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On-a Free Boundary Problem Modelhng Thermal Oxidation of Slllcon

’
[

GUAN ZHICHENG l)

Das Modellproblem der Thermaloxidation von Silikon als emphasxges Nlcht-Glelchgemchts-
problem betrachtend, benutzen wir das Schaudersche lepunktpnnzlp zum Nachwels der Exi-
stenz und Eindeutigkeit der klassischen Losung. ‘ . .

PaccmarpuBas npoGieMy MORENHPYIOUYIO TePMATbHOE OKMCIIEHHE KPeMHHA Kak oRHopa3zo-
BYIO HEPABHOBECHYI0, MH McNonb3yem Teopemy Illaynepa o HemomBM:KHOR TOYKe AJIA AOKA-
8aTeJILCTBA CYMIECTBOBAHNA M eMHCTBEHHOCTH KJIACCHYECKOro pelleHHA. "

Considering the problem modelling thermal oxidation of silicon as one-phase non- equilibrinm
problem, we use Schauder s fixed point theorem to prove the existence and uniqueness of the
classical solutlon .

1. Introduction. A. B. CRowLEY [1] presented many physxcal smuatxons that can be
reduced to non-equilibrium -two-phase Stefan problems, that is, the standard. equi-
librium-condition v = 0 at the free boundary = = s(¢) is replaced by the kinetic law.
s(t) = B(v(s(t)); t). In[5], it has been shown for this'problem that if |8(¢)| < C, |£| + C;
for all £ € R, a solution exists, but the uniqueness of the solution is an open question.
In [3], the authors considered the non-equilibrium one-phase problem which arises
in groundwater mass transport and non-equilibrium chemistry and showed that if
(&) =& + a,_&" 1 + ... 4+ a,¢ for some n € N, under some conditions, the uni-
que solution exists. In [2], the authors considered a problem that is somewhat similar
to the one in [3], modelling thermal oxidation of silicon and using results on evolution
equations in Hilbert spaces. They proved the existence and uniqueness of weak solu-
tions and got estimates for growth of thickness of the oxide layer. But the-conclusion
% = 0in Lemma 1 there could not be obtained, because the coefficient au, of the term
(@, (2%),)y in the equation above [2:(4.1)] may be negative. In this paper, we use
Schauder’s fixed point theorem to prove the existence and uniqueness of classical
solutions to this problem.

Let b(¢) > 0, 2 = (0,5(0), @ = {(z,t): z € 2, t€ (0, T)}, where T € (0, +oo),
then as in [2], we consider the model problem

A
A\

®) (o — Do) (z,1) = L inQ,
v(z, 0) = v%(x) in (0, b9),
—Du,(0, 8) + h(v(0,2) — v*) =0  in(0,T),
Do, (b(t), t) + (b(e) + k) »(b(e), t) =0 in (0, 7'),
bO) = b, b(t) = molb(e), £) in(0,7),
ve Q) nC@), v.€C(@x(0,T), be C0, T,
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where v is a non-tiegative function and the constants D, k, k, m,v*, b are positive a8
in [2]. In the following sections, without loss of generality, we can assume D = h = k
=m = v* = b® = 1. We shall prove the existence and uniqueness of the classical,
solution to problem (P), in consequence, and obtain the same results as in [2].

2. Existence theorem. Let the closed convex subset E = {b € C'[0, T}: b(0) = 1,
0 < b() < K} in the Banach space C[0, T], where K > O is a constant, be to be
determined. At first, for a given b € E, we consider the auxiliary problem

(AP1)  (v¢ ~ v;.) (z,8) =0 in@Q, (2.1)
v(z, 0) = v¥(z) in (0, 1),
_v,(o t) + ©(0, &) — 1=0 = - in(O,T),
v.(b(t), £} + (v(d(2), &) + 1) v(b(e), :) =0 in (0, T'), (2:2)

v e CF(Q)n C°(Q), vz € ,C(-Qt x0,T),  beC [_0, 7.
Then we have '

“Lemma 1: If v ) =v(x,t) is a smooth solution to problem (AP1); then |v,] <0, and
[ts], 1922] C; in Q; lloeleringy = C,, where Cy and C, are positwe constants depend-
ing only on [[t%lcyoy) and |vlo = maxg |v], Ilv°|lc-(o 1, 6, = min b(¢),” §, = max b(‘)
and K = max |6(t)|, respectively.

Ptoof Settmg v, =z, we see that z satisfies (2 1) By the maximum prmclple,'
we get the first estimate. In order to prove the second one, we consider the function
w= exp (=2t — 2500, — z)?) vifz, 8) sa.tlsfymg the following problem :

w4306, — 2w, + [ — 2y — 4020, — 2P)w =0,
" w0, 8) (1 + 24:84) w0, ) _0 :

w2z — 6) + 20+ 14 6(:)) w = — (2 b, ) + 1) 6(5) wx(b01.1)..
(e, 0) = exp (=448 — 2)?) d*0jdat.

