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Local monomialization of a system of first
integrals of Darboux type

André Belotto da Silva

Abstract. Given a real- or complex-analytic singular foliation θ with n
first integrals of meromorphic or Darboux type (f1, . . . , fn), we prove that
there exists a local monomialization of the first integrals. In particular,
if θ is generated by the n first integrals, we prove the existence of a local
reduction of singularities of θ to monomial singularities.

1. Introduction

The subject of this article is the reduction of singularities of singular foliations, a
classical problem which have interested mathematicians since the beginning of the
twentieth century [5]. The best results to date are valid only in low-dimensions;
e.g., resolution of singularities of foliations in dimension two (Bendixson and Sei-
denberg [5], [20]), and dimension three (Cano [12], Panazzolo [19] and McQuillan
and Pannazolo [17] – see also Cano, Roche and Spivakovsky [13]). In arbitrary
dimensions, Camacho, Cano and Sad [11] have proven resolution of singularities
of vector fields under the additional hypothesis that all singularities are abso-
lutely isolated. In this paper we are interested in providing a monomialization
of first integrals (of meromorphic or Darboux type). In particular, we provide a
local reduction of singularities of completely integrable foliations in arbitrary di-
mensions. One of the motivations of this problem is the study of pseudo-abelian
integrals [8], [18].

Let M be a complex- or real-analytic manifold (i.e., the base field K is R or C)
and let θ be an involutive singular distribution (i.e., a coherent sub sheaf of the
sheaf of vector fields over M , denoted by DerM , such that for each point p in M
the stalk θ · Op is closed under the Lie bracket operation). Note that θ generates
a singular foliation over M (by the Stefan–Sussmann theorem [21], [22]).

Denote by K a sub-field of K. We say that θ has n first integrals of K-Darboux
type (without an exponential factor) at a point p ∈ M if the foliation generated
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by θ is tangent to the leaves of n meromorphic 1-form germs

ωi :=
∑
j

ki,j
dgi,j
gi,j

, ki,j ∈ K and gi,j ∈ Op, for i = 1, . . . , n

such that ω1 ∧ · · · ∧ ωn �≡ 0. Equivalently, there exist n (complex multi-valued)

function germs fi =
∏
g
ki,j
i,j such that df1 ∧ · · · ∧ dfn �≡ 0 and ∂(fi) ≡ 0 for all

derivations ∂ in the stalk θ · Op.

Remark 1.1. In many references, Darboux first integrals (sometimes also called
“generalized Darboux” first integrals) have an exponential factor, that is, the first

integrals have the form f = exp
(
φ
ψ

)∏
g
kj
j , where φ and ψ are analytic germs

(compare [8], [16], [18]). In this work, we always assume that ψ = 1 (cf. [16]).

We address the following problem:

Problem 1.2. Suppose that θ has n first integrals of K-Darboux type at a point
p ∈ M . The problem consists in finding a bimeromorphic and proper morphism
σ : M̃ →M (and a simple normal crossing divisor Ẽ ⊂ M̃ such that σ is an isomor-

phism outside of Ẽ) such that the transform θ̃ of θ has n monomial first integrals

adapted to Ẽ. More precisely, at every point p in M̃ , there exist a coordinate system
x = (x1, . . . , xm) and n first integrals xα1 , . . . ,xαn , where xαi := x

αi,1

1 · · ·xαi,m
m ,

such that

1. supp Ẽ = {x1 · · ·xl = 0} for some l;

2. the multi-indices α1, . . . ,αn ∈ Km are linearly independent over K.

The above problem can be strengthened by asking that σ be a composite of
blowing-ups with smooth admissible centers (admissible means that each center of
blowing-up has only normal crossings with the exceptional divisor). In this case

we can write σ : (M̃, Ẽ) → (M,E), where Ẽ is the union of the strict transform
of E with the exceptional divisors of each blowing-up.

A positive solution of Problem 1.2 seems to have applications to pseudo-abelian
integrals, an important technique used to estimate the number of limit cycles which
bifurcate from a Darboux planar vector-field [8], [18]. It has been suggested in [9]
(and in a personal communication from Pavao Mardesic) that a positive answer to
Problem 1.2, mixed with the techniques from [8], [10], could lead to new results
about non-generic pseudo-abelian integrals.

In the present work we present a local reduction of first integrals (i.e., a local
solution of Problem 1.2). By local we mean that we accept admissible local blowing-
ups, i.e., the composition of an admissible blowing-up with an open immersion (e.g.,
a chart of a blowing-up). More precisely:

Theorem 1.3. Let M be a non-singular analytic manifold, E be a simple normal
crossing divisor on M , p be a point of M and θ be a singular distribution with n
first integrals of K-Darboux type (f1, . . . , fn) over p such that df1 ∧ · · · ∧ dfn �≡ 0.
Then there exists a finite collection of morphisms τi : (Mi, Ei) → (M,E) such that
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1) the morphism τi is a finite composition of admissible local blowing-ups;

2) there exists a compact set Ki ⊂ Mi such that
⋃
Φi(Ki) is a compact neigh-

borhood of p;

3) the strict transform θi of the singular distribution θ (by τi) has n monomial
first integrals adapted to Ei. Furthermore, if K = Q, then the n monomial
first integrals are analytic.

In other words, Problem 1.2 admits a positive solution by local blowing-ups.

Example 1.4. Consider the case when dimM = 3 and θ is generated by two
analytic first integrals f1 and f2. Then, Theorem 1.3 states that the singularities
of θ can be reduced to Q-monomial singularities (see Definition 3.1) which are
locally equal to one of the following three forms:

1. θ is generated by the regular vector field ∂x, i.e., (f1, f2) = (y, z).

2. θ is generated by the linear vector field α1y∂y − α2z∂z with the multi-index
(α1, α2) ∈ N2, i.e., (f1, f2) = (x, yα2zα1).

3. θ is generated by the linear vector field α1x∂x − α2y∂y − α3z∂z with the
multi-index (α1, α2, α3) ∈ N3, i.e., (f1, f2) = (xα2yα1 , xα3zα1).

1.1. Simultaneous resolution of singularities and monomialization of
morphisms

The originality of this result comes from the fact that Problem 1.2 does not follow
in an evident way from resolution of singularities of varieties (e.g., [6], [23]). For
the following discussion, let us assume that the n first integrals f1, . . . , fn of θ
are all analytic. In this case, one could try to solve Problem 1.2 by simultaneous
resolution of singularities, that is, by principalization of the ideal generated by
Πni=1fiΠi<j(fi − fj). At the end of the process, the pull-back of each germ fi is
locally given by a monomial in the exceptional divisor times a unit. But this is
not enough, as we can see in the following example.

Example 1.5. In a three dimensional manifold, consider the two first integrals

f1 = x2 + y2, f2 = x4 + y4 + y2z2 + z4

and the ideal I = f1f2(f1 − f2). After blowing up the origin, consider the origin
of the x-chart with coordinate system (x, y, z) = (u, uv, uw). In this chart,

f1 ◦ σ = u2(1 + v2), f2 ◦ σ = u4(1 + v4 + v2w2 + w4)

and the pulled-back ideal I∗ is principal. Nevertheless, we can not absorb the units
of f1 ◦σ and f2 ◦σ into the monomials u2 and u4 simultaneously. In particular, the
foliation generated by these first integrals is not topologically equivalent to one of
the three cases in Example 1.4.

To solve Problem 1.2, we need to “monomialize the sub-ring” (f1, . . . , fn) in-
stead of the ideal. In order to do so, we combine techniques developed for resolution
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of singularities subordinate to foliations [3] andmonomialization of morphisms [14].
It is worth mentioning that, if the first integrals are all analytic, then the pa-
per [15] of Cutkosky on local monomialization of analytic morphisms provides a
different proof.

1.2. Overview of the proof

The proof follows by induction on the leaf dimension of an auxiliary singular dis-
tribution ω. More precisely, in Subsection 2.4, we introduce the notion of foliated
K-Darboux data (M,ω,D, E), where ω is a singular distribution and D is given by
the (complex multi-valued) first integrals (f1, . . . , fn). The singular distribution ω
is an auxiliary singular distribution that contains θ and is K-monomial, i.e., it
(almost) satisfies the thesis of Problem 1.2 (see Definition 3.1 and Lemma 3.4).
In particular, if the codimension of ω is n, then ω (and consequently θ) have n
monomial first integrals. Furthermore, if K ⊂ R, we make extra blowing-ups in
order to guarantee that the monomial first integrals do not have poles (Lemma 3.6).

In order to decrease the leaf dimension of ω, we prove the existence of a “mono-
mialization” of (a codimension one foliation associated to) D which preserves the
class of monomial singularities of ω (Theorem 6.1). More precisely, apart from lo-
cal blowing-ups, we can assume that there exists f ∈ D such that f is a monomial
which is not a first integral of ω (see Lemma 6.2). This allows us to construct a
new foliated Darboux data (M,ω′,D, E) where, at each point p ∈M , the stalk ω′

p

is given by {∂ ∈ ω; ∂(f) ≡ 0}. The codimension of ω′ is strictly bigger than the
codimension of ω and, moreover, we prove that ω′ is also a K-monomial singular
distribution (Lemma 6.2). So, we start with ω = DerM (− logE) and we repeat
the process until the codimension of ω is n (see details in Section 6).

The proof of Theorem 6.1 is technically the hardest part of the paper. As
a first step, we need to guarantee that the transform of ω under the necessary
blowing-ups is going to be K-monomial. This is not true if we are not careful with
the blowing-ups we perform:

Example 1.6. Consider a three dimensional regular variety and the singular dis-
tribution ω = (∂x + x∂z), which is a regular (and, therefore, monomial) singular
distribution. Let us consider the blowing-up with center C = V (y, z). In the y-chart
(x, y, z) = (u, v, vw), the transform of ω is generated by v∂u + u∂w. Note that the
linear part of this vector field is nilpotent and, therefore, the strict transform of ω
is not monomial (nor log-canonical).

