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Boundedness of spectral multipliers for

Schrödinger operators on open sets

Tsukasa Iwabuchi, Tokio Matsuyama and Koichi Taniguchi

Abstract. Let HV be a self-adjoint extension of the Schrödinger operator
−Δ + V (x) with the Dirichlet boundary condition on an arbitrary open
set Ω of R

d, where d ≥ 1 and the negative part of potential V belongs
to the Kato class on Ω. The purpose of this paper is to prove Lp-Lq-
estimates and gradient estimates for an operator ϕ(HV ), where ϕ is an
arbitrary rapidly decreasing function on R, and ϕ(HV ) is defined via the
spectral theorem.

1. Introduction and main results

Let Ω be an open set of Rd, with d ≥ 1. We consider the Schrödinger operator

−Δ+ V (x) = −
d∑

j=1

∂2

∂x2j
+ V (x)

with the Dirichlet boundary condition. Here V (x) is a real-valued measurable
function on Ω. If the negative part of potential V is assumed to be of Kato class
on Ω, then the operator −Δ+ V (x) defined on C∞

0 (Ω) is uniquely extended to a
semi-bounded self-adjoint operator HV with domain

D(HV ) =
{
u ∈ H1

0 (Ω)
∣∣√V+u ∈ L2(Ω), HV u ∈ L2(Ω)

}
such that

〈
HV u, v

〉
L2(Ω)

=

∫
Ω

∇u(x) · ∇v(x) dx+

∫
Ω

V (x)u(x) v(x) dx

for any u ∈ D(HV ) and v ∈ H1
0 (Ω) with

√
V+v ∈ L2(Ω) (see Proposition 2.1

in Section 2), where V+ is the positive part of V ,
〈
HV u, v

〉
L2(Ω)

stands for the
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inner product of HV u and v in L2(Ω), and H1
0 (Ω) is the completion of C∞

0 (Ω)
with respect to H1(Ω)-norm. Let {EHV (λ)}λ∈R be the spectral resolution of the
identity for HV , where the resolution {EHV (λ)}λ∈R is uniquely determined for HV

by the spectral theorem. Then for any Borel measurable function ϕ on R, an
operator ϕ(HV ) is defined by letting

ϕ(HV ) =

∫ ∞

−∞
ϕ(λ) dEHV (λ)

with domain

D(ϕ(HV )) =
{
f ∈ L2(Ω)

∣∣ ∫ ∞

−∞
|ϕ(λ)|2 d〈EHV (λ)f, f〉L2(Ω) <∞

}
.

In this paper we study functional calculus of ϕ(θHV ) for θ > 0.

We suppose that the potential V satisfies the following condition:

Assumption A. V is a real-valued measurable function on Ω, and is decomposed
as V = V+ − V− such that V± ≥ 0, V+ ∈ L1

loc(Ω) and V− ∈ Kd(Ω), where Kd(Ω)
is the Kato class of potentials.

Following Simon (see Section A.2 in [22]), let us give the definition of Kd(Ω)
as follows.

Definition. We say that V− belongs to the class Kd(Ω) if⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
r→0

sup
x∈Ω

∫
Ω∩{|x−y|<r}

V−(y)
|x− y|d−2

dy = 0, d ≥ 3,

lim
r→0

sup
x∈Ω

∫
Ω∩{|x−y|<r}

log(|x− y|−1)V−(y) dy = 0, d = 2,

sup
x∈Ω

∫
Ω∩{|x−y|<1}

V−(y) dy <∞, d = 1.

The aim of this paper is to show Lp-Lq-estimates and gradient estimates for
spectral multipliers ϕ(HV ) on Ω. The motivation of the problem in this paper
comes from the point of view of harmonic analysis and PDEs. For instance, the
spectral multiplier is a generalization of Fourier multiplier in the following sense:
When Ω = Rd and HV = −Δ is the free Hamiltonian on Rd, the spectral multiplier
coincides with the Fourier multiplier, i.e.,

ϕ(−Δ) = F−1
[
ϕ(| · |2)F ]

,

where F and F−1 denote the Fourier transform and inverse Fourier transform,
respectively. We also show uniform estimates for ϕ(θHV ) with respect to a param-
eter θ. These estimates play a fundamental role in studying Hardy spaces, BMO
spaces, Besov spaces and Triebel–Lizorkin spaces generated by the Schrödinger
operator (see [1], [5], [7], [10], [14], [17], [25]). The theory of spectral multipliers is
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also related to the study of convergence of the Riesz means or convergence of eigen-
function expansion of self-adjoint operators (see, e.g., Chapter IX in Stein [23]).

In this paper we denote by B(X,Y ) the space of all bounded linear operators
from a Banach space X to another one Y . When X = Y , we denote by B(X) =
B(X,X). We use the notation D(T ) for the domain of an operator T . We denote
by S (R) the space of rapidly decreasing functions on R.

We shall prove the following.

Theorem 1.1. Let ϕ ∈ S (R). Suppose that the potential V satisfies assump-
tion A. Let 1 ≤ p ≤ q ≤ ∞. Then ϕ(HV ) is extended to a bounded linear operator
from Lp(Ω) to Lq(Ω). Furthermore, the following assertions hold:

(i) There exists a constant C > 0 such that

(1.1) ‖ϕ(θHV )‖B(Lp(Ω),Lq(Ω)) ≤ C θ−(d/2)(1/p−1/q)

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies

(1.2)

⎧⎪⎨
⎪⎩

sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then the estimate (1.1) holds for any θ > 0.

Theorem 1.2. Let ϕ ∈ S (R). Suppose that the potential V satisfies assump-
tion A. Let 1 ≤ p ≤ 2. Then ϕ(HV ) is extended to a bounded linear operator from
Lp(Ω) to W 1,p(Ω). Furthermore, the following assertions hold:

(i) There exists a constant C > 0 such that

(1.3) ‖∇ϕ(θHV )‖B(Lp(Ω)) ≤ C θ−1/2

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies (1.2). Then the estimate (1.3) holds for any
θ > 0.

In the rest of this section, let us give some remarks on Theorems 1.1 and 1.2.
In the setting of Euclidean spaces, there are many results on Lp-estimates for
ϕ(θHV ) under the assumption that the potential is non-negative on Rd (see, e.g.,
[10], [13], [25]). On the other hand, when the potentials are admitted to be
negative, there are several known results; Jensen and Nakamura dealt with the
Schrödinger operator with potential whose negative part is of Kato class (see [14]
and [15]), and then D’Ancona and Pierfelice also dealt with the same type of
potentials satisfying (1.2) (see [5]). Furthermore, Jensen and Nakamura proved
Lp-Lq-estimates for ϕ(θHV ) (see [14], [15]). As is already mentioned before, it
would be very important to derive Lp-estimates for ϕ(HV ) on open sets of Rd.
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There are several studies on Lp-estimates for more general operators ϕ(L), where L
is a non-negative self-adjoint operator having the property that the integral ker-
nel of semigroup {e−tL}t>0 has a Gaussian upper bound (see [6], [12], [17], [18]).
Among other things, there is a result on the estimates involving a parameter θ > 0;
Duong, Ouhabaz and Sikora proved uniform Lp-estimates for ϕ(θL) with respect
to θ > 0, where ϕ is in Hs(R) (s > d/2) with compact support (see [6]). Here,
we note in Theorem 1.1 that ϕ can be taken as functions in the weighted Sobolev
spaces. For more detail, one can refer to some remarks in Section 8. As to Theo-
rem 1.2, the problem is closely related to Lp-boundedness of operators∇e−tHV and

∇H−1/2
V . When V is non-negative, the results of [4], [18] imply the estimate (1.3)

for p ≤ 2. On the other hand, the situation of the case p > 2 is more complicated
(see [2], [4], [8], [16], [18], [21]).

