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Structure of tangencies to distributions

via the implicit function theorem

Silvano Delladio

Abstract. We investigate the structure and the dimension of the tangency
set to a C1 smooth distribution of n-dimensional vector subspaces of Rn+m,
by an argument based on the implicit function theorem.

1. Introduction

Let a C1 smooth distribution D of n-dimensional vector subspaces of Rn+m be
assigned on an open subset U of Rn+m. Then one can pose the problem of de-
scribing the structure of the set T of points at which any given C2 smooth n-sub-
manifold Γ of U is tangent to D. This problem becomes particularly interesting
in sub-Riemannian contexts such as Carnot groups or Hörmander vector fields,
compare [2] (where the relationship with the Alberti’s result [1] is shown) and [3].

The simple idea behind our work is to attack this problem by applying the
implicit function theorem. In order to give a more detailed account of this idea,
we first assume that D is given as the intersection of the kernels of m linearly
independent differential one-forms θ(1), . . . , θ(m) of class C1 in U , that is

D(z) := ker(θ(1)z ) ∩ · · · ∩ ker(θ(m)
z ), z ∈ U.

Moreover we suppose that Γ is the graph of a function f ∈ C2(Ω,Rm), where Ω
is an open subset of R

n, that is Γ = F (Ω) with F : Ω → R
n+m defined by

F (x) := (x, f(x)). Then we can easily find a function Ψ ∈ C1(Ω,Rnm) such that

Ψ−1(0) = F−1(T ) = {x ∈ Ω | (x, f(x)) ∈ T },

compare Proposition 3.1 below. Now a trivial application of the implicit function
theorem shows that if p ∈ {1, . . . , n} then the set

{x ∈ Ψ−1(0) | rank(DΨ(x)) ≥ p}
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can be covered by a finite union of C1 submanifolds of dimension less or equal
to n − p. In particular, the set {x ∈ Ω | (x, f(x)) ∈ T } (hence T itself) can be
covered by a finite union of C1 submanifolds of dimension less or equal to n− r0,
with r0 := min{rank(DΨ(x)) |x ∈ Ψ−1(0)}. In view of this simple fact, looking
for results which relate the rank of DΨ to the properties of the θ(j) becomes a
natural issue. Our main result, Theorem 4.1, provides an explicit formula for dθ(j)

on Γ (see also Proposition 4.2) and is actually a step in this direction. As an
application of this machinery we give a new and considerably simplified proof of
two well-known theorems concerning the Hausdorff dimension of the tangency set
of a submanifold with respect to a (non-involutive) distribution and in particular
the main result of [3], where this subject is developed by a different and more
geometric approach.

2. General notation

We will often have to deal with maps from R
n to R

m and with their graphs.
The standard basis of Rn+m and the corresponding coordinates are denoted by
e1, . . . , en+m and (x1, . . . , xn, y1, . . . , ym), respectively. We may write R

n
x in place

of Rn and R
m
y in place of Rm. Let π : Rnx ×R

m
y → R

n
x be the orthogonal projection

π(x1, . . . , xn, y1, . . . , ym) := (x1, . . . , xn).

As one expects, the dual basis of e1, . . . , en+m is indicated with

dx1, . . . , dxn, dy1, . . . , dym.

Also we need the trivial isomorphism J : Rn×R
m → (Rn×R

m)∗ mapping every ei
to its corresponding member in the dual basis, i.e.,

J(ei) =

{
dxi if i = 1, . . . , n,

dyi−n if i = n+ 1, . . . , n+m.

The Grassmannian of k-planes in R
n+m is denoted by G(n+m, k). If A is a n×n

matrix with real entries, we define

WA :=
n∑
i=1

Aei ∧ ei =
n∑

i,p=1

Api ep ∧ ei =
n∑

i,p=1
p<i

(Api −Aip) ep ∧ ei

and

ωA := (Λ2J)WA =

n∑
i,p=1

Api dxp ∧ dxi =
n∑

i,p=1
p<i

(Api −Aip) dxp ∧ dxi.