The example suggests that we may want to impose some restriction to the cen-
ters of blowing-up. More precisely, in Section 4, we recall the notion of ω-admissible
blowing-ups (see Definition 4.1), which was first introduced in [3], [4]. This kind of
blowing-ups preserve the class of K-monomial singularities (Proposition 4.2). Fur-
ther results about ω-admissible blowing-ups which are necessary (Proposition 4.2
and Theorems 4.4 and 4.5) are enunciated in Section 4 and, for shortness, we refer
to [3] for their proofs. Finally, we only need to find a “monomialization” of (a
codimension one foliation associated to) D by ω-admissible blowing-ups in order
to prove Theorem 6.1.
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The proof of Theorem 6.1 now follows by induction on an invariant ν associated
with a foliated Darboux data (see Definition 5.2). The induction has three main
steps (as in [2], [3], cf. [14]) which are presented in details in Section 7 and proved
in Sections 8, 9 and 10. Technically, the main difficulty is that the invariant ν has
no surface of maximal contact associated to it, i.e., we can not use the standard
ideas of Hironaka in order to argue by induction on the dimension of M . In order
to deal with this issue, we blow up centers which are not necessarily contained
in the maximal locus of ν (as in [3], [14]). This allows us to emulate the exis-
tence of a surface of maximal contact and to control the transforms of the foliated
Darboux data. Nevertheless, we need to choose an special direction at each step,
which means that the algorithm is only local instead of global. Finally, it is worth
remarking that one can globalize the algorithm in dimension three (cf. [2], [14]).

2. Notation and background

2.1. Singular distributions

Let DerM denote the sheaf of analytic vector fields on M , i.e., the sheaf of an-
alytic sections of TM . An involutive singular distribution is a coherent sub-
sheaf ω of DerM such that, for each point p in M , the stalk ωp := ω · Op is
closed under the Lie bracket operation. Consider the quotient sheaf Q = DerM /ω.
The singular set of ω is defined by the closed analytic subset S(ω) = {p ∈M :
Qp is not a free Op module}. A singular distribution ω is called regular if S(ω)= ∅.
OnM \S(ω) there exists an unique analytic subbundle L of TM |M\S(ω) such that ω
is the sheaf of analytic sections of L. We assume that the dimension of the K vector
space Lp is the same for all points p in M \S (this always holds ifM is connected).
It is called the leaf dimension of ω and it is denoted by d. In this case ω is called
an involutive d-singular distribution.

Let DerM (− logE) denote the coherent subsheaf of DerM given by all deriva-
tions tangent to E, i.e., for each point p ∈M , a derivation ∂ is in DerM (− logE)·Op

if and only if ∂[IE ] ⊂ IE , where IE is the reduced ideal sheaf whose support is E.
A singular distribution ω which is also a sub sheaf of DerM (− logE) is said to be
tangent to E.

2.2. Local blowing-ups and complete collection of local blowing-ups

A blowing-up σ : M̃ → M is said to be admissible if the center of blowing-
up C has normal crossings with E. In this case, we denote the blowing-up by
σ : (M̃, Ẽ) → (M,E), where Ẽ is the union of the inverse-image of E with the
exceptional divisor F of the blowing-up.

An admissible local blowing-up τ : (M̃, Ẽ) → (M,E) is the composition of an
admissible blowing-up with an open immersion (e.g., a chart of the blowing-up).
A sequence of local blowing-ups is a sequence of morphisms

(Mr, Er) · · · (M0, E0)
τr τ1
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where each morphism is an admissible local blowing-up. A complete collection
of local blowing-ups τi at a point p ∈ M is a finite collection of morphisms
τi : (Mi, Ei) → (M,E) such that

1) the morphism τi is a finite composition of admissible local blowing-ups,

2) there exist compact sets Ki ⊂Mi such that
⋃
τi(Ki) is a compact neighbor-

hood of p.

2.3. Blowing-up of a singular distributions

A foliated manifold is the triple (M,ω,E) where M is a real- or complex-analytic
regular manifold, E is a simple normal crossing divisor (i.e., an ordered collection
E = (E(1), . . . , E(l)), where each E(i) is a smooth divisor on M such that

∑
iE

(i)

is a reduced divisor with simple normal crossings) and ω is an involutive singular
distribution tangent to E (i.e., ω ⊂ DerM (− logE)).

Given an admissible blowing-up σ : (M̃, Ẽ) → (M,E), we denote by ω̃ the in-

tersection of the transform of ω with Der
M̃
(− log Ẽ). In particular, this guarantees

that (M̃, ω̃, Ẽ) is a foliated ideal sheaf and we can write σ : (M̃, ω̃, Ẽ) → (M,ω,E).

2.4. Foliated Darboux-data

We recall that the base field K = R or C. Let K be a subfield of K.

Definition 2.1. A foliated K-Darboux data is a quadruple (M,ω,D, E), where D
is a fixed collection of n complex multi-valued functions (f1, . . . , fn) of K-Darboux
type, that is

fi =
∏
j

g
ki,j
i,j , ki,j ∈ K and gi,j ∈ Op, for i = 1, . . . , n

(see Remark 1.1), globally defined on M , and such that df1 ∧ · · · ∧ dfn �≡ 0.

A foliated K-Darboux data (M,ω,D, E) is said to be trivial at a point p if all
functions fi in D are first integrals of ω, i.e., ∂(fi) ≡ 0 for all ∂ ∈ ωp.

Given an admissible blowing-up σ : (M̃, ω̃, Ẽ) → (M,ω,E), we denote by D̃

the total transform of D, i.e., D̃ = σ∗D = (f1 ◦ σ, . . . , fn ◦ σ). In particular,

this guarantees that (M̃, ω̃, D̃, Ẽ) is a foliated K-Darboux data and we can write

σ : (M̃, ω̃, D̃, Ẽ) → (M,ω,D, E).

2.5. Compact notation

In Sections 3 and 10 it will be convenient to have a compact notation for denoting a
collection of monomials. To this end, let u be a collection of k functions (u1, . . . , uk)
and let A be a t× k matrix,

A =

⎡⎢⎣α1

...
αt

⎤⎥⎦ =

⎡⎢⎣α1,1 . . . α1,k

...
. . .

...
αt,1 . . . αt,k

⎤⎥⎦ .
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We define

uA :=

⎡⎢⎣u
α1

...
uαt

⎤⎥⎦ =

⎡⎢⎣u
α1,1

1 · · ·uα1,k

k
...

u
αt,1

1 · · ·uαt,k

k

⎤⎥⎦ .
Lemma 2.2. Let u = (u1, . . . , uk) and x = (x1, . . . xr) be two collections of func-
tions such that u = xB for some k × r matrix B. Then, for any t× k matrix A,
we have that uA = xAB.

Proof. Indeed, let βi be the line vectors of B, i.e., B =

[
β1...
βk

]
. Note that by

definition ui = xβi , which implies that

uA =

⎡⎢⎣u
α1,1

1 · · ·uα1,k

k
...

u
αt,1

1 · · ·uαt,k

k

⎤⎥⎦ =

⎡⎢⎣x
α1,1β1 · · ·xα1,kβk

...
xαt,1β1 · · ·xαt,kβk

⎤⎥⎦ =

⎡⎢⎢⎣
Πri=1x

∑k
j=1 α1,j βj,i

i
...

Πri=1x
∑k

j=1 αt,j βj,i

i

⎤⎥⎥⎦ = xC,

where

C =

⎡⎢⎢⎣
∑k
j=1 α1,j βj,1 . . .

∑k
j=1 α1,j βj,r

...
. . .

...∑k
j=1 αt,j βj,1 . . .

∑k
j=1 αt,j βj,r

⎤⎥⎥⎦ ,
which is equal to AB. �

3. Monomial singular distribution

Let K be a subfield of K.

Definition 3.1 (Monomial singular distribution). Given a foliated manifold
(M,ω,E), we say that the singular distribution ω is K-monomial at a point p
if there exist a set of generators {∂1, . . . , ∂d} of ω · Op and a coordinate system
(u,w) = (u1, . . . , ur, wr+1, . . . , wm) centered at p such that:

(i) Locally E = {u1 · · ·ul = 0}, for some l ≤ r.

(ii) The vector fields ∂i are of the form

∂i =
r∑
j=1

αi,juj∂uj, i = 1, . . . , s := d+ r −m, and

∂i = ∂wr−s+i, i = s+ 1, . . . , d,

where αi,j ∈ K and s is the number of vector fields in {∂1, . . . , ∂d} which are
singular.

(iii) If ω′ ⊂ DerM (− logE) is an involutive d-singular distribution such that ω ⊂
ω′, then ω = ω′.
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In this case, we say that (u,w) is a monomial coordinate system and that
{∂1, . . . , ∂d} is a monomial basis of ωp.

Remark 3.2 (Geometrical interpretation of (iii)). Assuming conditions (i)–(ii)
above, property (iii) implies that the singularity set of ω is of codimension at least
two outside of the exceptional divisor E.

Notation 3.3 (Monomial coordinate system). We sometimes need to distinguish
one of the non-exceptional coordinates w. To this end, we denote by (u, v,w) =
(u1, . . . , ur, v, wr+2, . . . , wm) a monomial coordinate system where the vector field ∂v
is always assumed to be contained in ωp.

The importance of this class of singular distributions for our propose is enlight-
ened by the following result.

Lemma 3.4 (Monomial first integrals). Given a foliated manifold (M,ω,E), the
singular distribution ω is K-monomial if and only if, for any monomial coordinate
system (u,w) = (u1, . . . , ur, wr+1, . . . wm) centered at p, there exist m−d (complex
multi-valued) monomials uB = (uβ1 , . . . ,uβm−d), where the matrix B has maximal
rank and entries in K, such that

ωp = {∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for all i}.

In this case, we call uB a complete system of first integrals.

Proof. First, let us assume that ω is a K-monomial singular distribution and let
us fix a point p in M and a monomial coordinate system (u,w). Note that if f
is a first integral of ω, then it can not depend on any coordinate w, since all the
derivations ∂wi are contained in the stalk ωp. So, consider a monomial uβ and let
us remark that

∂i(u
β) ≡ uβ

r∑
j=1

αi,j βi for i = 1, . . . , s, and

∂i(u
β) ≡ 0 otherwise.

So, the monomial uβ is a first integral of ω if and only if

(3.1)

r∑
j=1

αi,j βi = 0 for i = 1, . . . , s.