One of the main ingredients of this paper is to reveal that we are able to deal
with a potential satisfying (1.2) in the setting of open sets. In fact, to the best
of our knowledge, Lp-estimates for ϕ(θHV ) are known for operators HV with the
Gaussian upper bounds for e−tHV (see [6]) and we prove upper bounds of this
type in Proposition 3.1 below. The advantage of this paper is to provide a unified
treatment of the proof of Theorems 1.1 and 1.2. For this purpose, we introduce
amalgam spaces on Ω and apply the Gaussian upper bounds and commutator
estimates. This idea comes from Jensen and Nakamura ([14], [15]).

Let us introduce some notations used in this paper. We denote by χE the
characteristic function of a measurable set E. The convolution of measurable
functions f and g on Rd is defined by letting

(f ∗ g)(x) =
∫
Rd

f(x− y) g(y) dy.

For a self-adjoint operator T on a Hilbert space, we denote by σ(T ) the spectrum
of T .

This paper is organized as follows. In Section 2 the self-adjointness of opera-
tor HV is shown. In Section 3 we prepare the pointwise estimate for the kernel
of e−tHV . Section 4 is devoted to proving the uniform estimates in scaled amalgam
spaces for the resolvent of HV . In Section 5 some commutator estimates are de-
rived. In Section 6 Lp-estimates for ϕ(θHV ) are proved. Based on these estimates,
the proof of Theorems 1.1 and 1.2 are given in Section 7.

2. Self-adjointness of HV

In this section we show self-adjointness of Schrödinger operators with the Dirichlet
boundary condition under assumption A by using the theory of quadratic forms.

Our purpose in this section is to prove the following.

Proposition 2.1. Suppose that the potential V satisfies assumption A. Then the
following assertions hold:
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(i) There exists a unique semi-bounded self-adjoint operator HV on L2(Ω) with
domain

(2.1) D(HV ) =
{
u ∈ H1

0 (Ω)
∣∣√V+u ∈ L2(Ω), HV u ∈ L2(Ω)

}
such that

(2.2)
〈
HV u, v

〉
L2(Ω)

=

∫
Ω

∇u(x) · ∇v(x) dx+

∫
Ω

V (x)u(x) v(x) dx

for any u ∈ D(HV ) and v ∈ H1
0 (Ω) with

√
V+v ∈ L2(Ω).

(ii) Assume further that V− satisfies

(2.3)

⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
4πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then HV is non-negative on L2(Ω).

We recall a notion of quadratic forms on Hilbert spaces (see p. 276 in Reed and
Simon [19]).

Definition. Let H be a Hilbert space with the norm ‖ · ‖. A quadratic form is a
map

q : Q(q)×Q(q) → C,

where Q(q) is a dense linear subset of H called the form domain, such that q(·, v)
is linear and q(u, ·) is conjugate linear for u, v ∈ Q(q). A quadratic form q is called
semi-bounded if

q(u, u) ≥ −M‖u‖2
for some real number M , and in particular, q is called non-negative if

q(u, u) ≥ 0

for any u ∈ Q(q). We say that a semi-bounded quadratic form q is closed if Q(q)
is complete with respect to the norm:

(2.4) ‖u‖+1 :=
√
q(u, u) + (M + 1)‖u‖2.

The proof of Proposition 2.1 is done by using the following two lemmas.

Lemma 2.2. Let H be a Hilbert space with the inner product 〈·, ·〉, and let

q : Q(q)×Q(q) → C

be a densely defined semi-bounded closed quadratic form. Then there exists a semi-
bounded self-adjoint operator T on H uniquely such that{

D(T ) =
{
u ∈ Q(q) | ∃wu ∈ H such that q(u, v) = 〈wu, v〉 for all v ∈ Q(q)

}
,

T u = wu, u ∈ D(T ).
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We note that D(T ) can be simply written as

D(T ) = {u ∈ Q(q) |Tu ∈ H } .

For the proof of Lemma 2.2, see Theorem VIII.15 in [19] (see also Section 1.2.3 in
Ouhabaz [18] and Theorem 5.37 in Weidmann [24]).

The following lemma states that the negative part of the potential is relatively
form-bounded with respect to the Dirichlet Laplacian.

Lemma 2.3. Suppose that the negative part V− of the potential V belongs to
Kd(Ω). Then the following assertions hold:

(i) For any ε > 0, there exists a constant bε > 0 such that

(2.5)

∫
Ω

V−(x) |u(x)|2 dx ≤ ε ‖∇u‖2L2(Ω) + bε‖u‖2L2(Ω)

for any u ∈ H1
0 (Ω).

(ii) Let d ≥ 3. Assume further that V− satisfies

(2.6) ‖V−‖Kd(Ω) := sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <∞.

Then

(2.7)

∫
Ω

V−(x) |u(x)|2 dx ≤ Γ(d/2− 1)‖V−‖Kd(Ω)

4πd/2
‖∇u‖2L2(Ω)

for any u ∈ H1
0 (Ω).

Proof. The proof is done by reducing the problem to the whole space case, and by
the similar argument of Lemma 3.1 from D’Ancona and Pierfelice [5] who treated
mainly three dimensional case.

First we show the assertion (i). Let u ∈ C∞
0 (Ω), and let ũ and Ṽ− be the zero

extensions of u and V− to Rd, respectively. We prove that for any ε > 0, there
exists a constant bε > 0 such that

(2.8)

∫
Rd

Ṽ−(x)|ũ(x)|2 dx ≤ ε ‖∇ũ‖2L2(Rd) + bε‖ũ‖2L2(Rd).

The inequality (2.8) is equivalent to∫
Rd

Ṽ−(x) |ũ(x)|2 dx ≤ ε 〈ũ,−Δũ〉L2(Rd) + bε‖ũ‖2L2(Rd) = ε
∥∥∥(H0 +

bε
ε

)1/2

ũ
∥∥∥2
L2(Rd)

,

where H0 = −Δ is the self-adjoint operator with domain H2(Rd). Put

v =
(
H0 +

bε
ε

)1/2

ũ.
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Then the inequality (2.8) takes the following form:∥∥∥Ṽ 1/2
−

(
H0 +

bε
ε

)−1/2

v
∥∥∥2
L2(Rd)

≤ ε ‖v‖2L2(Rd).

This estimate can be obtained if we show that

(2.9) ‖TT ∗‖B(L2(Rd)) ≤ ε,

where we set

T := Ṽ
1/2
−

(
H0 +

bε
ε

)−1/2

.

Thus, our goal is to show that for any ε > 0, there exists a constant bε > 0 such
that the estimate (2.9) holds.