Observe that the maps A �→ WA and A �→ ωA are linear and the identities

(2.1) WA = −WAt , ωA = −ωAt
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hold. Moreover

ωA(u, v) = u · (Av)− v · (Au)

for all u, v ∈ R
n. In particular one has

(2.2) ωA|kerA×kerA = 0.

Also observe that A is symmetric if and only if WA = 0 (A is symmetric if and
only if ωA = 0).

If m, r are positive integers with r ≤ m then I(m, r) is the set of integer multi-
indices (α1, . . . , αr) such that 1 ≤ α1 < · · · < αr ≤ m, while Ĩ(m, r) denotes
the set of integer multi-indices (β1, . . . , βr) such that 1 ≤ β1 ≤ · · · ≤ βr ≤ m.
Moreover the symmetric group of degree k is denoted by Sk.

If E is a subset of Rn+m, then dimH(E) denotes the Hausdorff dimension of E.
Recall that dimH is monotone and stable with respect to countable unions, namely

(2.3) dimH(E) ≤ dimH(F ), dimH

(⋃
i

Ei
)
≤ sup

i

(
dimH(Ei)

)

whenever E ⊂ F ⊂ R
n+m and Ei ⊂ R

n+m for i = 1, 2, . . ., compare Section 4.8
in [7].

3. Structure and dimension of the tangency set. Role of the
implicit function theorem

Consider an open subset U of Rnx × R
m
y and a family of m linearly independent

differential one-forms of the type

(3.1) θ(j) =
n∑
i=1

a
(j)
i dxi − dyj (j = 1, . . . ,m)

with a
(j)
i ∈ C1(U). Denote by D the distribution determined by the family

θ(1), . . . , θ(m), namely (for all z ∈ U),

D(z) := ker(θ(1)z ) ∩ · · · ∩ ker(θ(m)
z )

=
[
span{J−1(θ(1)z )}

]⊥ ∩ · · · ∩
[
span{J−1(θ(m)

z )}
]⊥

=
[
span{J−1(θ(1)z ), . . . , J−1(θ(m)

z )}
]⊥
,

that is,

(3.2) D(z) =
[
span{a(j)(z)− en+j | j = 1, . . . ,m}

]⊥
(z ∈ U),

where

a(j) := (a
(j)
1 , · · · , a(j)n )t.
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Moreover, let Ω be an open subset of Rn and let Γ be the graph of a function
f ∈ C2(Ω,Rm) such that Γ ⊂ U . Consider the tangency set

T := {z ∈ Γ |TzΓ = D(z)}.

We want to study the structure of T , and the first step in this direction is to find
a function of class C1 whose zero set is

π(T ) = {x ∈ Ω |T(x,f(x))Γ = D(x, f(x))}.

To this aim, for j = 1, . . . ,m, define

ψj(x) := a(j)(x, f(x)) −∇fj(x), x ∈ Ω.

Moreover set

(3.3) Ψ :=
(
ψt1, . . . , ψ

t
m

)t ∈ C1(Ω,Rnm)

and let Ψq be the q-th component of Ψ, so that Ψ = (Ψ1, . . . ,Ψnm).

If define F ∈ C1(Ω,Rn+m) as

F (x) := (x, f(x)), x ∈ Ω,

then, for all x ∈ Ω, the tangent space of Γ at (x, f(x)) is the image of dFx. Since
the matrix of dFx is

(3.4) DF (x) =

(
I

Df(x)

)
,

we find

(3.5) T(x,f(x))Γ = span
{
τi(x)

∣∣ i = 1, . . . , n
}
,

with

τi(x) := dFx(ei) = ei +

m∑
k=1

Difk(x) en+k.

Hence the vectors

(3.6) νh(x) := −en+h +∇fh(x) (h = 1, . . . ,m)

form a basis of (T(x,f(x))Γ)
⊥. Observe that

(3.7) Ψ−1(0) =
m⋂
j=1

{
x ∈ Ω

∣∣ θ(j)(x,f(x)) = J (νj(x))
}
.