Thus, there exists a r − s = r − (d + r − m) = m − d linear subspace L of Kr
that contains all vector β satisfying the equations (3.1). In particular, we can
choose a system of generators {β1, . . . ,βm−d} of L. So, the m − d monomials
uB = (uβ1 , . . . ,uβm−d) are first integrals of ω, and

ωp ⊂ {∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for all i ≤ m− d}.
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By the maximal condition (iii), we conclude that both singular distributions are
equal. Now, let ω be a singular distribution whose stalk at p is given by

{∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for all i ≤ m− d},

and let us prove that ω is a K-monomial singular distribution. First, the vector
fields ∂i = ∂wr−s+i for i = s + 1, . . . , d are all contained in ω. So, consider a
vector-field of the form ∂ =

∑r
j=1 αjuj∂uj and let us note that

∂(uβi) = uβi

( r∑
j=1

αj βi,j

)
.

Since ∂ is tangent to E, it belongs to ω if and only if

(3.2)

r∑
j=1

αj βi,j = 0 for i = 1, . . . ,m− d.

Consider the r − (m − d) = d + r −m = s linear subspace L of Kr that contains
all vectors α satisfying the equations (3.2). In particular, fix system of generators
{α1, . . . ,αs} of L and let ∂i =

∑r
j=1 αi,juj∂uj , which are vector fields contained

in ωp. We now just need to prove that {∂1, . . . , ∂d} generates ωp. Indeed, let
∂ =

∑r
j=1 Aj∂uj +

∑m
j=r+1Bj∂wj be an analytic vector-field contained in ωp. Then

∂(uβi) ≡ 0 =⇒ uβi

r∑
j=1

βi,j
Aj
uj

≡ 0,

which implies that the formal vector field ∂̂ is contained in the formal distribution
generated by {∂̂1, . . . , ∂̂d}, i.e.,

∂̂ =

s∑
i=1

Ĉi ∂̂i +

d∑
i=s+1

B̂i ∂̂i

for some power series Ĉi. Now, let γi be a multi-index in Kr such that ∂i(u
γi) =

uγi and ∂j(u
γi) = 0 if j �= i. Then

∂̂(uγi) = Ĉi u
γi ,

which implies that ∂(uγi) = uγiCi, where Ci has the same formal expression of Ĉi
and is analytic. We conclude that ∂ =

∑s
i=1 Ci∂i +

∑d
i=s+1 Bi∂i, which finishes

the proof. �

We now turn to two more important results in of monomial singular distribu-
tions:
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Lemma 3.5 (Openness of monomiality). The K-monomiality is an open condition,
i.e., if ω is K-monomial at p in M , then there exists an open neighborhood U
of p such that ω is K-monomial at every point q in U . Moreover, if (u,w) is a
coordinate system defined in a connected open neighborhood V which is monomial
at p, then ω is K-monomial everywhere in V .

Proof. For a proof coming directly from the definition, see Lemma 2.2.1 in [4] or
Lemma 3.6 in [3]. Here, we present a different proof (using Lemma 3.4) whose
reasoning is useful for the current paper (see Lemma 10.2).

Fix a monomial coordinate system (u,w) = (u1, . . . , ur, wr+1, . . . , wm) centered
at p which is defined in a connected neighborhood U of p. Since ω is K-monomial,
by Lemma 3.4, there exist m− d monomials uB = (uβ1 , . . . ,uβm−d) such that

ωp = {∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for i ≤ m− d},
where βi ∈ Kr. So, fix a point q ∈ U and let (ξ, ζ) be its coordinate in the
coordinate system (u,w). After re-indexing, if necessary, we can assume that
ξ = (0, . . . , 0, ξt+1, . . . , ξk) for some t ≤ k. Further, in the real case we can
assume that ξi < 0 by considering the changes xi = −xi (and the respective
change in first integral). Consider the coordinate system (x,y,v) = (x1, . . . , xt,
yt+1, . . . , yr, vr+1, . . . vm), where

xi = ui , yi = ui − ξi , vi = wi − ζi,

which is a coordinate system centered at q. We can now write

uB = xB1(y − ξ)B2 ,

where B1 is a r × t matrix and B2 is a r × (m− d− t) matrix such that

B =
[
B1 B2

]
.

Furthermore, apart from re-ordering the lines of the matrix B, we can further write

B =

[
B′

1 B′
2

B′′
1 B′′

2

]
,

where B1 =
[
B′

1

B′′
1

]
and the rank of B′

1 is maximal and equal to the rank of B1. So,

there exists a change of coordinates (x(1),y(1),v(1)) such that

uB = x(1)
C1(y(1) − ξ)C2 ,

where

C =
[
C1 C2

]
=

[
C′

1 C′
2

C′′
1 C′′

2

]
=

[
B′

1 0
B′′

1 Λ

]
,

and where Λ is a maximal rank matrix with entries in K. This implies that the
collection (x(1)

B′
1 ,x(1)

B′′
1 (y(1)−ξ)Λ) is a collection of first integrals of ωq. Since B

′
1

has rank equal to B1, we conclude that

(x(1)
B′

1 , (y(1) − ξ)Λ)
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is another collection of first integrals of ωq. Furthermore, since Λ is of maximal
rank, there exists a coordinate system (x(2),y(2), zzz(2),v(2)), where x(2) = x(1) and
v(2) = v(1), such that

(y(1) − ξ)Λ = y(2) − ξ(2),

which finally implies that the monomial functions

(x(1)
B′

1 ,y(2))

are first integrals of ωq. By the analyticity of ω and Lemma 3.4, we conclude that
the singular distribution ωq is monomial. Since q is an arbitrary point in U , we
conclude that the monomiality property is open. �

Lemma 3.6.Let (M,ω,E) be a foliated manifold where ω is Q-monomial at point p.
Then there exist an open neighborhood U of p and a sequence of admissible blowing-
ups τ : (Ũ , ω̃, Ẽ) → (M,ω,E) such that, at every point q in the pre-image of p, there
exist a monomial coordinate system (u,w) = (u1, . . . , ur, wr+1, . . . wm) centered
at q and m − d analytic monomials uB = (uβ1 , . . . ,uβm−d), where the matrix B
has maximal rank and entries in N, such that

ωp = {∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for all i }

In this case, we call uB a complete system of analytic first integrals.

Proof. Fix a monomial coordinate system (u,w) = (u1, . . . , ur, wr+1, . . . , wm) cen-
tered at p which is defined in a connected neighborhood U of p. Since ω is Q-
monomial, by Lemma 3.4, there exist m − d monomials uB = (uβ1 , . . . ,uβm−d)
such that

ω · Op = {∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for i ≤ m− d },

and apart from taking a multiple of the multi-indices βi, we can assume that
βi ∈ Zr. So, we conclude that there exist two multi-indices δi and γi in Nr such
that βi = δi − γi. Consider the ideal I generated by

I = (uδiuγi(uδi − uγi)),

and let τ : (Ũ , ω̃, Ẽ) → (M,ω,E) be a principalization of I, where U is a sufficiently
small neighborhood of p where I is well-defined. The sequence of blowing-ups τ
may be chosen to be combinatorial in respect to the exceptional divisor F :=
{Πri=1ui}, i.e., τ is a composition of blowing-ups with centers that are strata of the

divisor F and its total transforms. So, we can cover the Ũ by affine charts with a
coordinate system (x,w) centered at a point q such that

u = xA, where A =

⎡⎢⎣a1,1 . . . a1,r
...

. . .
...

ar,1 . . . ar,r

⎤⎥⎦ .
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By Lemma 2.2, uB = xAB and ω is Q-monomial at q. Furthermore, since τ∗(I)
is principal, we conclude that either xAβi or x−Aβi is analytic, which implies we
can choose analytic monomial first integrals of ω̃ · Oq (i.e., without poles). Now,
by Lemma 3.5 and the analiticity of the first integrals, we conclude that we can
choose analytic monomial first integrals of ω̃ at any point in the pre-image of p. �

4. ω-admissible blowing-ups

Given an ideal sheaf I, we consider ideal sheaves Γω,k(I), which we call generalized
k-Fitting ideals, whose stalks at each point p in M are generated by all terms of
the form

det

∥∥∥∥∥∥∥
∂1(f1) · · · ∂1(fk)

...
. . .

...
∂k(f1) · · · ∂k(fk)

∥∥∥∥∥∥∥
for ∂i ∈ ω · Op and fj ∈ I · Op.

Definition 4.1 (ω-admissible blowing-up). We say that an admissible blowing-up

σ : (M̃, ω̃, Ẽ) → (M,ω,E) is ω-admissible if there exists d0 ∈ N such that:

1) the generalized k-Fitting ideal Γω,k(IC) is equal to OM for k ≤ d0,

2) the ideal Γω,k(IC) + IC is equal to IC for k > d0,

where IC is the reduced ideal sheaf whose support is the center of the blowing-up.
We say that the blowing-up is ω-invariant, moreover, if d0 = 0.

The following result enlightens the interest of ω-admissible blowing-ups.

Proposition 4.2 (Theorem 4.1.1 in [4] or Proposition 4.4 in [3]). Let (M,ω,E) be

a K-monomial foliated manifold and σ : (M̃, ω̃, Ẽ) → (M,ω,E) be a ω-admissible
blowing-up. Then ω̃ is also K-monomial.

Before continuing, let us present some examples in order to illustrate Defini-
tion 4.1.

Example 4.3. We present four examples:

1. If the center C is ω-invariant center (i.e., if all leaves of ω that intersects C
are contained in C), the blowing-up is ω-admissible.

2. If the center C is an admissible ω-totally transverse (i.e., all vector fields in ω
are transverse to C), the blowing-up is ω-admissible.

3. Let M = C3 and let ω be generated by {∂x, ∂y}. A blowing-up with center
C = {x = 0, z = 0} is ω-admissible since Γω,1(IC) = OM and Γω,2(IC) ⊂ IC .

4. Let M = C3 and let ω be generated by {∂x, ∂y}. A blowing-up with center
C = {x2 − z = 0, y = 0} is not ω-admissible since Γω,2(IC) = (x, y, z).
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4.1. Foliated ideal sheaves and ω-admissible resolution of singularities

A foliated ideal sheaf is a quadruple (M,ω, I, E) where I is a coherent and every-

where non-zero ideal sheaf of OM . Given an admissible blowing-up τ : (M̃, ω̃, Ẽ) →
(M,ω,E), we define the transform Ĩ of I as the total transform I · O

M̃
.

We present two results which can be found in [3] based on the notion of ω-
admissible blowing-ups. Both results are important technical steps for this work.