Let ε > 0 be fixed arbitrarily, and let b > 0. Let G0(x− y;M) be the kernel of
(H0 +M)−1 for M ≥ 0. By the definition of G0 and the Schwarz inequality, we
estimate

‖TT ∗v ‖2L2(Rd) =
∥∥∥Ṽ 1/2

−
(
H0 +

b

ε

)−1

Ṽ
1/2
− v

∥∥∥2
L2(Rd)

=

∫
Rd

Ṽ−(x)
∣∣∣ ∫

Rd

G0

(
x− y;

b

ε

)
Ṽ

1/2
− (y)v(y) dy

∣∣∣2 dx
≤

∫
Rd

Ṽ−(x)
( ∫

Rd

G0

(
x− y;

b

ε

)
Ṽ−(y) dy

)( ∫
Rd

G0

(
x− y;

b

ε

)
|v(y)|2 dy

)
dx

≤
∥∥∥(H0 +

b

ε

)−1

Ṽ−
∥∥∥
L∞(Rd)

∫
Rd

Ṽ−(x)
( ∫

Rd

G0

(
x− y;

b

ε

)
|v(y)|2 dy

)
dx.

Applying the Fubini–Tonelli theorem to the integral on the right, we estimate∫
Rd

Ṽ−(x)
( ∫

Rd

G0

(
x− y;

b

ε

)
|v(y)|2 dy

)
dx

=

∫
Rd

( ∫
Rd

G0

(
x− y;

b

ε

)
Ṽ−(x) dx

)
|v(y)|2 dy

≤
∥∥∥(H0 +

b

ε

)−1

Ṽ−
∥∥∥
L∞(Rd)

‖v‖2L2(Rd).

Combining the above two estimates, we obtain

‖TT ∗v‖2L2(Rd) ≤
∥∥∥(H0 +

b

ε

)−1

Ṽ−
∥∥∥2
L∞(Rd)

‖v‖2L2(Rd).

Using the fact that V ∈ Kd(R
d) is equivalent to

lim
M→∞

∥∥(H0 +M)−1|V |∥∥
L∞(Rd)

= 0

(see Proposition A.2.3 in [22]), we see that there exists a constant bε > 0 such that

(2.10)
∥∥∥(H0 +

bε
ε

)−1

Ṽ−
∥∥∥
L∞(Rd)

≤ ε,

since Ṽ− ∈ Kd(R
d), which implies (2.9). Hence (2.8) is proved.
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Now the required inequality (2.5) follows from (2.8). In fact, we estimate, by
using (2.8),∫

Ω

V−(x) |u(x)|2 dx =

∫
Rd

Ṽ−(x)|ũ(x)|2 dx
≤ ε ‖∇ũ‖2L2(Rd) + bε‖ũ‖2L2(Rd) = ε ‖∇u‖2L2(Ω) + bε‖u‖2L2(Ω).

As a consequence, by density argument, the inequality (2.5) is proved.
Next we show the assertion (ii). The proof of (2.7) is almost identical to that

of (2.5) by regarding bε as 0. The only difference is the estimate (2.10). We use
the following pointwise estimate:

0 < G0(x; 0) ≤ Γ(d/2− 1)

4πd/2

1

|x|d−2
, x = 0

for d ≥ 3. Instead of (2.10), we can apply the following estimate:

‖H−1
0 Ṽ−‖L∞(Rd) = sup

x∈Rd

∫
Rd

G0(x− y; 0) Ṽ−(y) dy

≤ Γ(d/2− 1)

4πd/2
sup
x∈Rd

∫
Rd

Ṽ−(y)
|x− y|d−2

dy =
Γ(d/2− 1)‖V−‖Kd(Ω)

4πd/2
,

whence the argument in (2.5) works well in this case, and we get (2.7). The proof
of Lemma 2.3 is complete. �

We are now in a position to prove Proposition 2.1.

Proof of Proposition 2.1. Let q be a quadratic form defined by letting

q(u, v) =

∫
Ω

(∇u(x) · ∇v(x) + V (x)u(x) v(x)
)
dx, u, v ∈ Q(q),

where
Q(q) =

{
u ∈ H1

0 (Ω)
∣∣√V+u ∈ L2(Ω)

}
.

It is clear that q is densely defined on L2(Ω). Moreover, q is semi-bounded. In
fact, it follows from the inequality (2.5) for ε = 1 that

(2.11) q(u, u) ≥ ‖∇u‖2L2(Ω) −
∫
Ω

V−(x) |u(x)|2 dx ≥ −b1‖u‖2L2(Ω)

for any u ∈ Q(q). Hence, if we show that q is closed, then Lemma 2.2 ensures the
unique existence of the semi-bounded self-adjoint operator HV on L2(Ω) satisfy-
ing (2.1) and (2.2).

We show that q is closed. Put

q1(u, v) =

∫
Ω

(∇u(x) · ∇v(x) − V−(x)u(x)v(x)
)
dx, u, v ∈ Q1(q) := H1

0 (Ω),

q2(u, v) =

∫
Ω

V+(x)u(x)v(x) dx, u, v ∈ Q2(q) :=
{
u ∈ L2(Ω)

∣∣√V+u ∈ L2(Ω)
}
.
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Then we have

q(u, v) = q1(u, v) + q2(u, v), u, v ∈ Q1(q) ∩ Q2(q).

Since the sum of two closed quadratic forms is also closed, it suffices to show that q1
and q2 are closed. First we show that q1 is closed. All we have to do is to show that
the norm ‖ · ‖+1 is equivalent to that of H1

0 (Ω), where ‖ · ‖+1 is defined in (2.4),
i.e.,

‖u‖+1 =
√
q1(u, u) + (b1 + 1)‖u‖2L2(Ω).

Since V− ≥ 0, we see that

‖u‖2+1 ≤ ‖∇u‖2L2(Ω) + (b1 + 1)‖u‖2L2(Ω) ≤ (b1 + 1)‖u‖2H1(Ω)

for any u ∈ H1
0 (Ω), and by using the inequality (2.5), we have

‖u‖2+1 = ‖∇u‖2L2(Ω) −
∫
Ω

V−(x)|u(x)|2 dx+ (b1 + 1)‖u‖2L2(Ω)

≥ (1− ε)‖∇u‖2L2(Ω) + (b1 − bε + 1)‖u‖2L2(Ω)

for any u ∈ H1
0 (Ω), where we choose ε ∈ (0, 1) and bε such that b1 < bε < b1 + 1.

The above two inequalities imply that ‖ · ‖+1 is equivalent to ‖ · ‖H1(Ω). Hence q1
is closed.

Next we show that q2 is closed. Put q2(u) = q2(u, u) for simplicity. Assume
that

u ∈ L2(Ω), uj ∈ Q(q2), q2(uj − uk) → 0, ‖uj − u‖L2(Ω) → 0 as j, k → ∞,

and we prove that

(2.12) u ∈ Q(q2) and q2(uj − u) → 0 as j → ∞.

Since {√V+uj}∞j=1 is a Cauchy sequence in L2(Ω), there exists v ∈ L2(Ω) such
that √

V+uj → v in L2(Ω).

Hence the sequence {√V+uj}∞j=1 converges to v almost everywhere along a subse-
quence denoted by the same, namely,√

V+uj(x) → v(x) a.e.x ∈ Ω as j → ∞.