Proposition 3.1. The following identity holds:

π(T ) = {x ∈ Ω |T(x,f(x))Γ = D(x, f(x))} = Ψ−1(0).
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Proof. For all x ∈ Ω one has

D(x, f(x)) =
[
span{a(j)(x, f(x)) − en+j | j = 1, . . . ,m}

]⊥
by (3.2). As a consequence, for x ∈ Ω, the identity

T(x,f(x))Γ = D(x, f(x))

occurs if and only if

(
ei +

m∑
k=1

Difk(x) en+k

)
·
(
a(j)(x, f(x)) − en+j

)
= 0,

which is equivalent to

a
(j)
i (x, f(x)) −Difj(x) = 0

for all i = 1, . . . , n and j = 1, . . . ,m, that is, Ψ(x) = 0. �

From Proposition 3.1 we got the idea to apply the implicit function theorem to
investigate the structure of the tangency set T . In order to make more clear this
idea, for l ∈ {1, . . . , n} and γ ∈ I(nm, l), we put

Ψγ := (Ψγ1 , . . . ,Ψγl)
t

and observe that

Σγ := {x ∈ Ω |Ψγ(x) = 0, rank(DΨγ(x)) = l}

is a (n− l)-dimensional regularly imbedded C1 submanifolds of Ω, by the implicit
function theorem (e.g., compare [6], Theorem 4.3.1, or [4], Ch. 1, Theorem 3.2).

If 1 ≤ p ≤ n, then

{x ∈ Ψ−1(0) | rank(DΨ(x)) ≥ p}

=
n⋃
l=p

{x ∈ Ω |Ψ(x) = 0, rank(DΨ(x)) = l}

⊂
n⋃
l=p

( ⋃
γ∈I(nm,l)

{x ∈ Ω |Ψγ(x) = 0, rank(DΨγ(x)) = l}
)
,

namely

(3.8) {x ∈ Ψ−1(0) | rank(DΨ(x)) ≥ p} ⊂
n⋃
l=p

( ⋃
γ∈I(nm,l)

Σγ

)
.

As we shall see, this simple inclusion is the basis for the applications below.

Remark 3.2. Let

r0 := min
{
rank(DΨ(x))

∣∣ x ∈ Ψ−1(0)
}
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and assume r0 ≥ 1. Then

π(T ) = Ψ−1(0) ⊂
n⋃

l=r0

( ⋃
γ∈I(nm,l)

Σγ

)

by Proposition 3.1 and (3.8), hence

T ⊂
n⋃

l=r0

( ⋃
γ∈I(nm,l)

F (Σγ)
)
.

By recalling (2.3) we also obtain

dimH(T ) ≤ n− r0.

4. The main result

Let us assume the notation of Section 3. Moreover define

Mj := [Da(j)]t (j = 1, . . . ,m).

For simplicity, given z ∈ U , let us denote (dθ(j))z by dθ
(j)
z and observe that

dθ(j)z =

n∑
i=1

( n∑
k=1

Dxk
a
(j)
i (z) dxk+

m∑
h=1

Dyha
(j)
i (z) dyh

)
∧ dxi=

n∑
i=1

J(Mj(z)ei) ∧ J(ei)

that is

(4.1) dθ(j)z = (Λ2J)
( n∑
i=1

Mj(z)ei ∧ ei
)

for all j = 1, . . . ,m and z = (x, y) ∈ U .

Theorem 4.1. For all j = 1, . . . ,m and x ∈ Ω, one has

n∑
i=1

Mj(x, f(x))ei ∧ ei = −WDψj(x) −
m∑
h=1

νh(x) ∧ (Dyha
(j))(x, f(x)).

Proof. If we define

Nj(x) : = [(Dxa
(j))(x, f(x)) + (Dya

(j))(x, f(x))Df(x)]t

= [(Dxa
(j))(x, f(x))]t + [Df(x)]t [(Dya

(j))(x, f(x))]t,
(4.2)

then
[Dψj(x)]

t = Nj(x)−D2fj(x).