Theorem 4.4 (ω-invariant resolution of ideal. Theorem 4.1.1 in [4] or Lemma 7.1
in [3]). Let (M,ω, I, E) be a foliated ideal sheaf and M0 a relatively compact open
set of M . Suppose that I0 := I · OM0 is invariant by ω0 := ω · OM0 , i.e., ω0[I0]
⊂ I0. Then, there exists a sequence of ω-admissible blowing-ups:

(M̃, ω̃, Ĩ, Ẽ) = (Mr, ωr, Ir, Er) · · · (M0, ω0, I0, E0)
σr σ1

such that Ĩ is principal with support contained in Ẽ. In particular, if ω is K-
monomial, then ω̃ is K-monomial.

Theorem 4.5 (ω-resolution of ideal, Theorem 1.3 in [3]). Let (M,ω, I, E) be
a foliated ideal sheaf. Then, for every point p in M , there exists a ω-admissible
complete collection of local blowing-ups (i.e., all local blowing-ups are ω-admissible,
see Section 2.2)

τi : (Mi, ωi, Ii, Ei) → (M,ω, I, E)

such that the ideal sheaf Ii is a principal ideal sheaf with support contained in Ei.
In particular, if ω is K-monomial, then ωi is K-monomial.

5. Main invariant of a foliated Darboux data

A foliated K-Darboux data (M,ω,D, E) will be called a K-monomial foliated Dar-
boux data if ω is K-monomial. We start by simplifying the expressions of the first
integrals via resolution of singularities.

Lemma 5.1. Let (M,ω,D, E) be a K-monomial foliated Darboux data and con-
sider monomial coordinate systems (u,w) of p. Then, by a complete collection of
local ω-admissible blowing-ups, we can reduce to the case that there exist multi-
indices δi with entries in K such that

(5.1) fi = gi + uδiTi,

where gi are first integrals of ω; the function Ti are analytic; and all monomials
in the Taylor expansion of uδiTi are not first integrals of ω.

Proof. This result will follow from simultaneous ω-admissible resolution of singu-

larities. Indeed, by assumption fi =
∏
j g

ki,j
i,j , where gi,j are analytic functions and

ki,j ∈ K. Consider the ideal

I =
(∏
i,j

gi,j

)
,
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which is locally defined in some open set U of p. By Theorem 4.5, there exists a ω-
admissible complete collection of local blowing-ups τl : (Ul, ωl, Il, El) → (U, ω, I, E)
which principalize I. In particular,

τ∗l (gi,j) = uγi,j,l Ui,j,l,

where γi,j,l is a multi-index with entries in Q and Ui,j,l is an analytic unit. There-
fore,

τ∗l (fi) = uδi,l Ui,l,

where δi,l =
∑

j ki,j γi,j,l and Ui,l =
∏
U
ki,j
i,j,l is an analytic function. Since Ui,l is

analytic, we can use its Taylor expansion in order to get

τ∗l (fi) = gi,l + uδi,l Ti,l

where gi,l are first integrals of ωl and all monomials in the Taylor expansion of
uδiTi,l are not first integrals of ω. �

Definition 5.2 (Main invariant). Let (M,ω,D, E) be a K-monomial foliated Dar-
boux data. We will say that ν(p, ω,D) = ∞ if (5.1) is not satisfied. Otherwise, we
consider the coordinate dependent function

ν(p, ω,D, (u,w)) := min{|λ| : ∂λw Ti is a unit},

where we assume that ∂λw is the identity if w is empty, and ν(p) = ∞ if there are
no λ such that ∂λw Ti is a unit. We define the tangency order of (M,ω,D, E) by

ν(p, ω,D) := min{ν(p, ω,D, (u,w)) : for all (u,w)}.

When there is no risk of confusion, we simply denote ν(p, ω,D) by ν(p).

In what follows, we consider ν as the main invariant. Note that this invariant
is upper semi-continuous in M (since the Ti’s are analytic). We now present a
normal form which will be used in the remainder of the paper, in part so to fix
notation that will be used in the following sections.

Lemma 5.3 (Weierstrass–Tschirnhausen normal form). Let p be a point of M
where the invariant ν = ν(p, ω,D) is finite and bigger than one, i.e., 1 < ν < ∞.
Then there exists a monomial coordinate system (u, v,w) = (u1, . . . , ur, v, wr+2,
. . . , wm) at p such that the functions Ti are given by

(5.2)

T1 = vν U +

ν−2∑
j=0

a1,j(u,w) vj , where U is an unit, and

Ti = vν T̄i +

ν−1∑
j=0

ai,j(u,w) vj ,

and the vector-field ∂v belongs to ωp.
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Proof. Since the invariant is finite, there exists a coordinate system (u, v,w) of p
such that the vector-field ∂v belongs to ωp and, apart from re-indexing, the function
∂νvνT1 is a unit. Furthermore, by the implicit function theorem, there is a change
of coordinates (ũ, ṽ, w̃) = (u, V (u, v,w),w) such that ∂ν−1

ṽν−1T1(ũ, 0, w̃) ≡ 0. Thus,

T1 = ṽ ν U +

ν−2∑
j=0

ṽ j a1,j(ũ, w̃), where U is an unit, and

Ti = ṽ ν T̄i +
ν−1∑
j=0

ṽ j ai,j(ũ, w̃).

Finally, since ũ = u and w̃ = w, we have that ∂v = U∂ṽ for some unit U . This
implies that ∂ṽ is contained in ωp, which proves the lemma. �

6. Proof of Theorem 1.3

The main result of this work follows from the following (technical) theorem.

Theorem 6.1. Let (M,ω,D, E) be a non-trivial K-monomial Darboux data. Then,
for each point p in M , there exists a ω-admissible complete collection of local
blowing-ups τi : (Mi, ωi,Di, Ei) → (M,ω,D, E) such that, for every point qi in the
pre-image of p, the invariant ν(qi, ωi,Di) is zero or one.

The proof of this result follows from three main steps. We will present these
steps in Section 7 and we prove them in Sections 8, 9 and 10. In the rest of this
section we use this result to prove Theorem 1.3. We start by showing why the
result is useful.

Lemma 6.2 (Invariant zero or one). Let (M,ω,D, E) be a K-monomial foliated
Darboux data and p a point of M where the invariant ν(p, ω,D) is 0 or 1. Then,
there exist an index i0 and a monomial coordinate system (u,w)= (u1, . . . , ur,
wr+1, . . . , wm) such that

fi0 = gi0 + uδi0wεm,

where we recall that gi0 is a first integral of ω and uδi0wεm is not a first integral (see
equation (5.1)). Moreover, the constant ε = ν ∈ {0, 1}. In particular, the foliated
Darboux-data (M,ω,D, E) given by ωp = {∂ ∈ ωp; ∂(fi0) ≡ 0} is K-monomial.

Proof. Fix a monomial system of coordinates (u,w) and recall that, by Lemma 3.4,
there exists a complete system of first integrals uB = (uβ1 , . . . ,uβm−d) of ω.
We now consider the cases where ν(p) is zero and one separately.

First, assume that ν(p) = 0 (this is the case when ε = 0). Without loss of
generality, we can assume that T1 is a unit. By the definition of the functions Ti,
the multi-index δ1 has to be linearly independent with all the multi-indices βi.
Thus, apart from a change of coordinates (which preserves all monomials), we
can assume that T1 = 1 . So, the singular distribution ω = {∂ ∈ ω; ∂(f1) ≡ 0}



982 A. Belotto

has a complete system of first integrals given by (uB,uδ1), which implies that it
is K-monomial.

Now, assume that ν(p) = 1 (this is the case when ε = 1). In this case, there
exists a coordinate system (u, v,w) such that ∂vT1 is a unit. So, apart from a
change of coordinates in the v coordinate, we can assume that T1 = v. Thus,
the singular distribution ω = {∂ ∈ ω; ∂(f1) ≡ 0} has a complete system of first
integrals given by (uB,uδ1v), which implies that it is K-monomial. �

6.1. Proof of Theorem 1.3 (assuming Theorem 6.1)

Fixed the point p, recall that there exist n first integrals (f1, . . . , fn) of θ such that

df1 ∧ · · · ∧ dfn �= 0.

Let us consider a K-monomial m-foliated Darboux data (M,ω(0),D, E), where ω(0)

is the monomial singular distribution DerM (− logE), i.e., the sheaf of derivations
of M tangent to E.

In this case, let us note that the singular distribution θ ∩ DerM (− logE) is
obviously contained in ω(0). The proof follows from a recursive argument.

Claim 6.3. Let θ be a singular distribution with n first integrals (f1, . . . , fn) and
let (M,ω(k),D, E) be a K-monomial (m−k)-foliated Darboux data with k < n such
that

• D is given by the n first integrals (f1, . . . , fn) of θ,

• apart from re-indexing the functions (f1, . . . , fn), the singular distribution
ω(k) is equal to {∂ ∈ DerM (− logE); ∂(fi) ≡ 0 for all i ≤ k}. In particular,
θ ∩DerM (− logE) ⊂ ω(k).

Then, for every point q in M , there exists a collection of ω(k)-admissible local
blowing-ups

Φi : (Mi, ωi(k),Di, Ei) → (M,ω(k),D, E)

such that, for each point qi in the pre-image of q, there exists a K-monomial
[m− (k+1)]-foliated Darboux data (Mi, ωi(k+1),Di, Ei) that satisfies the properties
above with respect to the strict transform θi, i.e.,

• Di is given by the n first integrals τ∗i (f1, . . . , fn) = (f∗
1 , . . . , f

∗
n) of θi,

• apart from re-indexing the functions (f∗
1 , . . . , f

∗
n), the singular distribution

ω(k+1) is equal to {∂ ∈ DerMi(− logEi); ∂(f
∗
i ) ≡ 0 for all i ≤ k + 1}. In

particular, θ ∩DerMi(− logEi) ⊂ ωi(k+1).