On the other hand, since any convergent sequence in L2(Ω) contains a subsequence
which converges almost everywhere in Ω, it follows that√

V+uj(x) →
√
V+u(x) a.e.x ∈ Ω as j → ∞.

Summarizing the three convergences obtained now, we get√
V+u = v ∈ L2(Ω).

This proves (2.12). Thus q is closed.
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Finally, we prove the assertion (ii). We estimate by using the inequality (2.7)
from Lemma 2.3 and assumption (2.3) of V−,

〈HV u, u〉L2(Ω) ≥ ‖∇u‖2L2(Ω) −
∫
Ω

V−(x) |u(x)|2 dx

≥
(
1− Γ(d/2− 1)‖V−‖Kd(Ω)

4πd/2

)
‖∇u‖2L2(Ω) ≥ 0

for any u ∈ D(HV ). Hence HV is non-negative on L2(Ω). The proof of Proposi-
tion 2.1 is complete. �

3. Lp-Lq-estimates and pointwise estimates for e−tHV

In this section we shall prove Lp-Lq-estimates for semigroup {e−tHV }t>0 generated
by HV , and pointwise estimates for the kernel of e−tHV . Throughout this section
we use the following notation:

γd =
πd/2

Γ(d/2− 1)
for d ≥ 3.

Recalling the quantity

‖V−‖Kd(Ω) = sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy

(see (2.6)), we have the following.

Proposition 3.1. Let p and q be such that 1 ≤ p ≤ q ≤ ∞. Suppose that the
potential V satisfies assumption A. Then e−tHV is extended to a bounded linear
operator from Lp(Ω) to Lq(Ω) for each t > 0. Furthermore, the following assertions
hold:

(i) There exist two constants ω ≥ − inf σ(HV ) and C1 > 0 such that

(3.1)
∥∥e−tHV f

∥∥
Lq(Ω)

≤ C1t
−(d/2)(1/p−1/q)eωt‖f‖Lp(Ω)

for any t > 0 and f ∈ Lp(Ω).

(ii) There exist two constants ω ≥ − inf σ(HV ) and C2 > 0 such that the kernel
K(t, x, y) of e−tHV fulfills with the following estimate:

(3.2) 0 ≤ K(t, x, y) ≤ C2t
−d/2eωte−

|x−y|2
8t a.e. x, y ∈ Ω

for any t > 0.

(iii) Assume further that V− satisfies

(3.3)

{
‖V−‖Kd(Ω) < 2γd, if d ≥ 3,

V− = 0, if d = 1, 2.
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Then

(3.4)
∥∥e−tHV f

∥∥
Lq(Ω)

≤

⎧⎪⎨
⎪⎩

(2πt)−(d/2)(1/p−1/q)(
1− ‖V−‖Kd(Ω)/2γd

)2 ‖f‖Lp(Ω), if d ≥ 3,

(4πt)−(d/2)(1/p−1/q)‖f‖Lp(Ω), if d = 1, 2

for any t > 0 and f ∈ Lp(Ω).

(iv) If V− is restricted to (1.2), i.e.,{
‖V−‖Kd(Ω) < γd, if d ≥ 3,

V− = 0, if d = 1, 2,

then

(3.5) 0 ≤ K(t, x, y) ≤

⎧⎪⎪⎨
⎪⎪⎩

(2πt)−d/2

1− ‖V−‖Kd(Ω)/γd
e−

|x−y|2
8t if d ≥ 3,

(4πt)−d/2e−
|x−y|2

4t if d = 1, 2,

a.e. x, y ∈ Ω, for any t > 0.

The following lemma is crucial in the proof of Proposition 3.1.

Lemma 3.2. Suppose that the potential V satisfies assumption A. Let Ṽ and Ṽ−
be the zero extensions of V and V− to Rd, respectively. Let H̃Ṽ and H̃Ṽ− be the

self-adjoint extensions of −Δ+ Ṽ and −Δ− Ṽ− on L2(Rd), respectively. Then for
any non-negative function f ∈ L2(Ω), the following estimates hold:(

e−tHV f
)
(x) ≥ 0, a.e. x ∈ Ω,(3.6) (

e−tHV f
)
(x) ≤ (

e−tH̃Ṽ f̃
)
(x), a.e. x ∈ Ω,(3.7) (

e−tH̃Ṽ f̃
)
(x) ≤ (

e
−tH̃Ṽ− f̃

)
(x), a.e. x ∈ Ω,(3.8)

for any t > 0, where f̃ is the zero extension of f to Rd.

The proof of Lemma 3.2 is rather long, and will be postponed.

Let us prove Proposition 3.1.

Proof of Proposition 3.1. The assertion (i) is an immediate consequence of the as-
sertion (ii) and Young’s inequality. Hence we concentrate on proving the asser-
tion (ii). We adopt a sequence {jε(x)}ε>0 of functions on Rd defined by letting

(3.9) jε(x) :=
1

εd
j
(x
ε

)
, x ∈ R

d,

where

j(x) =

{
Ad e

− 1
1−|x|2 , for |x| < 1,

0, for |x| ≥ 1
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with

Ad :=
(∫

|x|<1

e
− 1

1−|x|2 dx
)−1

.

As is well known, the sequence {jε(x)}ε>0 enjoys the following property:

(3.10) jε(· − y) → δy in S ′(Rd) as ε→ 0,

where δy is the Dirac delta function at y ∈ Ω. Let y ∈ Ω be fixed, and let K̃(t, x, y)

be the kernel of e−tH̃Ṽ . Taking ε > 0 sufficiently small so that supp jε(· − y) � Ω,
and applying (3.6) and (3.7) from Lemma 3.2 to both f and f̃ replaced by jε(·−y),
we get

0 ≤
∫
Ω

K(t, x, z) jε(z − y) dz ≤
∫
Rd

K̃(t, x, y) jε(z − y) dz a.e.x ∈ Ω.

Noting (3.10) and taking the limit of the previous inequality as ε→ 0, we get

0 ≤ K(t, x, y) ≤ K̃(t, x, y) a.e.x, y ∈ Ω

for any t > 0. Finally, by using the pointwise estimates:

(3.11) K̃(t, x, y) ≤ C t−d/2 eωt e−
|x−y|2

8t a.e.x, y ∈ Ω

for any t > 0 (see Proposition B.6.7 in [22]), we obtain the estimate (3.2), as
desired. Thus the assertion (ii) is proved.