Moreover
WD2fj(x) = 0,
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since D2fj(x) is symmetric. Then, recalling also (2.1), one has

(4.3) WNj(x) =W[Dψj(x)]t = −WDψj(x).

By (4.2) and (4.3) we obtain

n∑
i=1

Mj (x, f(x))ei ∧ ei

=

n∑
i=1

(
[(Dxa

(j))(x, f(x))]tei +

m∑
h=1

(Dyha
(j)
i )(x, f(x))en+h

)
∧ ei

=
n∑
i=1

(
Nj(x)− [Df(x)]t [(Dya

(j))(x, f(x))]t
)
ei ∧ ei+

+

n∑
i=1

m∑
h=1

(Dyha
(j)
i )(x, f(x))en+h ∧ ei

= −WDψj(x) −
n∑
i=1

(
[Df(x)]t [(Dya

(j))(x, f(x))]t
)
ei ∧ ei+

+

m∑
h=1

en+h ∧ (Dyha
(j))(x, f(x)).

(4.4)

Observe that(
[Df(x)]t [(Dya

(j))(x, f(x))]t
)
ei =

n∑
k=1

[(
[Df(x)]t [(Dya

(j))(x, f(x))]t
)
ei · ek

]
ek

=

n∑
k=1

(
ei · [(Dya

(j))(x, f(x))][Df(x)]ek
)
ek

=

n∑
k=1

( m∑
h=1

Dkfh(x) ei · [(Dya
(j))(x, f(x))]eh

)
ek

=

n∑
k=1

( m∑
h=1

Dkfh(x)(Dyha
(j)
i )(x, f(x))

)
ek,

hence
n∑
i=1

(
[Df(x)]t [(Dya

(j))(x, f(x))]t
)
ei ∧ ei

=
n∑
i=1

n∑
k=1

m∑
h=1

Dkfh(x)(Dyha
(j)
i )(x, f(x)) ek ∧ ei

=

m∑
h=1

( n∑
k=1

Dkfh(x)ek

)
∧

n∑
i=1

(Dyha
(j)
i )(x, f(x))ei

=
m∑
h=1

∇fh(x) ∧ (Dyha
(j))(x, f(x))
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which, combined with (4.4), yields

n∑
i=1

Mj(x, f(x))ei ∧ ei = −WDψj(x) +

m∑
h=1

(en+h −∇fh(x)) ∧ (Dyha
(j))(x, f(x)).

The conclusion follows by recalling the definition (3.6) of νh(x). �

The following simple corollary of Theorem 4.1, which will be useful in the next

section, shows the strict relationship occurring between dθ
(j)
F (x) and the 2-form

associated to Dψj(x), provided F (x) ∈ T . In the statement below, F# denotes
the pull-back operator induced by F . Recall that F# and the exterior differen-
tiation commute, compare Theorem 6.2.9 in [5].

Proposition 4.2. Let x ∈ Ψ−1(0) and j ∈ {1, . . . ,m}. Then

dθ
(j)
(x,f(x)) = −ωDψj(x) −

m∑
h=1

θ
(h)
(x,f(x)) ∧ J

(
(Dyha

(j))(x, f(x))
)
.

Moreover

d(F#θ(j))(x) = F#(dθ(j))(x) = −ωDψj(x),

i.e.,

dθ
(j)
(x,f(x))(dFx(u), dFx(v)) = −ωDψj(x)(u, v)

for all u, v ∈ R
n.

Proof. By combining Theorem 4.1, (4.1) and (3.7) we get at once the first identity.
The second identity follows from the first one by recalling that Im(dFx) = T(x,f(x)Γ,

hence θ
(h)
(x,f(x))|Im(dFx) = 0 (for all h = 1, . . . ,m). �

5. Structure and dimension of the tangency set. Applications
of the main result

Assume the notation of the previous sections.

5.1. First application of the main result

In order to state and prove the next results, we need to consider the following sets:

Ak :=
{
z ∈ U

∣∣ there exists X ∈ G(n+m, k) s.t.

