x} \rightarrow v_{x}, v_{n y x} \rightarrow v_{x x}, v_{n t} \rightarrow v_{t}$ weakly in $L^{2}(Q)$. Hence these yield (2.5).

Remark 4: From this lemma, we can follow the way in [2] and thus obtain the results of [2].

Next we consider the operator F as follows: For any $b \in E$, by Lemma 2, we get the solution v of (AP1), then we set $F(b(t))=\dot{S}(t)$, where $S(t) \doteq \int_{0}^{1} v(b(t), t) d t+1$ +
By virtue of Lemma 1 and taking an appropriate constant K, we see that $F: E \rightarrow E$ and F is pre-compact and continuous. In fact, by $0 \leqq u \leqq M$, choosing $K \geqq M$, we háve $0 \leqq \dot{S}(t)=v(b(t), t) \leqq M$, so, $F: E \rightarrow E$. Moreover, for any t_{1}, t_{2}, we ob: serve

$$
\begin{aligned}
& \left|\dot{S}\left(t_{1}\right)-\dot{\mathcal{S}}\left(t_{2}\right)\right|=\left|v\left(b\left(t_{1}\right), t_{1}\right)-v\left(b\left(t_{2}\right), t_{2}\right)\right| \\
& \therefore \leqq C_{1}\left|b\left(t_{1}\right)-b\left(t_{2}\right)\right|+C_{2}\left|t_{1}-t_{2}\right| \leqq\left(C_{1} K+C_{2}\right)\left|t_{1}-t_{2}\right|
\end{aligned}
$$

By the Arzelē-Ascoli Theorem, F is pre-compact. In order to prove the continuity of F, we consider $b_{1}, b_{2} \in E$; their corresponding solutions to problem (AP1) are v_{1} and v_{2}. Suppose $b_{1} \leqq b_{2}$ in [$\left.0, t_{1}\right]$, and let $w=v_{1}-v_{2}$. Then setting $Q_{1}=\{(x, t)$: $\left.0<x<b_{1}(t), 0<t<t_{1}\right\} w$ satisfies the system

$$
\begin{align*}
& \left(w_{l}-w_{x x}\right)(x, t)=0 \quad \text { in } Q_{1} \\
& w(x, 0)=0, \quad-w_{x}(0, t)+w(0, t)=0 \tag{3.1}\\
& w_{x}\left(b_{1}(t), t\right)=\left.\left[-\left(v_{1}+1\right) v_{1}-v_{2 x}\right]\right|_{x=b_{1}(t)}
\end{align*}
$$

In order to estimate the right-hand side of (3.1), we observe the following:

$$
\begin{aligned}
I:= & {\left[-\left(v_{1}+1\right) v_{1}-v_{2 x}\right]\left(b_{1}(t), t\right) } \\
= & {\left[-\left(v_{1}-v_{2}\right)\left(v_{1}+v_{2}+1\right)\right]\left(b_{1}(t), t\right) } \\
& +\left[-\left(v_{2}+1\right) v_{2}+v_{2 x}\right\}\left(b_{1}(t), t\right)+\left[\left(v_{2}+1\right) v_{2}+v_{2 x}\right]\left(b_{2}(t), t\right) \\
= & {\left[\left(v_{2}-v_{1}\right)\left(v_{1}+v_{2}+1\right)\right]\left(b_{1}(t), t\right) } \\
& +\left\{\left[\left(2 v_{2}+1\right) v_{2 x}\right]\left(b^{*}(t), t\right)=v_{2 x x}(\bar{b}(t), t)\right\}\left(b_{1}(t)-b_{2}(t)\right),
\end{aligned}
$$

where

$$
\begin{array}{ll}
b^{*}(t)=b_{1}(t)+\theta^{*}\left(b_{2}(t)-b_{1}(t)\right) ; & \left(0 \leqq \theta^{*}, \bar{\theta} \leqq 1\right) . \\
\bar{b}(t)=b_{1}(t)+\tilde{\theta}\left(b_{2}(t)-b_{1}(t)\right)
\end{array}
$$