Finally, we prove the estimates (3.4) in (iii) and (3.5) in (iv). We recall, Propo-
sition 5.1 in [5], that if d ≥ 3, then

∥∥e−tH̃Ṽ ˜|f |∥∥
Lq(Rd)

≤ (2πt)−(d/2)(1/p−1/q)(
1− ‖Ṽ−‖Kd(Rd)/2γd

)2 ‖f̃‖Lp(Rd)

for any t > 0, and

K̃(t, x, y) ≤ (2πt)−d/2

1− ‖Ṽ−‖Kd(Rd)/γd
e−

|x−y|2
8t

(
=

(2πt)−d/2

1− ‖V−‖Kd(Ω)/γd
e−

|x−y|2
8t

)

for a.e. x, y ∈ Ω and any t > 0. When d = 1, 2, we have∥∥e−tH̃Ṽ ˜|f |∥∥
Lq(Rd)

≤ (4πt)−(d/2)(1/p−1/q)‖f̃‖Lp(Rd),

K̃(t, x, y) ≤ (4πt)−d/2e−
|x−y|2

4t a.e.x, y ∈ Ω

for any t > 0. Then, applying the above estimates to the argument of the deriva-
tions of (3.1) and (3.2), we conclude (3.4) and (3.5). The proof of Proposition 3.1
is finished. �

In the rest of this section we shall prove Lemma 3.2. For this purpose, we need
further the following two lemmas. The first one is concerned with the existence
and uniqueness of solutions for evolution equations in abstract setting.
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Lemma 3.3. Let H be a Hilbert space with norm ‖ · ‖. Assume that A is a non-
negative self-adjoint operator on H . Let {T (t)}t≥0 be the semigroup generated
by A, and let f ∈ H and u(t) = T (t)f . Then u is a unique solution of the
following problem:⎧⎪⎨

⎪⎩
u ∈ C([0,∞);H ) ∩ C((0,∞);D(A)) ∩C1((0,∞);H ),

u′(t) +Au(t) = 0, t > 0,

u(0) = f,

where D(A) means the Banach space with graph norm ‖ · ‖+ ‖A · ‖.
Remark. It is known that for any non-negative self-adjoint operator on a Hilbert
space, its domain is a Banach space with respect to the graph norm of its operator
(see Corollary 2.2.9 in Cazenave and Haraux [3]).

For the proof of Lemma 3.3, see, e.g., Theorem 3.2.1 in [3].

The second one is about the differentiability properties for composite functions
of Lipschitz continuous functions and W 1,p-functions.

Lemma 3.4. Consider the positive and negative parts of a real-valued function
u ∈W 1,p(Ω) for 1 ≤ p ≤ ∞:

u+ = χ{u>0}u and u− = −χ{u<0}u.

Then u± ∈ W 1,p(Ω) and

∂xju
+ = χ{u>0}∂xju, ∂xju

− = −χ{u<0}∂xju (j = 1, 2, . . . , d),

where ∂xj = ∂/∂xj. Furthermore, if u ∈ W 1,p
0 (Ω) for 1 ≤ p <∞, then

(3.12) u± ∈W 1,p
0 (Ω),

where W 1,p
0 (Ω) is the completion of C∞

0 (Ω) with respect to W 1,p(Ω)-norm.

Proof. Since the first part of the lemma is well known, we omit the proof. For
the proof, see Lemma 7.6 in Gilbarg and Trudinger [11]. Hence we prove only the
latter part.

Since u ∈ W 1,p
0 (Ω) with 1 ≤ p < ∞, there exists a sequence {ϕn}n in C∞

0 (Ω)
such that

(3.13) ϕn → u in W 1,p(Ω) as n→ ∞.

Let us take a non-negative function ψ ∈ C∞(R) as

ψ(x)

⎧⎪⎨
⎪⎩
= −x, if x ≤ −1,

≤ −x, if −1 < x < 0,

= 0, if x ≥ 0,
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and put

(3.14) ψn(x) :=
1

n
ψ(nx), n = 1, 2, . . .

Then there exists a constant C0 > 0 such that

(3.15) |ψ′
n(x)| ≤ C0, n = 1, 2, . . .

Let us consider two kinds of composite functions ψn ◦ ϕn and ψn ◦ u. We show
that

ψn ◦ ϕn − ψn ◦ u→ 0 in W 1,p(Ω),(3.16)

ψn ◦ u− u− → 0 in W 1,p(Ω)(3.17)

as n→ ∞. In fact, noting (3.15), we deduce from the mean value theorem that

‖ψn ◦ ϕn − ψn ◦ u‖Lp(Ω) =
∥∥∥ ∫ 1

0

ψ′
n

(
θϕn + (1− θ)u

)
(ϕn − u) dθ

∥∥∥
Lp(Ω)

≤ C0 ‖ϕn − u‖Lp(Ω).

(3.18)

As to the derivatives of ψn ◦ ϕn − ψn ◦ u, we write

‖∂xj(ψn ◦ ϕn − ψn ◦ u)‖Lp(Ω)

= ‖ψ′
n(ϕn)∂xjϕn − ψ′

n(u)∂xju‖Lp(Ω)

≤ ‖ψ′
n(ϕn)(∂xjϕn − ∂xju)‖Lp(Ω) + ‖ [ψ′

n(ϕn)− ψ′
n(u)] ∂xju‖Lp(Ω)(3.19)

≤ C0 ‖∂xjϕn − ∂xju‖Lp(Ω) + ‖ [ψ′
n(ϕn)− ψ′

n(u)] ∂xju‖Lp(Ω),

where we used again (3.15) in the last step. Noting the pointwise convergence and
uniform boundedness with respect to n:

[ψ′
n(ϕn)(x) − ψ′

n(u)(x)] ∂xju(x) → 0 a.e. x ∈ Ω as n→ ∞,∣∣[ψ′
n(ϕn)(x) − ψ′

n(u)(x)] ∂xju(x)
∣∣ ≤ 2C0

∣∣∂xju(x)
∣∣ ∈ Lp(Ω),

we can apply Lebesgue’s dominated convergence theorem to obtain

(3.20)
∥∥[ψ′

n(ϕn)− ψ′
n(u)] ∂xju

∥∥
Lp(Ω)

→ 0 as n→ ∞.

Hence, summarizing (3.13) and (3.18)-(3.20), we obtain (3.16).
As to the latter convergence (3.17), since∣∣(ψn ◦ u)(x) − u−(x)

∣∣ ≤ 2 |u(x)| ∈ Lp(Ω),∣∣∂xj(ψn ◦ u)(x) − ∂xju
−(x)

∣∣ ≤ (C0 + 1)
∣∣∂xju(x)

∣∣ ∈ Lp(Ω),

and since
(ψn ◦ u)(x)− u−(x) → 0, a.e. x ∈ Ω,

∂xj (ψn ◦ u)(x)− ∂xju
−(x) = [ψ′

n(u)− χ{u<0}] ∂xju(x) → 0, a.e. x ∈ Ω

as n→ ∞, Lebesgue’s dominated convergence theorem allows us to conclude (3.17).
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It follows from (3.16) and (3.17) that

ψn ◦ ϕn − u− → 0 in W 1,p(Ω) as n→ ∞.

Since {ψn ◦ ϕn} is a sequence in C∞
0 (Ω), we conclude (3.12) from the above con-

vergence. The proof of Lemma 3.4 is finished. �

Proof of Lemma 3.2. We start by proving (3.6). LetM be a real number satisfying

M > − inf σ(HV ).

Then HV +M is the non-negative self-adjoint operator on L2(Ω) with domain

D(HV +M) =
{
u ∈ H1

0 (Ω)
∣∣√V+u ∈ L2(Ω), HV u ∈ L2(Ω)

}
.

Put
u(t) = e−t(HV +M)f, t ≥ 0

for a non-negative function f ∈ L2(Ω). Lemma 3.3 implies that u(t) satisfies⎧⎪⎨
⎪⎩
u ∈ C([0,∞);L2(Ω)) ∩ C([0,∞);D(HV +M)) ∩ C1((0,∞);L2(Ω)),

∂tu(t) + (HV +M)u(t) = 0, t > 0,

u(0) = f.