θ(j)z |X = 0 and dθ(j)z |X×X = 0 for all j = 1, . . . ,m
}

for k = 1, . . . , n+m, compare [3].
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Theorem 5.1. Let k ∈ {1, . . . , n}. Then one has

π(T \Ak+1) ⊂ {x ∈ Ψ−1(0) | rank(DΨ(x)) ≥ n− k}

⊂
n⋃

l=n−k

( ⋃
γ∈I(nm,l)

Σγ

)
.

(5.1)

Hence

(5.2) T \Ak+1 ⊂
n⋃

l=n−k

( ⋃
γ∈I(nm,l)

F (Σγ)
)

and

(5.3) dimH

(
T \Ak+1

)
≤ k.

Proof. If
x ∈ π(T \Ak+1)

then
x ∈ Ω, T(x,f(x))Γ = D(x, f(x))

and

(5.4) (x, f(x)) �∈ Ak+1.

From Proposition 3.1 we get
x ∈ Ψ−1(0)

and we want to prove that rank(DΨ(x)) ≥ n− k, i.e.,

(5.5) dim(kerDΨ(x)) ≤ k.

To this aim, we proceed by contradiction assuming that it does not hold. Then
there exists a family of linearly independent vectors

v1, . . . , vk+1 ∈ kerDΨ(x) ⊂ R
n,

and one has

X := span
{
dFx(vi)

∣∣ i = 1, . . . , k + 1
}
∈ G(n+m, k + 1)

by (3.4). Observe that

X ⊂ Im(dFx) = T(x,f(x))Γ = D(x, f(x)),

thus
θ
(j)
(x,f(x))|X = 0, for all j = 1, . . . ,m.

On the other hand, one obviously has

kerDΨ(x) ⊂
m⋂
j=1

kerDψj(x)

hence
v1, . . . , vk+1 ∈ kerDψj(x), for all j = 1, . . . ,m.
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Then, by (2.2) and the second identity of Proposition 4.2, we obtain

dθ
(j)
(x,f(x))|X×X = 0, for all j = 1, . . . ,m.

So (x, f(x)) ∈ Ak+1, which is in contradiction with (5.4). This concludes the
proof of (5.5) and of the first inclusion in (5.1). The second inclusion in (5.1)
follows from (3.8). Now (5.2) follows at once from (5.1). Finally, (5.2) and (2.3)
yield (5.3). �

Corollary 5.2. One has

T ⊂
n⋃
k=1

[
(Ak \Ak+1) ∩

n⋃
l=n−k

( ⋃
γ∈I(nm,l)

F (Σγ)
)]

and

(5.6) dimH(T ) ≤ max
1≤k≤n

{
min{dimH(Ak \Ak+1), k}

}
.

Proof. Observe that

An ⊂ An−1 ⊂ · · · ⊂ A2 ⊂ A1 = U, An+1 = · · · = An+m = ∅,

compare [3]. Thus one has the disjoint decomposition

(5.7) T =
n⋃
k=1

T ∩ (Ak \Ak+1) =
n⋃
k=1

(T \Ak+1) ∩ (Ak \Ak+1).

The conclusion follows from Theorem 5.1, (5.7) and (2.3). �

5.2. Second application of the main result

First we need the following simple technical lemma.

Proposition 5.3. Let A(1), . . . , A(k) be n × n matrices with real entries, with
k ≤ n. Moreover, for all

h ∈ {1, . . . , k}, i, j, j1, . . . , jk ∈ {1, . . . , n}, α = (α1, . . . , αk) ∈ I(n, k),

let us define

A
(h)
ji := (A(h)ei) · ej , D(j1, . . . , jk;α) := det

⎛
⎜⎜⎝
A

(1)
j1α1

. . . A
(1)
j1αk

...
. . .

...

A
(k)
jkα1

. . . A
(k)
jkαk

⎞
⎟⎟⎠ .