Proof. Indeed, since df1∧· · ·∧dfn �= 0 and k < n, the K-monomial foliated Darboux
data (M,ω(k),D, E) is non-trivial. Thus, by Theorem 6.1 there exists a collection
of ω(k)-admissible local blowing-ups

Φi : (Mi, ωi(k),Di, Ei) → (M,ω(k),D, E)
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such that, for every point qi in the pre-image of q, the invariant ν(qi, ωi(k),Di) is
either zero or one. So, by Lemma 6.2 there exists a K-monomial (m−k−1)-foliated
Darboux data (Mi, ωi(k+1),Di, Ei) where

ωi(k+1) · Oqi = {∂ ∈ ωi(k) · Oqi ; ∂(f
∗
i0) ≡ 0}

for some index i0 > k. So, by the compacity of the pre-image of q and Lemma 3.5,
after shrinking Mi if necessary, we can suppose that the singular distribution ωi(k)
is K-monomial everywhere in Mi and is independent of the point qi. So, apart
from re-indexing, we conclude that

ωi(k+1) = {∂ ∈ ωi(k); ∂(f
∗
k+1) ≡ 0}

= {∂ ∈ DerMi(− logEi); ∂(f
∗
i ) ≡ 0 for all i ≤ k + 1},

which proves the claim. �

So, we can recursively use the claim over (M,ω(0),D, E) in order to get a
complete collection of local blowing-ups

Φi : (Mi,Di, Ei) → (M,D, E)

where, for each point qi in the pre-image of p, there exists a trivial K-monomial
(m− n)-foliated Darboux data (Mi, ω(m−n),Di, Ei) such that

ω(m−n) = {∂ ∈ DerUi(− logE); ∂(f∗
i ) ≡ 0 for all i ≤ n}.

Note that the strict transform θi of θ has first integrals in Di, which implies that
θi ∩ DerUi(− logEi) ⊂ ω(m−n). Now, by Lemma 3.4, given a point qi in Ui there
exist a monomial coordinate system (u,w) centered at qi and n-monomial first
integrals uB = (uβ1 , . . . ,uβn) of ω(m−n).Oqi , where B is of maximal rank with
coefficients in K. Since θi ∩ DerUi(− logEi) ⊂ ω(m−n), the monomials uB =
(uβ1 , . . . ,uβn) are also first integrals of θi as we wanted to prove. Finally, if
K = Q, apart from applying Lemma 3.6, we can assume that B has coefficients
in s N (instead of Q), which finishes the proof.

7. Theorem 6.1: Overview of the proof

In the remainder of the article, we prove Theorem 6.1. We will make the invariant ν
of (M,ω,D, E) decrease by a sequence of ω-admissible local blowing-ups which, by
Proposition 4.2, preserve the K-monomiality of the singular distribution ω. Our
proof of Theorem 6.1 has three main steps (as in [2], [3]).

Step 1. Reduction of ν to a finite value.

The following proposition will be proved in Section 8.
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Proposition 7.1 (Reduction to a finite invariant). Let (M,ω,D, E) be a non-
trivial K-monomial foliated Darboux data and p a point where the invariant ν :=
ν(p, ω,D) = ∞. Then, there exists a ω-admissible complete collection of local
blowing-ups τi : (Mi, ωi,Di, Ei) → (M,ω,D, E) such that, for every point qi in the
pre-image of p, the invariant ν is finite, i.e., ν(qi, ωi,Di) <∞ .

The proof of this result is a consequence of Theorem 4.4. Note that a point
where the invariant is finite satisfies the conclusion of Lemma 5.3. In this case we
will say that (M,ω,D, E) is in Weierstrass–Tschirnhausen form at p.

Step 2. Reduction to prepared normal form.

The following proposition will be proved in Section 9.

Proposition 7.2 (Preparation). Let p be a point of M where the invariant ν =
ν(p, ω,D) is finite and bigger than one, i.e., 1 < ν <∞. Furthermore, suppose that
Theorem 6.1 is valid for any K-monomial Darboux data (N,ω′,S, F ) with dim N <
dim M . Then, there exists a ω-admissible complete collection of local blowing-ups
τi : (Mi, ωi,Di, Ei) → (M,ω,D, E) such that, for every point qi in the pre-image
of p, the foliated Darboux data (Mi, ωi,Di, Ei) has the Weierstrass–Tschirnhausen
form of Lemma 5.3 (with coordinate system (u, v,w)=(u1, . . . , ur, v, wr+2, ..., wm))
satisfying (apart from re-indexing) the following additional property for T1:

T1 = vν U +

ν−2∑
j=1

vj urj bj(u,w) + b0(u,w),

where the function U is a unit and the functions bj are either a unit (and rj �= 0)
or zero for j = 1, . . . , ν − 2. Furthermore, either b0 = 0 or

b0(u,w) = uβ wεm,

where ε ∈ {0, 1}. Finally, the blowing-ups involved do not increase the value of ν
over any point, i.e., ν(qi, ωi,Di) ≤ ν(q, ω,D).

Remark 7.3. Note that the inductive hypothesis “Theorem 6.1 is true any foliated
Darboux data (N,ω′,S, F ) with dimN < dimM” is trivially true when dimM = 1.

When the foliated Darboux data (M,ω,D, E) satisfies the thesis of Proposi-
tion 7.2 at a point p, we will say that p is a prepared point and that the Weiers-
trass–Tschirnhausen form in Lemma 5.3 is prepared at p.

Step 3. Further admissible blowing-ups to decrease the maximal value of the
invariant ν.

The following proposition will be proved in Section 10.

Proposition 7.4. Let p be a point of M where the invariant ν = ν(p, ω,D) is
finite and bigger than one, i.e, 1 < ν <∞. Furthermore, suppose that (M,ω,D, E)
satisfies the prepared normal form at p (see Proposition 7.2). Then, for a small
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enough neighborhood M0 of p, there exists a sequence of ω-admissible blowing-
ups τ : (Mr, ωr,Dr, Er) → (M0, ω0,D0, E0) such that, for all point q in the pre-
image of p, the invariant ν has dropped, i.e., ν(q, ωr,Dr) < ν(p, ω,D).

We can now prove the main technical result of this work.

Proof of Theorem 6.1. The proof follows from Propositions 7.1, 7.2 and 7.4 by
induction on the dimension ofM and the maximal value of the invariant ν. Finally,
since all blowing-ups are ω-admissible, by Proposition 4.2 we conclude that the final
involutive distributions are K-monomial. �

8. Theorem 6.1: Dropping to a finite invariant

We follow the notation of Section 7 and we prove Proposition 7.1 in this section.
By Lemma 5.1, we can suppose that equation 5.1 is satisfied. Let {∂1, . . . , ∂d} be
a monomial system of generators of ω and let (u,w) be a monomial coordinate
system at p. We prove the result by strong induction on the number of singular
vector-fields in {∂1, . . . , ∂d}.

Base step. Suppose that all vector-fields ∂i are regular. By the definition of
monomial coordinate system, this implies that (u,w) = (u1, . . . , um−d, wm−d+1,
. . . , wm), and we can assume that ∂j = ∂wk

with k = m−d+ j. So, let us consider
the Taylor expansion of Ti over p:

Ti =
∑
λ

wλ Ti,λ(u),

where Ti,0 is zero (since uδiTi,0 would be a first integral of ω). Now, consider the
ideal I generated by the functions

{Ti,λ(u); ∀ λ and i}.
Since I is ω-invariant, by Theorem 4.4 there exists a sequence of ω-invariant
blowing-ups

τ : (Ũ , ω̃, D̃, Ẽ) → (U, ω,D, E)

that principalize I, where U is an open neighborhood of p where I is well-defined.
Since the blowing-ups are all ω invariant, for each point q in the pre-image of p
there exists a coordinate system (x,w) such that τ∗(∂i) = ∂wk

and I∗ is generated
by a monomial xβ . In particular, let (i0,λ0) be an index such that T ∗

i0,λ0
= xβ.

Thus,

T ∗
i0 =

∑
λ

wλ Ti0,λ(u)
∗ = xβ

[
wλ0 U +

∑
λ�=λ0

wλ T̃i0,λ(x)
]
,

where U is a unit. Note also that λ0 �= 0 (because Ti,0 ≡ 0 for all i). So, the

invariant ν(q, ω̃, D̃) is finite and smaller than or equal to ‖λ0‖.
Induction step. Suppose, by strong induction, that the proposition is true

if there are l0 vector-fields in {∂1, . . . , ∂d} which are singular with l0 < l. We
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assume that there are l vector-fields over {∂1, . . . , ∂d} that are singular. So, we
can rename this set as {Y1, . . . , Yl, Zl+1, . . . Zd}, where the vector-fields Yi are all
singular and Zi are regular vector-fields. By the definition of monomial coordinate
system, we have (u,w) = (u1, . . . , um−d+l, wm−d+l+1, . . . , wm) and we can assume
that Zj = ∂wl

with l = m− d+ j, and Yj =
∑
αi,j uk ∂uk

for coefficients αi,j ∈ K.
Now, let us consider the Taylor expansion of Ti over p:

Ti =
∑
λ

wλ Ti,λ(u).

Now, note that, given any monomial uγ ,

Yj(u
γ) = Kj,γu

γ ,

where Kj,γ is a constant in K. Let Kγ denote the vector (K1,γ , . . . ,Kl,γ). In this
case, we have a notion of eigenvector associated to the vector-fields Yj :

Ti,λ(u) =
∑
K

Ti,λ,K(u),

where all monomials uγ in the expansion of Ti,λ,K are such that Kγ = K. So, we
can write

Ti =
∑
λ

wλ
∑
K

Ti,λ,K(u).

Now, let I be the ideal generated by the functions

{Ti,λ,K; ∀ i, λ and K}.

Since I is ω-invariant, by Theorem 4.4 there exists a sequence of ω-invariant
blowing-ups

τ : (Ũ , ω̃, D̃, Ẽ) → (U, ω,D, E)

that principalize I, where U is an open neighborhood of p where I is well-defined.
Since the blowing-ups are all ω-invariant, for each point q in the pre-image of p
there exists a coordinate system (x,w) such that τ∗(Zj) = ∂wk

and I∗ is generated
by a monomial xβ. In particular, the number of generators of ω̃ · Oq which are
singular must be smaller or equal than l. If the number of singular generators of q
is strictly smaller than l, we can apply the strong induction hypothesis to obtain
a ω-admissible complete collection of local blowing-ups over q so that invariant
decreases to a finite value in the pre-image of a neighborhood of q.