Choosmg A, and 1, such that 22,6, — 2 |vje + 1 — K >0 and A, — 24, — 4).,2
X (8, — 6;)* > 0, by the maximum principle, we conclude the second estimate, and the
thu‘d one ana.logously by (2.1). The last one is obtamed by [4: Lemma 3. 1] 1

Introducing new independent variables & and 7 by & = z/b(t) and T = f da/bz(a),
we get the following problem, which is eqmvalent to problem (AP1): - o

(AP2)  (u, — ug) (§,7) — £d(r) uelé, 7)fa(z) = O " in{0,1) x (0, T*),
—u(0, 7) + a(r) (u(0,7) — 1) =0 in (0, T%),
uell, 7) + a(r) w1, 7) (u(1,7) + 1) =0 in (0, T%),
a0) = a¥ :=1; u(f,0) = u9() 1= 0(&) in (0, 1),
e CHR2 x 8) n C@ x9), uee(J(QxS), -
where a(t) = (o), u(, z) = v(z, 1), 2 (0 1), 8=1[0,7*,8 =[0, T%,
. : ,

T* — f do/b¥(o
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Now assume
(A1) e 090,1], +z).=0. forall z¥€][0,1]. ‘ .
(A2) v,9(1) + (v°(1) + 1) (1) =0, —v,90)+ v°(0) —1=0.

Lemma 2: Under the assumticms (A1) and (A2), the problem (AP1) is uniquely
solvable.

Proof: We first assume b € C[0, T']. Then carefully checking the conditions and
proof of [4: Theorem 7.4), we conclude that in order to prove that the problem (AP2),
and consequently (AP1), has a unique smooth solution, one only needs to prove that
the solution % to problem (AP2) has the estimate |u} < M in 2 X S, where M is a
generic constant depending only on given'data. In the present case, we cannot employ
[4: Theorem 7.3], because the last condition in [4 (7.36)] is not satisfied, but the esti-
mate 0 < » < M in 2 xS holds. In fact, using the maximum principle,, we easily
get u(f, 1) < max (1, [[?l| zoogo.11). and the negative minimum value of u(é, 7).in. Q%8
could be only achieved on §,= 1 as u%(¢). =0 and a(z) > 0. If. this happens by
virtue of the third equation in (AP2), there exists a 7, > 0 sich that u(l r,) = min
u(¢, 7) £ —1 < 0. Therefore, there exists a , €.(0, v,] such that P .

u(l, %) = —1, '5"'3’ (23)

u(1, 1) > -1,0 S 1 S To S n Then observing the problem (AP2) in Qx (0 EN)
and again using the maximum prmcxple, we have u(¢, r) > —1in 2 X (0, 7,). Noting
(2.3) and employmg the strong maximum prmmple, we obtain

e AT BRSO [T

" wdl, ro)<0 o N LT L (24)

Hence, (2 3) and (2 4) contradxct (2 2). This means that’ u(é, ) cannot achJeve the
negatlve value on ¢ = 1. So, u(£, ) = 0, and the problem (AP2), and hence (AP 1),
has a unique smooth solution if b € C>[0, T']. But by means of Lemma 1 we obtam the
conclusion of Lemma 2 B

Lemma 3: If o°€ 0‘[0 1] and *(z) =0, 0 <z <1, then the problem (AP1) has

a unique and bounded. solution .v € V‘ °(Q) n CUE l"(Q) with |v.(z, t)| S Mae. in Q
aind, /orallqze W), N ST

wr : D e -°.;*‘~ Ll

[ vz, T) q)(x, T) d:t + f *(z) ¢(z, 0) dz e ‘

0

- j v(b(®), £) @(b(e), ¢) b(¢) dt + j (v(0, ) —_1) @(0,8)dt -
()] [}]

T Lo v -
+ J o6, 4 (00,9 + 1) (b0, b

S

- f [ (v(z, t) pelz, t) — v,(z, t) qu,(x t)) dzdt =0. S (2.5)

Proof: Taking approximations v,° of v° sa.tlsfymg condltlons (Al), (A2) and v,°
— v® in C}(0, 1), we get the solutions’ correspondmg v,,(z, 0) = v,%(x) by Lemmas 1
and 2 with the estimates ! “

[va] = M, viel .= Clan o, e oL e (2.6)



46 GuAN ZHICHENG

Then, from (2.1), we have
0= ff v — ff v,,,,v,,', = ff Vhe — ¢ (Ungnt dt + v?az/2 dz)
Q

b(t)
| =ff 2+ 271 [ o2y, ) dz — 2 lf (v‘,’.,(x)) dz
Q 0

- 271 f v,,,(b(z), £) be) de + [3 lv,."(b(t), t) + 27 1v,,’(b(t), z)]|, .
N o ' LT L