Then this identity holds:

WA(1) ∧ · · · ∧WA(k)

= (−1)
k(k−1)

2

n∑
j1,...,jk=1

∑
α∈I(n,k)

D(j1, . . . , jk;α) ej1 ∧ · · · ∧ ejk ∧ eα1 ∧ · · · ∧ eαk
.
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Proof. One has

WA(1) ∧ · · · ∧WA(k) = (−1)
k(k−1)

2

n∑
i1,...,ik=1

A(1)ei1 ∧ · · · ∧A(k)eik ∧ ei1 ∧ · · · ∧ eik

= (−1)
k(k−1)

2

n∑
j1,...,jk=1

ej1 ∧ · · · ∧ ejk ∧
( n∑
i1,...,ik=1

A
(1)
j1i1

· · ·A(k)
jkik

ei1 ∧ · · · ∧ eik
)
,

where

n∑
i1,...,ik=1

A
(1)
j1i1

· · ·A(k)
jkik

ei1 ∧ · · · ∧ eik

=
∑

α∈I(n,k)

( ∑
σ∈Sk

sign(σ)A
(1)
j1ασ(1)

· · ·A(k)
jkασ(k)

)
eα1 ∧ · · · ∧ eαk

=
∑

α∈I(n,k)
D(j1, . . . , jk;α) eα1 ∧ · · · ∧ eαk

.
�

Theorem 5.4. For α ∈ I(m, r) and β ∈ Ĩ(m, s), with r+ s ≥ m+1, consider the
subset of Ω defined as

R(α, β) :=
{
x ∈ Ψ−1(0) | θ(α1)

(x,f(x)) ∧ · · · ∧ θ(αr)
(x,f(x)) ∧ dθ

(β1)
(x,f(x)) ∧ · · · ∧ dθ(βs)

(x,f(x)) �= 0
}
.

Then

R(α, β) ⊂ {x ∈ Ψ−1(0) | rank(DΨ(x)) ≥ r + s−m}

⊂
n⋃

l=r+s−m

( ⋃
γ∈I(nm,l)

Σγ

)
.

(5.8)

Hence

(5.9) dimH

(
R(α, β)

)
≤ n+m− (r + s).

Proof. Let x ∈ Ω. From Theorem 4.1 and (4.1) we obtain

θ
(α1)
(x,f(x)) ∧ · · · ∧ θ(αr)

(x,f(x)) ∧ dθ
(β1)
(x,f(x)) ∧ · · · ∧ dθ(βs)

(x,f(x)) = (Λr+2sJ) η(x),

with

η(x) := να1(x) ∧ · · · ∧ ναr (x)

∧
(
−WDψβ1

(x) −
m∑

h1=1

νh1(x) ∧ (Dyh1
a(β1))(x, f(x))

)

∧ · · · ∧
(
−WDψβs (x)

−
m∑

hs=1

νhs(x) ∧ (Dyhs
a(βs))(x, f(x))

)
.
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We can develop this wedge product into a sum of monomials

η(x) =
s∑

k=0

ηk(x),

where k indicates the number of factors of the type

WDψβj
(x)

figuring in the corresponding monomial ηk(x).
Observe that ηk(x) includes the wedge product of r+s−k vectors of the family

ν1(x), . . . , νm(x),

which is a basis of (T(x,f(x))Γ)
⊥. It follows that ηk(x) = 0 whenever r+s−k ≥ m+1,

i.e., k ≤ r + s−m− 1. Thus

η(x) = ηr+s−m(x) + ηr+s−m+1(x) + · · ·+ ηs(x).

From this identity and Proposition 5.3, we infer that if η(x) �= 0 then the rank of
DΨ(x) has to be at least r + s−m, namely

R(α, β) ⊂ {x ∈ Ψ−1(0) | rank(DΨ(x)) ≥ r + s−m}.

We complete the proof of (5.8) by recalling (3.8) with p = r+ s−m. The inequal-
ity (5.9) follows from (5.8) and (2.3). �

Corollary 5.5. Let α ∈ I(m, r) and β ∈ Ĩ(m, s), with r+ s ≥ m+1, be such that

θ(α1)
z ∧ · · · ∧ θ(αr)

z ∧ dθ(β1)
z ∧ · · · ∧ dθ(βs)

z �= 0, for all z ∈ Γ.