So, let us assume that there exist l singular vector-fields in ω̃ ·Oq. In particular,
these vector-fields should be generated by Y ∗

j (since Z∗
j are regular). Moreover,

there exists an index (i0, λ0,K0) such that T ∗
i0,λ0,K0

is a generator of I∗, i.e.,

T ∗
i0,λ0,K0

= xβW , where W is a unit. Then

T ∗
i0 =

∑
λ

wλ
∑
K

Ti0,λ,K(u)∗ = xβ
[
wλ0

(
W +

∑
K�=K0

T̃i0,λ0,K

)
+

∑
λ�=λ0

wλ T̃i0,λ(x)
]
.
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We claim that all functions T̃i0,λ0,K with K �= K0 are not unities, which implies
that

W +
∑

K�=K0

T̃i0,λ0,K

is a unit and the invariant ν(q, ω̃, D̃) is smaller or equal than ‖λ0‖ (even if ‖λ0‖ = 0,
since uδiTi,λ,K are non-zero eigenvectors of ω). Indeed, let us assume by contra-

diction that T̃i0,λ0,K is a unit for some K �= K0. On one hand, this implies that

T ∗
i0,λ0,K = xβV,

where V is a unit. On the other hand, since K �= K0, there exists j0 such that
the j0 entry of K and K0 are different. Now:

Y ∗
j0(T

∗
i0,λ0,K0

) = Y ∗
j0(x

βW ) =< K0, ej0 > xβW and

Y ∗
j0(T

∗
i0,λ0,K) = Y ∗

j0(x
βV ) =< K, ej0 > xβ V,

which implies that

Y ∗
j0 (x

β) = xβ
(
< K0, ej0 > +

Y ∗
j0(W )

W

)
and

Y ∗
j0 (x

β) = xβ
(
< K, ej0 > +

Y ∗
j0(V )

V

)
.

But since Y ∗
j0

is singular,

< K0, ej0 > +
Y ∗
j0(W )

W
�=< K, ej0 > +

Y ∗
j0(V )

V
,

which is a contradiction. The invariant is finite in an open neighborhood of q.

9. Theorem 6.1: Prepared normal form

We follow the notation of Lemma 5.3 and Section 7 and we prove Proposition 7.2 in
this section. By Lemma 5.3, the K-monomial foliated Darboux data (M,ω,D, E)
satisfies the Weierstrass–Tschirnhausen form at p, i.e., there exists a monomial
coordinate system (u, v,w) of p such that the functions Ti are given by (5.2) and
the vector-field ∂v belongs to ωp (in particular, we assume that ∂νvT1 is a unit).
The main idea of the proof is to modify the coefficients a1,j without changing
the v-coordinate. This is obtained through two steps, where all blowing-ups are
ω-admissible and ∂v-invariant.

First step. Let us perform a ω-admissible collection of local blowing-ups to
get all necessary conditions over the coefficients a1,j with j > 0. Indeed, let
π : M0 → N be the projection map given by π(u, v,w) = (u,w), where M0 is a
small enough neighborhood of p, and let J be the principal ideal sheaf generated
by the product of all non-zero a1,j with j > 0. Then, there exists a d− 1 foliated
ideal sheaf (N,ω′,J , F ) such that
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• the singular distribution ω is generated by π∗ω′;
• the inverse image of F is equal to E ∩M0.

Now, by Theorem 4.5 there exists a ω′-admissible complete collection of local
blowing-ups

σi : (Ni, ω
′
i,Ji, Fi) → (N,ω′,J , F )

such that the ideal sheaf Ji is monomial i.e., σ∗
i J is a principal ideal sheaf with

support contained in Fi. We can extend σi to blowing-ups at M0 by taking the
product of the centers of τi by the v-coordinate:

τi(1) : (Mi(1), ωi(1),Di(1), Ei(1)) → (M0, ω0,D0, E0),

where all centers have SNC with the exceptional divisor and are invariant by the
v-coordinate i.e., all centers are ∂v-invariant. Moreover, since all centers of σi are
ω′-admissible, we conclude that all centers of τi(1) are ω-admissible.

Now, consider a point qi in the pre-image of p by τi(1) and let (u(1), v(1),w(1)) be
a coordinate system at qi such that τi(1)

∗v = v(1). Since the pull-back (τi(1)◦π)∗J
is a principal ideal sheaf, we conclude that

T1 = v(1)νU +
ν−2∑
j=1

v(1)j u(1)
rj(1) b1(1) + b0(1), where U is a unit,

where the functions bj(1) are either zero or units for j > 0 and the monomials
u(1)

rj(1) have support in the exceptional divisor Ei(1). Note that ∂v(1) belongs to
ωi · Oqi and, in particular, that ν(qi, ωi,Di) ≤ ν(p, ω,D).

Second step. We now perform a ω-admissible complete collection of local
blowing-ups to get all necessary conditions over the coefficients b0(1). Indeed, at
each point qi in the pre-image of p, apart from taking smaller varietiesMi(1), there
exists a projection map π :Mi(1) → Ni(1) given by π(u(1), v(1),w(1)) = (u(1),w(1)).
Then, there exists a d−1 foliated Darboux data (Ni(1), ω

′
i(1),Si(1), Fi(1)) such that:

• the singular distribution ωi(1) is generated by π∗ω′
i(1);

• the inverse image of Fi(1) is equal to Ei(1);

• the K-Darboux data Si(1) is generated by f1|{v(1)=0}.

Note that if b0(1) = 0 we are done. Otherwise, the foliated Darboux data (Ni(1),
ω′
i(1),Si(1), Fi(1)) is not trivial and, since dimNi(1) < dimMi(1), we can apply The-

orem 6.1 to (Ni(1), ω
′
i(1),Si(1), Fi(1)) in order to obtain a ω′

i(1)-admissible complete
collection of local blowing-ups

σi,j(2) : (Ni,j (2), ω
′
i,j(2),Si,j (2), Fi,j(2)) → (Ni(1), ω

′
i(1),Si(1), Fi(1))

such that the invariant ν calculated for (Ni,j(2), ω
′
i,j(2),Si,j (2), Fi,j(2)) is zero or one

at every point. Furthermore, by Lemma 6.2, at each point in the pre-image of qi,
there exists a coordinate (u(2),w(2)) such that

(9.1) σi,j(2)
∗ [f1|{v(1)=0}

]
= g1(2) + u(2)

β̃wm(2)
ε,
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where g1(2) is a first integral of ω′
i,j(2), u(2)

β̃wm(2)
ε is not a first integral of ω′

i,j(2)

and ε ∈ {0, 1}. We can extend σi,j (2) to blowing-ups atMi(1) by taking the product
of the centers of τi,j(2) by the v-coordinate:

τi,j (2) : (Mi,j(2), ωi,j(2),Di,j(2), Ei,j(2)) → (Mi(1), ωi(1),Di(1), Ei(1)),

where all centers have SNC with the exceptional divisor and are invariant by the
v-coordinate i.e., all centers are ∂v-invariant. Moreover, since all centers of σi,j (2)
are ω′-admissible, we conclude that all centers of τi,j(2) are ω-admissible.

Now, consider a point qi,j in the pre-image of qi and let (u(2), v(2),w(2)) be a
monomial coordinate system of qi,j such that τi,j (2)

∗v(1) = v(2). By equation (9.1),

τi,j (2)
∗[g1 + uδ1a1,0

]
= g1(2) + u(2)

β̃ wm(2)
ε,

where g1(2) is a first integral of ωi,j(2), u(2)
β̃wm(2)

ε is not a first integral of ωi,j(2)
and ε ∈ {0, 1}. Furthermore, since all blowing-ups have SNC with the exceptional
divisor, we conclude that

T1 = v(2)νU +

ν−2∑
j=1

v(2)j u(2)
rj(2) cj(2) + c1,0(2), where U is a unit,

where the functions cj(2) are either zero or units for j > 0, the monomials u(2)
rj(2)

have support in the exceptional divisor Ei,j (2), and

c1,0(2) = u(2)
βwm(2)

ε,

where ε ∈ {0, 1} and β is equal to the multi-index β̃ minus the multi-index that
corresponds to the pull-back of xδ. To finish, note that ∂v(2) belongs to ωi,j(2).Oqi

and, in particular, that ν(qi,j , ωi,j,Di,j) ≤ ν(p, ω,D).

10. Theorem 6.1: Dropping the invariant ν

We follow the notation of Section 7, and we prove Proposition 7.4 in this section.
We start by a couple of preliminary results about the combinatorial blowing-ups.

10.1. Combinatorial blowing-ups

Definition 10.1 (Sequence of combinatorial blowing-ups). Given a divisor E

in M , we say that τ : M̃ → M is a sequence of combinatorial blowing-ups (with
respect to E) if τ is a composition of blowing-ups with centers that are strata of
the divisor E and its total transforms.

Consider a K-monomial foliated manifold (M,ω,E) and suppose that (u, v,w)
is a globally defined monomial coordinate system centered at a point p, where
the vector-field ∂v belongs to ω. We remark that, by Lemma 3.4, there exists
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a collection of monomials uB = (uβ1 , . . . ,uβm−d) such that a vector field ∂ ∈
DerM (− logE) belongs to ω if and only if ∂(uβi) ≡ 0 for all i.

Consider a sequence of combinatorial blowing-ups τ : (M̃, ω̃, Ẽ) → (M,ω,E)
with respect to the declared exceptional divisor F = {u1 · · ·ur · v = 0}. Note
that such a sequence is ω-admissible and, by Proposition 4.2, the transform ω̃
is K-monomial. Moreover, we can cover M̃ by affine charts with a coordinate
system (x,w) satisfying

(10.1)

uj = x
aj,1
1 · · ·xaj,r+1

r+1 ,

v = xα1
1 · · ·xαr+1

r+1 ,

wi = wi,

where αi,j ∈ N, that we denote by

(u, v,w) = (xAAA,w) = (xA,xα,w),

where AAA is a (r + 1)-square matrix

[
A
α

]
given by

A =

⎡⎢⎣a1,1 . . . a1,r+1

...
. . .

...
ar,1 . . . ar,r+1

⎤⎥⎦ and α = [ar+1,1, . . . , ar+1,r+1, ].

Note that (x,w) is a monomial coordinate system since, by Lemma 2.2:

τ∗uB = xBA

is a system of first integrals of ω̃. Now, let q be a point in this affine chart
contained in the pre-image of p (recall that p is the origin of the original coordinate
system). Apart from re-indexing, we can suppose that q has coordinates (0, ξ,0) =
(0, . . . , 0, ξt+1, . . . , ξr+1, 0, . . . , 0) with ξi �= 0. Furthermore, apart from making
changes of the form xi = −xi, we can suppose that ξi < 0 whenever ξi ∈ R. We
consider the coordinate system (x,y,w) = (x1, . . . , xt, yy+1, . . . , yr+1, wr+2, . . . ,
wm) centered at q, where

yi = xi − ξi.