From Lemma 1, we have $|I| \leqq C_{2}|w|+C_{2}\left|b_{1}(t)-, b_{2}(t)\right|$. As in the proof of Lemma 1, we get

$$
\begin{equation*}
|w| \leqq C_{2}\left|b_{1}(t)-b_{2}(t)\right|_{L^{\infty}\left[0, t_{1}\right]} \quad \text { in } \bar{\theta}_{1} . \tag{3.2}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left|\dot{S}_{1}(t)-\dot{S}_{2}(t)\right| & =\left|v_{1}\left(b_{1}(t), t\right)-v_{2}\left(b_{2}(t), t\right)\right| \\
& \leqq\left|v_{1}\left(b_{1}(t), t\right)-v_{2}\left(b_{1}(t), t\right)\right|+\left|v_{2}\left(b_{1}(t), t\right)-v_{2}\left(b_{2}(t), t\right)\right| \\
& \leqq C_{2}\left|b_{1}(t)-b_{2}(t)\right|_{L \infty 00, t_{1} 1} \tag{3.3}
\end{align*}
$$

Here we have used the estimate of Lemma 1 and (3.2). From the above'proof, we see that (3.3) still holds as $t_{1}=T$, which shows that F is continuous. Employing Schauder's fixed point theorem, we conclude that F has a fixed point. Thus we proved

Theorem 1: Under the assumptions (A1) and (A2) the problem (P) has at least one solution with the estimates of Lemma 1.
3. Uniqueness theorem. Concerning the uniqueness theorem, we have

Theorem 2: Under the assumptions (A1) and (A2), the problem (P) has at most one solution with the estimates of Lemma 1.

Proof: Suppose that there are two solutions (v_{1}, b_{1}) and (v_{2}, b_{2}) to problem (P). Let $w=v_{1}-v_{2}$. We assume that $b_{1} \leqq b_{2}$ in $\left(0, t_{1}\right)\left(t_{1} \leqq T\right)$. Then as in Section 2, we get (3.2). But, by Lemma 1 and (3.2), we have

$$
\begin{aligned}
& \left|b_{1}(t)-b_{2}(t)\right| \leqq \int_{0}^{t}\left|v_{1}\left(b_{1}(y), y\right)-v_{2}\left(b_{2}(y), y\right)\right| d y \\
& \leqq \int_{0}^{t}\left|v_{1}\left(b_{1}(y), y\right)-v_{2}\left(b_{1}(y), y\right)\right| d y \\
& +\int_{0}^{1}\left|v_{2}\left(b_{1}(y), y\right)-\varepsilon_{2}\left(b_{2}(y), y\right)\right| d y \\
& \leqq \int_{0}^{1}\left|w\left(b_{1}(y), y\right)\right| d y+C_{1} t\left|b_{1}(t)-b_{2}(t)\right|_{L \infty}\left\{0, t_{t}\right] \\
& \leqq\left(C_{1}+C_{2}\right) t\left|b_{1}(t)-b_{2}(t)\right|_{L \infty 0[0, t]} .
\end{aligned}
$$

Hence we obtain $b_{1}(t)=b_{2}(t)$ if $t \leqq \max \left(1 /\left(C_{1}+C_{2}\right), t_{1}\right)$. It is easy to see that the above procedure can be continued to T

REFERENCES

[1] Crowley, A.: Some Remark on a Non-equilibrium Solidification Problem. Preprint. Lecture Int. Coll. Free Boundary Problems: Theory and Applications, June, 11-20, 1987, Irsee/ Bavaria (FRG).
[2] Gröaer, K., and N. Strecrer: A Free Boundary Value Problem Modelling Thermal Oxidation of Silicon. Z. Anal. Anw. 7 (1988), 57-66.
[3] Goan Zancheng, and Tang Goozhen: A Kind of One-Phase Stefan Problem with a Kinetic Condition at the Free Boundary. Appl. Math. (J. Chin. Univ.) 4(1989), $557-563$.
[4] Ladyzenskaja, O. A., Solonnigov, V. A., and N. N. Ubal'oeva: Linear and Quabilinear Equations of Parabolic Type. Providence: Amer. Math. Soc. 1988.
[5] Visintin, A.: A Stefan Problem with a Kinetic Condition at the Free Boundary. Ann. Mat: Pura Appl. 146 (1986), 97-122.

Manuskripteingang: 05. 12. 1988; in revidierter Fassung 05. 05. 1989
VERFASSER:
Prof. Dr. Guan Zitiotimang
Department of Mathematics, Zhejiang University Hang Zhou
P.R. China

[^0]: ${ }^{1}$) Project supported by the National Science Foundation of China.