If we show that

(3.21) ‖u−(t)‖2L2(Ω) is monotonically decreasing with respect to t ≥ 0,

then we obtain
u−(t, x) = 0 a.e. x ∈ Ω

for each t > 0, since

u−(0, x) = f−(x) = 0 a.e.x ∈ Ω.

This means that
u(t, x) ≥ 0 a.e. x ∈ Ω

for each t > 0; thus we conclude (3.6). Now the assertion (3.21) is an immediate
consequence of the following:

(3.22)
d

dt

∫
Ω

(
u−

)2
dx ≤ 0.

Hence we pay attention to prove (3.22). Here and below, the time variable t may
be omitted, since no confusion arises.

By the definition of u+, we have

∂tu
+(t, x) = 0 for x ∈ {u < 0} and each t > 0.
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We compute

d

dt

∫
Ω

(
u−

)2
dx = 2

∫
Ω

u−∂tu− dx = 2

∫
{u<0}

u−∂t
(
u+ − u

)
dx

= −2

∫
{u<0}

u−∂tu dx = 2

∫
Ω

[(HV +M)u]u− dx
(3.23)

where we use the equation

∂tu+ (HV +M)u = 0

in the last step. Since u− ∈ H1
0 (Ω) and

√
V+u

− ∈ L2(Ω) by Lemma 3.4 and√
V+u ∈ L2(Ω), we have, by going back to (2.2) in the definition of HV ,

(3.24)

∫
Ω

[(HV +M)u]u− dx =

∫
Ω

∇u · ∇u− dx+

∫
Ω

V uu− dx+

∫
Ω

Muu− dx.

Here we see from Lemma 3.4 that

∇u− = −χ{u<0}∇u,
and hence, the first term on the right of (3.24) is written as∫

Ω

∇u · ∇u− dx = −
∫
Ω

|∇u−|2 dx.

As to the second, by the estimate (2.5) for ε = 1 from Lemma 2.3, we have∫
Ω

V uu− dx = −
∫
Ω

V |u−|2 dx ≤
∫
Ω

V−|u−|2 dx ≤ ‖u−‖2L2(Ω) + b1‖∇u−‖2L2(Ω);

thus, by choosing M as

(3.25) M > b1 (≥ − inf σ(HV )),

we find that ∫
Ω

[(HV +M)u]u− dx ≤ (b1 −M)‖∇u−‖2L2(Ω) ≤ 0.

Hence, combining this inequality and (3.23), we conclude (3.22).

Next, we prove (3.7). Let us define two functions v(1)(t) and v(2)(t) as follows:

v(1)(t) := e−t(H̃Ṽ +M)f̃ and v(2)(t) := e−t(HV +M)f

for t ≥ 0. Then it follows from Lemma 3.3 that v(1) and v(2) satisfy

(3.26)

⎧⎪⎪⎨
⎪⎪⎩
v(1) ∈ C([0,∞);L2(Rd)) ∩ C((0,∞);D(H̃Ṽ +M)) ∩ C1((0,∞);L2(Rd)),

∂tv
(1)(t) + (H̃Ṽ +M)v(1)(t) = 0, t > 0,

v(1)(0) = f̃
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and

(3.27)

⎧⎪⎪⎨
⎪⎪⎩
v(2) ∈ C([0,∞);L2(Ω)) ∩C((0,∞);D(HV +M)) ∩ C1((0,∞);L2(Ω)),

∂tv
(2)(t) + (HV +M)v(2)(t) = 0, t > 0,

v(2)(0) = f

for each t > 0, respectively. We define a new function v as

v(t) := v(1)(t)|Ω − v(2)(t)

for t ≥ 0, where v(1)(t)|Ω is the restriction of v(1)(t) to Ω. Let us consider the
negative part of v:

v− = −χ{v<0}v.

Then, thanks to (3.26) and (3.27), we have

v− ∈ C([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)).

Moreover, we have v− ∈ H1(Ω) by using Lemma 3.4, since v ∈ H1(Ω), and we
immediately have

√
V+v

− ∈ L2(Ω), since
√
V+v ∈ L2(Ω). Once we prove that

(3.28) v− ∈ H1
0 (Ω),

we get, by the previous argument,

(3.29)
d

dt

∫
Ω

(
v−

)2
dx ≤ 0.

In fact, by the definition of v−, we have

d

dt

∫
Ω

(
v−

)2
dx = −2

∫
{v<0}

v−∂tv(1) dx+ 2

∫
{v<0}

v−∂tv(2) dx

= 2

∫
Rd

{(H̃Ṽ +M)v(1)}ṽ− dx− 2

∫
Ω

{(HV +M)v(2)}v− dx,

where ṽ− is the zero extension of v− to Rd, and we used equations

∂tv
(1) + (H̃Ṽ +M)v(1) = 0 and ∂tv

(2) + (HV +M)v(2) = 0

in the last step. Since v− ∈ H1
0 (Ω) and

√
V+v

− ∈ L2(Ω) by (3.28), we have, by

definitions of H̃Ṽ and HV ,∫
Rd

[
(H̃Ṽ +M)v(1)

]
ṽ− dx−

∫
Ω

[
(HV +M)v(2)

]
v− dx

=

∫
Rd

∇v(1) · ∇ṽ− dx+

∫
Rd

Ṽ v(1)ṽ− dx+

∫
Rd

Mv(1)ṽ− dx

−
∫
Ω

∇v(2) · ∇v− dx−
∫
Ω

V v(2)v− dx−
∫
Ω

Mv(2)v− dx

=

∫
Ω

∇v · ∇v− dx +

∫
Ω

V vv− dx+

∫
Ω

Mvv− dx ≤ (b1 −M)‖v−‖2L2(Ω) ≤ 0,

since M is chosen as in (3.25). Hence we obtain (3.29), which implies the required
inequality (3.7).
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We have to prove (3.28). The proof is similar to that of Lemma 3.4. Since
v(2)(t) ∈ H1

0 (Ω) for each t > 0 by (3.27), there exists a sequence {ϕn(t)} in C∞
0 (Ω)

such that
ϕn(t) → v(2)(t) in H1(Ω) as n→ ∞

for each t > 0. Put

vn(t) := v(1)(t)|Ω − ϕn(t), n = 1, 2, . . .

Let {ψn} be the sequence as in (3.14). As in the proof of Lemma 3.4, we can show
that

ψn ◦ v−n → v− in H1(Ω) as n→ ∞.

Since v−n have compact supports in suppϕn by v(1) ≥ 0 on Ω, it follows that the
functions ψn ◦ v−n also have compact supports in Ω. Let (ψn ◦ v−n )˜ be the zero
extension of ψn ◦ v−n to Rd, and jε(x) be the functions defined in (3.9). Taking ε
along a sequence {εn} such that

εn ↘ 0 and supp jεn ∗ (ψn ◦ v−n )˜� Ω for any n,

we have
jεn ∗ (ψn ◦ v−n )˜

∣∣
Ω
∈ C∞

0 (Ω) for any n.

Since
jεn ∗ (ψn ◦ v−n )˜

∣∣
Ω
→ v− in H1(Ω) as n→ ∞,

we conclude (3.28).