Note that t �= 0 since q is in the pre-image of p. We have a decomposition of the
matrix AAA:

AAA =

[
A1 A2

α1 α2

]
,

where A1 is a r × t matrix, A2 is a r × (r + 1 − t) matrix, α1 is a 1 × t matrix
and α2 is a 1 × (r − t + 1) matrix. We remark that, since q is a point on the

exceptional divisor Ẽ, there exists at least one ui such that τ ∗ui(q) = 0, which
implies that A1 has to be a non-zero matrix. We now divide our study depending
on the rank of A1.
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Lemma 10.2 (Case 1). Assume A1 has maximal rank. Then, there exists a
monomial coordinate system (x,y, z,w) = (x1, . . . , xt, yt+1, . . . , yr, z,w) centered
at q such that

(10.2)

u = xA1(y − ξ)Λ,

v = xα1(z − ζ),

w = w,

where ζ �= 0, ξj �= 0 for all j and the matrix Λ = (λi,j) of exponents has maximal
rank, with λi,j ∈ K (in particular, ∂z is contained in ω̃ · Oq). Moreover, if uγ is
not a first integral of ω ·Op, then its total transform uγ = xγ̃U , where U is a unit,
satisfies one of the following:

• either the monomial xγ̃ is not a first integral of ω̃;

• or, there exists a regular vector-field ∂yi ∈ ω̃ · Oq such that ∂yiU is a unit.

Lemma 10.3 (Case 2). Assume that A1 does not have maximal rank. Then
there exists a monomial coordinate system (x,y,w)=(x1, . . . , xt, yt+1, . . . , yr+1,w)
centered at q such that

(10.3)

u = xA1(y − ξ)Λ,

v = xα1 ,

w = w,

where ξj �= 0 for all j, the matrix Λ = (λi,j) is of maximal rank with entries in K,
and α1 does not belong to the span of the rows of A1. Moreover, if uγ is not a first
integral of ω · Op, then its total transform uγ = xγ̃U , where U is a unit, satisfies
one of the following:

• either the monomial xγ̃ is not a first integral of ω̃;

• or there exists a regular vector-field ∂yi ∈ ω̃ · Oq such that ∂yiU is a unit.

Proof of Lemma 10.2. By hypothesis, apart from re-indexing of the uj ’s, we can
write

A1 =

[
A′

1

A′′
1

]
, A2 =

[
A′

2

A′′
2

]
,

where det(A′
1) �= 0, and A′

1 and A′
2 have the same height. So, we can write

equations (10.1) in the compact form

u′ = xA′
1(y − ξ)A

′
2 ,

u′′ = xA′′
1 (y − ξ)A

′′
2 ,

v = xα1(y − ξ)α2 .

First change of coordinates:

x(1) = x · (y − ξ)(A
′
1)

−1A′
2 ,

y(1) = y.
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After this change of coordinates we get (using Lemma 2.2)

(10.4)

u′ = x(1)
A′

1 ,

u′′ = x(1)
A′′

1 (y(1) − ξ)Λ(1),

v = x(1)
α1(y(1) − ξ)λ(1),

and the square matrix L :=

[
Λ(1)

λ(1)

]
:=

[
A′′

2 −A′′
1(A

′
1)

−1A′
2

α2 −α1(A
′
1)

−1A′
2

]
has determinant

different from zero because the full matrix of exponents in (10.4) is obtained fromAAA
by a sequence of column elementary transformations. Note also that the entries of
(A′

1)
−1A′

2 are rational numbers, not necessarily integers.

Second change of coordinates. After re-indexing the yi(1) − ξi, we can assume
that the elements of the diagonal of L are different from zero. Thus, we consider

(10.5)

y(2) − ξ(2) = (y(1) − ξ)Λ(1),

z(2)− ζ(2) = (y(1) − ξ)λ(1),

x(2) = x(1),

to get

u′ = x(2)
A′

1 ,

u′′ = x(2)
A′′

1 (y(2) − ξ(2))Id,

v = x(2)
α1(z(2) − ζ(2)),

where Id is the identity matrix.

Third change of coordinates. We need to guarantee that the coordinate system
is monomial. Consider a complete system of first integrals uB and note that the
matrix B can be written as

B =
[
B1 B2

]
,

where B2 is a r × (r − t) matrix. With this notation, by Lemma 2.2,

uB = x(2)
BA1(y(2) − ξ(2))B2 = x(2)

C1(y(2) − ξ(2))C2 ,

where C1 = BA1 is a non-zero matrix (since B and A1 are of maximal rank) and
C2 = B2. Now, we perform a change of coordinates similar with the one given
in Lemma 3.5 in order to obtain a monomial coordinate system. To that end,
consider

C =

[
C′

1 C′
2

C′′
1 C′′

2

]
,

where C1 =
[
C′

1

C′′
1

]
and the rank of C′

1 is maximal and equal to the rank of C1. So,

there exists a change of coordinates (x(3),y(3), z(3),w(3)), where z(3) = z(2), such
that

uB = x(3)
D1(y(3) − ξ(3))D2 ,
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where

D =
[
D1 D2

]
=

[
D′

1 D′
2

D′′
1 D′′

2

]
=

[
C′

1 0
C′′

1 Δ

]
,

where Δ is a maximal rank matrix with coefficients in K. This implies that the
collection (x(3)

D′
1 ,x(3)

D′′
1 (y(3) − ξ(3))Δ) is a collection of first integrals of ω · Oq.

Fourth change of coordinates. Let s be the rank of Δ. Then, apart from re-
ordering the y(3) coordinates, there exists a coordinate system (x(4),y(4),v(4), z(4),
w(4)), where x(4) = x(3), z(4) = z(3), w(4) = w(3) and v(4) = (yt+s+1(3), . . . , yr+1(3))
such that

(y(3) − ξ(3))Δ = y(4) − ξy(4),

where y(4) = (yt+1(4), . . . , ys(4)), which implies that the monomial functions

(x(4)
D′

1 ,y(4))

are first integrals of ω · Oq, which guarantees that the coordinate system is mono-
mial. Furthermore, since z(2) = z(4) we finally conclude that

u = x(4)
A1(y(4) − ξy(4))

Λy(4)(v(4) − ξv(4))
Λv(4),

v = x(4)
α1(y(4) − ξy(4))

λy(4)(v(4) − ξv(4))
λv(4)(z(4) − ζ(4)),

w = w,

where Λ(4) = [Λy(4),Λv(4)] is a maximal rank matrix whose entries are in K.

Fifth change of coordinates. We only need a change in the z(4) so that

z(5) − ζ(5) = (y(4) − ξy(4))
λy(4)(v(4) − ξv(4))

λv(4)(z(4) − ζ(4)),

which does not change the fact that the coordinate system is monomial. This is
the coordinate system of the enunciate of the lemma.

Now, let uγ be a monomial which is not a first integral of ω · Op, i.e., the
multi-index γ does not belong to the span of the rows of B. In this case, in the
coordinate system of the enunciate of the lemma, we have that:

uγ = xγA1(y − ξ)γΛ.

In particular, there exists a vector field ∂̃ in ω · Op such that ∂̃(uγ) �= 0. Now,
recall that xA1B are monomial first integrals of ω · Oq. So, either γA1 is not in
the subspace generated by the rows of A1B (and xγA1 is not a first integral), or
it is and

∂(xγA1) ≡ 0 for all ∂ ∈ ωq

In this case, we conclude that

σ∗(∂̃)(y − ξ)γΛ �= 0,

which implies that γΛ �= 0. This concludes the proof of the lemma. �
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Proof of Lemma 10.3. We have

uB = xBA1(y − ξ)BA2 ,

u = xA1(y − ξ)A2 ,

v = xα1(y − ξ)α2 .

Note that, since AAA is of maximal rank but A1 does not have maximal rank, α1

does not belong to the span of the rows of A1. Thus, it does not belong to the
span of the rows of BA1.

First change of coordinates. There exists a coordinate system (x(1),y(1),w(1))
where y(1) = y and w(1) = w such that

uB = x(1)
C1(y(1) − ξ)C2 ,

u = x(1)
A1(y(1) − ξ)Λ(1),

v = x(1)
α1 ,

where C =
[
C1

C2

]
=

[
BA1

C2

]
and Λ(1) are matrices of maximal rank with coefficients

in Q.

Second change of coordinates. We need to guarantee that the coordinate system
is monomial. To that end, consider

C =

[
C′

1 C′
2

C′′
1 C′′

2

]
,

where C1 =
[
C′

1

C′′
1

]
and the rank of C′

1 is maximal and equal to the rank of C1.

Since α1 does not belong to the span of the rows of C′
1, there exists a change of

coordinates (x(2),y(2),w(2)), where v = x(2)
α1 , such that

uB = x(2)
D1(y(2) − ξ(2))D2 ,

u = x(2)
A1(y(2) − ξ(2))Λ(2),

v = x(2)
α1 ,

where Λ(2) is a maximal rank matrix with entries in K and

D =
[
D1 D2

]
=

[
D′

1 D′
2

D′′
1 D′′

2

]
=

[
C′

1 0
C′′

1 Δ

]
,

where Δ is a maximal rank matrix with entries in K. This implies that the
collection (x(2)

D′
1 ,x(2)

D′′
1 (y(2) − ξ(2))Δ) is a collection of first integrals of ω · Oq.

Since D′
1 has rank equal to D1, we conclude that

(x(2)
D′

1 , (y(2) − ξ(2))Δ)

is another collection of first integrals of ω · Oq.
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Third change of coordinates. Since Δ is of maximal rank, there exists a co-
ordinate system (x(3),y(3), zzz(3),w(3)), where x(3) = x(2) and w(3) = w(2), such
that

(y(2) − ξ(2))Δ = y(3) − ξ(3),

which finally implies that the monomial functions

(x(3)
D′

1 ,y(3))

are first integrals of ω · Oq. This implies that this coordinate system is monomial.
Furthermore, since x(2)

α1 is independent of the y(2) coordinate, we finally conclude
that

u = x(3)
A1(y(3) − ξ1(3))

Λ1(3)(zzz(3) − ξ2(3))
Λ2(3),

v = x(3)
α1 ,

w = w(3),

where Λ = [Λ1 Λ2] is a maximal rank matrix with entries in K and ξ(3) =
(ξ1(3), ξ2(3)) is a vector where no entry is zero. This proves that the coordinate
system is monomial, and this is the coordinate system of the enunciate of the
lemma.