Then

(5.10) T ⊂
n⋃

l=r+s−m

( ⋃
γ∈I(nm,l)

F (Σγ)
)
,

hence

(5.11) dimH(T ) ≤ n+m− r − s.

Proof. First of all, by definition, one has R(α, β) = Ψ−1(0). Then, from Proposi-
tion 3.1 and Theorem 5.4 it follows that

π(T ) = Ψ−1(0) = R(α, β) ⊂
n⋃

l=r+s−m

( ⋃
γ∈I(nm,l)

Σγ

)
,

hence (5.10). Finally, (5.10) and (2.3) imply (5.11). �
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6. Extension to submanifolds

We can easily extend the inequalities in Corollary 5.2 and Corollary 5.5 to the
case when Γ is a C2 smooth n-submanifold of an open subset U of Rn+m and
θ(1), . . . , θ(m) is a general family of linearly independent differential one-forms of
class C1 in U . This can be done by first recalling that Γ is locally the graph of
a C1 function and then by applying the two corollaries above. More precisely, let D
and T be defined as in Section 3, and consider an arbitrary point

z0 ∈ T = {z ∈ Γ |TzΓ = D(z)}.

Using the argument in the proof of Proposition 2.11.7 in [8], we may choose the
coordinate system so that the differential forms θ(j) are of the special type (3.1)
in a neighbourhood Uz0 of z0. It follows that

Tz0Γ = D(z0) =
[
span{a(j)(z0)− en+j | j = 1, . . . ,m}

]⊥
by (3.2), hence the family of vectors

ei −
m∑
k=1

a
(k)
i (z0)en+k, (i = 1, . . . , n)

has to be a basis of Tz0Γ. In consequence of this fact, we can assume that there
exist an open subset Ω of Rnx and f ∈ C2(Ω,Rmy ) such that

Γz0 := {(x, f(x)) |x ∈ Ω}

is a neighbourhood of z0 with respect to the induced topology of Γ, with Γz0 ⊂ Uz0 .
Observe that

(6.1) {z ∈ Γz0 |TzΓz0 = D(z)} = T ∩ Γz0 .

Now we are in position to extend the corollaries very easily:

• One has

(6.2) dimH(T ) ≤ max
1≤k≤n

{
min{dimH(Ak \Ak+1), k}

}
.

Proof of (6.2). From (5.6) and (6.1) we obtain

dimH(T ∩ Γz0) ≤ max
1≤k≤n

{
min{dimH([Ak ∩ Uz0 ] \ [Ak+1 ∩ Uz0 ]), k}

}
.

But

dimH([Ak ∩ Uz0 ] \ [Ak+1 ∩ Uz0 ]) = dimH([Ak \Ak+1] ∩ Uz0)
≤ dimH(Ak \Ak+1)

by (2.3), hence

dimH(T ∩ Γz0) ≤ max
1≤k≤n

{
min{dimH(Ak \Ak+1), k}

}
.

By the arbitrariness of z0, we get (6.2). �
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• Let α ∈ I(m, r) and β ∈ Ĩ(m, s), with r + s ≥ m+ 1, be such that

θ(α1)
z ∧ · · · ∧ θ(αr)

z ∧ dθ(β1)
z ∧ · · · ∧ dθ(βs)

z �= 0

for all z ∈ Γ. Then

(6.3) dimH(T ) ≤ n+m− (r + s).

Proof of (6.3). From (5.11) and (6.1) we obtain

dimH(T ∩ Γz0) ≤ n+m− r − s.

Hence (6.3) follows by the arbitrariness of z0. �

Remark 6.1. The inequalities (6.2) and (6.3) have been proved in [3] by a different
and very geometric approach. They correspond to Theorem 1.3 in [3] (i.e., the main
result) and Corollary 6.8 in [3], respectively.
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