Finally, as to the inequality (3.8), letting f ∈ L2(Ω) be non-negative, we put

w(1)(t) := e
−t(H̃Ṽ−+M)

f̃ , w(2)(t) := e−t(H̃Ṽ +M)f̃ , w(t) := w(1)(t)− w(2)(t)

for t ≥ 0. Noting that w(1)(t) ∈ D(H̃Ṽ−) and w
(2)(t) ∈ D(H̃Ṽ ), it suffices to show

that

(3.30)
d

dt

∫
Ω

(w−)2 dx ≤ 0.

We prove (3.30). Since we have w− ∈ H1
0 (Ω) in a similar way to (3.28), we estimate

d

dt

∫
Ω

(w−)2 dx = −2

∫
Ω

(∂tw)w
− dx

= 2

∫
Ω

[
(H̃Ṽ− +M)w(1)

]
w− dx− 2

∫
Ω

[
(H̃Ṽ +M)w(2)

]
w− dx

= 2

∫
Ω

{∇w(1) · ∇w− − (Ṽ−w(1))w− +Mw(1)w−} dx
− 2

∫
Ω

{∇w(2) · ∇w− + (Ṽ+w
(2))w− − (Ṽ−w(2))w− +Mw(2)w−} dx

= −2

∫
Ω

( |∇w−|2 − Ṽ−|w−|2 +M |w−|2 ) dx− 2

∫
Ω

(Ṽ+w
(2))w− dx

≤ −2

∫
Ω

(Ṽ+w
(2))w− dx,
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where we used the inequality (2.5) in the last step. Since w(2)(t) ≥ 0 by (3.6)
and (3.7), we conclude the required inequality (3.30), which proves the inequal-
ity (3.8). The proof of Lemma 3.2 is complete. �

4. Lp-Lq-estimates for the resolvent of θHV

In this section we shall prove the boundedness of resolvent of θHV in scaled amal-
gam spaces. The result in this section plays an important role in the proof of
Theorem 1.1.

Following Fournier and Stewart (see [9]), let us give the definition of scaled
amalgam spaces on Ω as follows.

Definition. Let 1 ≤ p, q ≤ ∞ and θ > 0. The space lp(Lq)θ is defined by letting

lp(Lq)θ = lp(Lq)θ(Ω) :=
{
f ∈ Lq

loc(Ω)
∣∣ ‖f‖lp(Lq)θ <∞}

,

with norm

‖f‖lp(Lq)θ =

⎧⎪⎪⎨
⎪⎪⎩
( ∑

n∈Zd

‖f‖pLq(Cθ(n))

)1/p

for 1 ≤ p <∞,

sup
n∈Zd

‖f‖Lq(Cθ(n)) for p = ∞,

where Cθ(n) is the cube centered at θ1/2n ∈ θ1/2Zd with side length θ1/2:

Cθ(n) =
{
x = (x1, x2, . . . , xd) ∈ Ω

∣∣ max
j=1,...,d

|xj − θ1/2nj | ≤ θ1/2

2

}
.

Here we adopt the Euclidean norm for n = (n1, n2, . . . , nd) ∈ Zd:

|n| =
√
n2
1 + n2

2 + · · ·+ n2
d.

Let us give a remark on the properties of lp(Lq)θ-spaces. The spaces lp(Lq)θ
are complete with respect to the norm ‖ · ‖lp(Lq)θ , and have the property that

lp(Lq)θ ↪→ Lp(Ω) ∩ Lq(Ω)

for any θ > 0, provided 1 ≤ p ≤ q ≤ ∞.

The goal in this section is to prove the following.

Proposition 4.1. Let 1 ≤ p ≤ q ≤ ∞, and β be such that

(4.1) β >
d

2

(1
p
− 1

q

)
.

Suppose that the potential V satisfies assumption A. Let z ∈ C with

(4.2) Re(z) < min{−ω, 0},
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where ω is the constant as in Proposition 3.1. Then (HV − z)−β is extended to
a bounded linear operator from Lp(Ω) to lp(Lq)θ with θ = 1. Furthermore, the
following assertions hold:

(i) There exists a constant C depending on d, p, q, β and z such that∥∥(θHV − z)−β
∥∥

B(Lp(Ω),Lq(Ω))
≤ C θ−(d/2)(1/p−1/q),(4.3) ∥∥(θHV − z)−β

∥∥
B(Lp(Ω),lp(Lq)θ)

≤ C θ−(d/2)(1/p−1/q)(4.4)

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies

⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
2πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Let z ∈ C be such that

Re(z) < 0.

Then the estimate (4.3) holds for any θ > 0. Moreover, if V− satisfies

⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

then the estimate (4.4) holds for any θ > 0.

Proof. First we prove (4.3). Let 0 < θ ≤ 1. We use the following formula:

(4.5) (HV − z)−β =
1

Γ(β)

∫ ∞

0

tβ−1ezte−tHV dt

for any z ∈ C with Re(z) < inf σ(HV ) and β > 0. Thanks to (4.5) and Lp-Lq-
estimates (3.1) for e−tθHV in Proposition 3.1, we estimate∥∥(θHV − z)−βf

∥∥
Lq(Ω)

≤ 1

Γ(β)

∫ ∞

0

tβ−1eRe(z)t
∥∥e−tθHV f

∥∥
Lq(Ω)

dt

≤ C θ−(d/2)(1/p−1/q)
( ∫ ∞

0

tβ−1e[Re(z)−min{−ω,0}]t t−(d/2)(1/p−1/q) dt
)
‖f‖Lp(Ω)

for any f ∈ Lp(Ω) provided 1 ≤ p ≤ q ≤ ∞, where C is the positive constant
independent of θ. Here, let us take z as in (4.2). Then the integral on the right is
absolutely convergent, since β satisfies the inequality (4.1). This proves (4.3).
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Let us turn to the proof of (4.4). If we prove that there exists a constant C > 0
such that∥∥e−tθHV f

∥∥
lp(Lq)θ

(4.6)

≤ C θ−(d/2)(1/p−1/q)
{
t−(d/2)(1/p−1/q) + 1

}
e−min{−ω,0}t‖f‖Lp(Ω)

for any t > 0 and f ∈ Lp(Ω) provided 1 ≤ p ≤ q ≤ ∞, then the estimate (4.4) is
obtained by combining (4.5) and (4.6). In fact, by using (4.5), we estimate∥∥(θHV − z)−βf

∥∥
lp(Lq)θ

≤ 1

Γ(β)

∫ ∞

0

tβ−1eRe(z)t
∥∥e−tθHV f

∥∥
lp(Lq)θ

dt

≤ C θ−(d/2)(1/p−1/q)

×
(∫ ∞

0

tβ−1e{Re(z)−min{−ω,0}}t{t−(d/2)(1/p−1/q) + 1
}
dt
)
‖f‖Lp(Ω).

Here the integral on the right is absolutely convergent, since z satisfies the inequal-
ity (4.2) and β satisfies the inequality (4.1). This proves (4.4). Therefore, all we
have to do is to prove the estimate (4.6).

To this end, we recall the estimate (3.2) from Proposition 3.1. We define the
right member of (3.2) as K0(t, x − y), i.e.,

K0(t, x) = C2 t
−d/2eωte−

|x|2
8t t > 0, x ∈ R

d.