The rest of the argument (in respect to a monomial uγ which is not a first
integral of ω · Op) is exactly the same as in the proof of Lemma 10.2. �

10.2. Proof of Proposition 7.4

By hypothesis, there exists a local coordinate system (u, v,w) that satisfies the
prepared normal form at p with ν = ν(p, ω,D). In particular, apart from re-
indexing, we assume that T1 satisfies the conclusions of proposition 7.2. Since ω is
K-monomial, by Lemma 3.4, there exist m− d monomials uB = (uβ1 , . . . ,uβm−d),
such that

ω · Op = {∂ ∈ Derp(− logE); ∂(uβi) ≡ 0 for all i}.
Let us now consider the ideal J generated by

vν , and {vjurjbj}1≤j<d, and uβ,

where we recall that all bj are either units or zero for j > 0 and uβ is in the ideal,
provided that b0 �= 0 (note that we include only the monomial uβ and not uβwεm
in the ideal). Now, consider a sequence of blowing-ups

τ : (Mr, ωr,Dr, Er) → (M0, ω0,D0, E0)

that principalize J , whereM0 is any fixed open neighborhood of p where J is well-
defined. Since J is generated by monomials in the variables u and v, this sequence
can be chosen to be combinatorial with respect to the divisor F := {u1 · · ·ul ·v = 0}
(see Definition 10.1). In particular, the sequence τ is ω-admissible.

Now, let q be a point of Mr in the pre-image of p. We claim that

ν(q, ωr,Dr) < ν(p, ω,D),
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which finishes the proof of the proposition. Indeed, since τ is a sequence of combi-
natorial blowing-ups in respect to the divisor F , the point q satisfies the hypothesis
of either Lemma 10.2 or 10.3. Thus, we have two cases to consider.

Case 1. We assume we are in conditions of Lemma 10.2. There exists a mono-
mial system of coordinates (x,y, z,w) = (x1, . . . , xt, yt+1, . . . , yr, z,w) centered
at q such that

(10.6)

u = xA1(y − ξ)Λ,

v = xα1(z − ζ),

w = w,

where ξj �= 0 for all j and the matrix Λ = (λi,j) of exponents has maximal rank,
with λi,j ∈ K. In particular, ∂z is contained in ω̃ · Oq (this follows from the above
coordinate change). So, after blowing-up we have the following expressions:

(10.7) τ∗T1 = UxSν (z − ζ)ν +
ν−1∑
=1

xSj (z − ζ)icj(x,y,w) + xS0c0(x,y,w),

where

• the function U is a unit of the form Ũ(x,y,w) + xα1Ω(x,y, z,w), where

Ũ(x,y,w) is a unit and α1 �= 0 (because q is in the pre-image of p);

• for j > 0 the functions cj are either zero or units (that do not depend on z);

• the term xS0c0 is the pullback of b0. In particular, either c0 = 0 or it is equal
to wεmc̃0, where c̃0 is a unit.

We consider three cases, depending on which generator of I pulls back to be a
generator of the pull-back of I∗.

Case 1.1 (the pull back of vν generates J ∗, i.e., Sν = min{Sν ,Sj ,S0}). In this
case, by equation (10.7), we have:

τ∗T1 = xSν
[(
Ũz + Ũζν + xα1Ω2

)
zν−1+

+ terms where the exponent of z is < ν − 1
]
,

where α1 is a non-zero matrix and Ω2 = [z + ζν]Ω. Since Ũz + Ũνζ + xα1Ω2 is a
unit and the vector-field ∂z belongs to ωr, we conclude that ν(q, ωr,Dr) ≤ ν − 1.

Case 1.2 (there is a maximum 0 < j1 < d such that the pull back of urj1 vj1

generates J ∗, i.e., Sj1 = min{Sν ,Sj ,S0}, Sν > Sj1 and Sj > Sj1 for j > j1). In
this case, by equation (10.7), we have

τ∗T1 = xSj1

[
(z − ζ)j1cj1 +

j1−1∑
j=0

xSj−Sj1 (z − ζ)jcj +Ω(x,y, z,w)
]
,

where Ω(0,y, z,w) ≡ 0. Since cj1 is an unit and the vector-field ∂z belongs to ωr,
we conclude that ν(q, ωr,Dr) ≤ j1 < ν.
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Case 1.3 (the pull-back of uβ is the only generator of J ∗, that is, S0 =
min{Sν ,Sj ,S0} and Sν > S0, Sj > S0). In this case, we consider two cases
depending on ε:

Case 1.3 a, ε = 1. Then

τ∗T1 = xS0 [wm c̃0 +Ω(x,y, z,w)] ,

where c̃0 is a unit and Ω(0,y, z,w) ≡ 0. Since the vector-field ∂wm belongs to
ωr · Oq, we conclude that that ν(q, ωr,Dr) ≤ 1 < ν.

Case 1.3 b, ε = 0. In this case, note that the monomial uβ+δ is not a first
integral of ω · Op. Thus, Lemma 10.2 guarantees that the total transform uβ+δ =

xS0+δ̃ W̃ , where W̃ = (y − γ)(δ+β)Λ is a unit, satisfies one of the following:

• either xS0+δ̃ is not a first integral of ω̃ · Oq, which implies that

τ∗[uδT1] = xS0+δ̃ U

for some unit U . We conclude that that ν(q, ωr,Dr) = 0 < ν;

• or there exists a regular vector-field ∂yi ∈ ω̃ · Oq such that ∂yiW̃ is a unit.
In particular,

τ∗[uδT1] = xS0+δ̃ W̃ (0) + xS0+δ̃
[
W̃ − W̃ (0) + Ω(x,y, z,w)

]
,

where Ω(0,y, z,w) ≡ 0 and the monomial xS0+δ̃W (0) is a first integral of
ω̃ · Oq. We conclude that that ν(q, ωr,Dr) ≤ 1 < ν.

Case 2. We assume we are in conditions of Lemma 10.3. There exists a mono-
mial system of coordinates (x,y,w) = (x1, . . . , xt, yt+1, . . . , yr+1,w) centered at q
such that

(10.8)

u = xA1(y − ξ)Λ,

v = xα1 ,

w = w,

where ξ̃j �= 0 for all j and the matrix Λ = (λi,j) of exponents has maximal rank
and α1 does not belong to the span of the rows of A1. So, after blowing-up we
have the following expression:

(10.9) τ∗T1 = UxSν +

ν−1∑
=1

xSjcj(x,y,w) + xS0c0(x,y,w),

where

• the function U is a unit and, for j > 0, the functions cj are either zero or
units (that does not depend on z);
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• the term xS0c0 is the pullback of b0. In particular, either c0 = 0 or it is equal
to wεmc̃0, where c̃0 is a unit;

• we remark that

Sν = ν α1 and Sj = jα1 + r1,j A1 for j = 0, . . . , ν − 2.

So each Sν and Sj is a sum of an element of the span of the rows of A1 and a
different multiple of the α1. Since α1 is linearly independent with the rows
of A1, this means that the exponents Sν and Sj are all distinct. Therefore
all of the multi-indices Sj must be different.

We consider three cases depending on which generator of I pulls back to be a
generator of the pull-back of I∗.

Case 2.1 (the pull back of vν generates J ∗, i.e., Sν = min{Sν ,Sj ,S0}). In this
case, from equation (10.9), we have

τ∗[uδT1] = xSν+δA1
[
Ũ +Ω(x,y, z,w)

]
,

where Ũ = U(y−ξ)δΛ is a unit and Ω(0,y, z,w) ≡ 0. Since xSν+δA1 is not a first
integral of ω̃ (which follows from the fact that α1 does not belong to the span of
the rows of A1), we conclude that ν(q, ωr,Dr) = 0 < ν.

Case 2.2 (there is a maximum 0 < j1 < ν such that the pull back of urj1 vj1 is
a generator of J ∗, i.e., Sj1 = min{Sν ,Sj ,S0}). In this case, from equation (10.9),
we have

τ∗[uδT1] = xSj1+δA1 [c̃j1 +Ω(x,y, z,w)] ,

where c̃j1 = cj1(y−ξ)δΛ is a unit and Ω(0,y, z,w) ≡ 0. Since xSj1+δ̃ is not a first
integral of ω̃ (which follows from the fact that α1 does not belong to the span of
the rows of A1), we conclude that ν(q, ωr,Dr) = 0 < ν.

Case 2.3 (the pull-back of uβ is the generator of J ∗ i.e., S0 = min{Sν ,Sj ,S0}).
In this case, we consider two cases depending on ε.

Case 2.3 a, ε = 1. Then

τ∗T1 = xS0 [wm c̃0 +Ω(x,y, z,w)] ,

where c̃0 is a unit and Ω(0,y, z,w) ≡ 0. Since the vector-field ∂wm belongs to
ωr · Oq, we conclude that that ν(q, ωr,Dr) ≤ 1 < ν.

Case 2.3 b, ε = 0. In this case, note that the monomial uβ+δ is not a first
integral of ω · Op. Thus, Lemma 10.3 guarantees that the total transform uβ+δ =

xS0+δA1 W̃ , where W̃ = (y − γ)(δ+β)Λ is a unit, satisfies one of the following
conditions:

• Either xS0+δA1 is not a first integral of ω̃ · Oq, which implies that

τ∗[uδT1] = xS0+δA1 U

for some unit U . We conclude that that ν(q, ωr,Dr) = 0 < ν.
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• Or, there exists a regular vector-field ∂yi ∈ ω̃ · Oq such that ∂yiW̃ is a unit.
In particular,

τ∗[uδT1] = xS0+δA1W̃ (0) + xS0+δA1
[
W̃ − W̃ (0) + Ω(x,y, z,w)

]
where Ω(0,y, z,w) ≡ 0 and the monomial xS0+δA1W (0) is a first integral of
ω̃ · Oq. We conclude that that ν(q, ωr,Dr) ≤ 1 < ν.
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