- f [(vn +’ 1) vnz]|z=b(l) 5(¢)dt + 2"(v - 1)2 ©, t)lf)-'-

\.l

Usmg (2. 6), ‘we “obtain ||v,,,||1,-(o, 0. Therefore, theére exmts a subsequence of {v,.}
(still denoged by {v,}) such that vy —> v in CV2=e-¢(Q) (0 < & < 1/4), v € CY2 l/‘(Q)
Vns 2y v,, v,," — v,,, nt —'v; weakly in Lz(Q) Hence these yleld (2. 5) [ I .
Remark 4: From this lemma, we can follow the way in [2] and thus obta.'in:.the
results of [2]. -

Next we conmder the operator F as follows: For any b 6 E, by Lemma 2, we get
the solution'v of (APl), then' we set’ F(b(t)) =3 t), where S(t) = f (b(t), t) dt 1.

By virtue of Lemma 1 and ta,kmg an approprmte constant K we see that F:E—~E
and F is pre-compact and continuous. In fact, by 0 < u < M, choosmg K=M,
we hive 0 < S(t) _.v(b(t), t) <M, 50, F:E—E. . Moreover, . for any &, &, we ob-
serve’ -

oy e ’ . SEREEN N o

ls(tl)' — 8 = lv(b(to, t,) = v(b(m, 'zz)l S
2 S Ofb(t) = bta)] + Cs |ty — ] < (CoK + Ca) 1t = b,

By the Arzele Ascoli Theorem, Fis pre-comps,ct In order to prove the contmulty
of F, we consider b,, b, € E; their corresponding solutions to problem (APl) are v,
and v,. Suppose b, < b, in [0,¢,], and let w = v, — vz Then aettmg Ql = {(z, ¢):

0 <z < b), 0 <t <t} wsatisfies the system : )

(wl - w:z) (x’ ‘) =0 in Ql: .
w(z,0) =0, " —w,(0,4) + w(0,2) =0, R ¢ B
wz(bl(t)’ t) =[-»+ 1y — ”2z]|zéb;(f) .
In order to estimate the right-hand side of (3.1), we observe the following :
I:=[—(v,+ 1)v; — v;,] (bl(t)’ t)
= [—(”1 — v) (”1 + v + 1)] (bl(t): t)
+ [ (”2 + 1) v, + 03] (bl(‘ t) + (s + 1) v, + ”2:] (bz(t), t)
= (v, — v) (v, + v, + 1)] (b (®, t)
+ {[(2’02 + 1) v,.] (b*(1), ¢) = ve:(b(¢), t)} (02(8) — Ba(t),
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where ° e T © S

b*e) = b,(0) + 6*(b:(0) — By(1));” O =% B 1)
b() = by(t) + 0(b2(t) - bl(t)) ‘

From Lemma 1, we have |I| = C lwl + C,- |b,(t) - bz(t)l As in the proof of Lemma 1,
weget . -

ol < G, Iby(8) — by(®)lzo04y in By S X
Therefore
18,(t) — 82 t)| = |v1(b1(t), t) — vz(b,(z), z)| _
< |oi(81®), &) — wal(by(0), )| + |v,(b (t), t)— | b,(t), z)|
= G b)) = b()lzoooen SoTY(33)

Here we have used the estimate of Lemma 1 and (3.2). From the 'above ‘proof, we
see that (3.3) still holds as ¢, = 7, which shows that F is continuous. Employing
Schauder’s fixed point theorem, we conclude that F has a fixed point. Thus we proved

Theorem 1: Under the assumptions (A1) and (A2) the problem (P) has at least one
solution with the estimates of Lemma 1.

3. Uniqueness theorem. Concerning the uniqueness theorem, we have

Theorem 2: Under the assumptions (A1) and (A2), the problem (P) has at most one
solution with the estimates of Lemma 1.

Proof: Suppose that there are two solutions (v,, b,) and (v,, b,) to problem (P).
Let w = v, — v,. We assume that b, < b, in (0, ¢,) (¢, < T'). Then as in Section 2,
we get (3.2). But, by Lemma 1 and (3 2), we have

[By(t) — by(0)] < f |v2(B1(9), 4) — vo(Ba(v), 9)| dy
0
t

< [ |oa(oaw), 9) — vo(ulv), 9)| dy
0

t
+ f I”z(bl(y): y) - ”2(b2(?/)» y)l dy
0
]
< [ |w(b:(@), y)| dy + €t [B1(8) — by(t)] zooroury
0

= (Cx + Cz) 4 lbx(t) - bz(‘)ltwloll

Hence we obtain b,(t) = by(t) if ¢ < max (1/(C, + C;), t,). It is easy to see that the
above procedure can be continued to 7'
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