Now, letting 1 ≤ r ≤ ∞, we prove that

(4.7) ‖K0(θt, ·)‖l1(Lr)θ ≤ C θ−(d/2)(1−1/r)
{
t−(d/2)(1−1/r) + 1

}
e−min{−ω,0}t

for any t > 0, where C > 0 is independent of θ. We estimate Lr(Cθ(n))-norms of
K0(θt, ·) for the case n = 0 and n = 0, separately.

The case n = 0. When 1 ≤ r <∞, we estimate

‖K0(θt, ·)‖Lr(Cθ(0)) ≤ C2 (θt)
−d/2e−min{−ω,0}θt

(∫
Rd

e−
r|x|2
8θt dx

)1/r

= C2 (θt)
−d/2e−min{−ω,0}θt

(∫
Rd

e−
r|x|2

8 (θt)d/2 dx
)1/r

≤ C2 (θt)
−(d/2)(1−1/r)e−min{−ω,0}t

(∫
Rd

e−
r|x|2

8 dx
)1/r

=
(8π)d/(2r)C2

rd/(2r)
(θt)−(d/2)(1−1/r) e−min{−ω,0}t.

(4.8)

When r = ∞, we estimate

‖K0(θt, ·)‖L∞(Cθ(0)) = C2 (θt)
−d/2e−min{−ω,0}θt( sup

x∈Cθ(0)

e−
|x|2
8θt

)
(4.9)

≤ C2 (θt)
−d/2e−min{−ω,0}t.
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The case n = 0. We estimate∑
n	=0

‖K0(θt, ·)‖Lr(Cθ(n))

≤
∑
n	=0

‖K0(θt, ·)‖L∞(Cθ(n))|Cθ(n)|1/r

= C2 (θt)
−d/2e−min{−ω,0}θt ∑

n	=0

(
sup

x∈Cθ(n)

e−
|x|2
8θt

)
· |Cθ(n)|1/r.

(4.10)

Here, observing that

|θ1/2n|
2

≤ |x| (≤ 2|θ1/2n|), x ∈ Cθ(n),

we can estimate the right member of (4.10) as

C2 (θt)
−d/2e−min{−ω,0}t

(∑
n	=0

e−
|n|2
32t

)
(θd/2)1/r,

and hence, we get

∑
n	=0

‖K0(θt, ·)‖Lr(Cθ(n)) ≤ C2 (θt)
−d/2e−min{−ω,0}t

(∑
n	=0

e−
|n|2
32t

)
(θd/2)1/r.

Here, by an explicit calculation, we see that

∑
n	=0

e−
|n|2
32t =

∑
n	=0

e−
n2
1+n2

2+···+n2
d

32t = 2d
( ∞∑

j=1

e−
j2

32t

)d

≤ 2d
(∫ ∞

0

e−
σ2

32t dσ
)d

= (8
√
2)d πd/2 td/2.

Summarizing the estimates obtained now, we conclude that∑
n	=0

‖K0(θt, ·)‖Lr(Cθ(n))

≤ C2 (θt)
−d/2 e−min{−ω,0}t · (8

√
2)d πd/2 td/2 · (θd/2)1/r

= (8
√
2)d πd/2 C2 θ

−(d/2)(1−1/r)e−min{−ω,0}t(4.11)

for any r ∈ [1,∞].

Combining the estimates (4.8), (4.9) and (4.11), we get (4.7), as desired.

We are now in a position to prove the key estimate (4.6). Let f ∈ Lp(Ω) and f̃
be a zero extension of f to Rd. Thanks to the estimate (3.2) from Proposition 3.1,
i.e.,

0 ≤ K(t, x, y) ≤ K0(t, x− y) a.e.x, y ∈ Ω
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for any t > 0, we estimate

∥∥e−tθHV f
∥∥
lp(Lq)θ

=
∥∥∥ ∫

Ω

K(θt, ·, y)f(y) dy
∥∥∥
lp(Lq)θ

≤
∥∥∥ ∫

Ω

K(θt, ·, y)|f(y)| dy
∥∥∥
lp(Lq)θ

≤
∥∥∥ ∫

Rd

K0(θt, · − y)|f̃(y)| dy
∥∥∥
lp(Lq)θ(Rd)

.

Applying the Young inequality (A.1) (see Appendix A) to the right member, and
using the inequality (4.7), we deduce that∥∥e−tθHV f

∥∥
lp(Lq)θ

≤ 3d‖K0(θt, ·)‖l1(Lr)θ(Rd)‖f̃‖lp(Lp)θ(Rd)

≤ C θ−(d/2)(1−1/r)
{
t−(d/2)(1−1/r)+1

}
e−min{−ω,0}t‖f̃‖Lp(Rd)

= C θ−(d/2)(1/p−1/q)
{
t−(d/2)(1/p−1/q)+1

}
e−min{−ω,0}t‖f‖Lp(Ω),

provided that p, q, r satisfy 1 ≤ p, q, r ≤ ∞ and 1/p + 1/r − 1 = 1/q. This
proves (4.6).

Finally, the proof of the assertion (ii) is done by the same argument as in (i),
if we apply (3.4) and (3.5) to the identity (4.5). So we may omit the details. The
proof of Proposition 4.1 is finished. �

5. Commutator estimates

In this section we shall prepare commutator estimates. These estimates will be also
an important tool in the proof of Theorem 1.1. Among other things, we introduce
operators Adk(L) for some operator L as follows.

Definition. Let X and Y be topological vector spaces, and let A and B be contin-
uous linear operators from X and Y into themselves, respectively. For a continuous
linear operator L fromX into Y , the operators Adk(L) fromX into Y , k = 0, 1, . . .,
are successively defined by

Ad0(L) = L, Adk(L) = Adk−1(BL− LA), k ≥ 1.

The result in this section is concerned with L2-boundedness for Adk(e−itRV,θ ),
where RV,θ is the resolvent operator defined by letting

RV,θ := (θHV +M)−1, θ > 0

for a fixed constant M with

M > max{− inf σ(HV ), 0}.
Hereafter, operators A and B are taken as

(5.1) A = B = xj − θ1/2nj for some j ∈ {1, . . . , d}.
Then we shall prove here the following.
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Proposition 5.1. Suppose that the potential V satisfies assumption A. Let A
and B be the operators as in (5.1). Then for any non-negative integer k, the
following assertions hold:

(i) There exists a constant C > 0 depending on d, k and M such that

(5.2)
∥∥Adk(e−itRV,θ )

∥∥
B(L2(Ω))

≤ C θk/2(1 + |t|)k

for any t ∈ R and 0 < θ ≤ 1.

(ii) Assume further that V− satisfies

⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
4πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then the estimate (5.2) holds for any t ∈ R and θ > 0.

First, we prepare L2-boundedness for RV,θ and ∂xjRV,θ to prove Proposi-
tion 5.1.

Lemma 5.2. Suppose that the potential V satisfies assumption A. Then the fol-
lowing assertions hold:

(i) There exists a constant C > 0 such that

‖RV,θ‖B(L2(Ω)) ≤ 1

M +min{inf σ(HV ), 0} ,(5.3)

‖∇RV,θ‖B(L2(Ω)) ≤ C θ−1/2(5.4)

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies

(5.5)

⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
4πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then

(5.6) ‖RV,θ‖B(L2(Ω)) ≤M−1,

and

(5.7) ‖∇RV,θ‖B(L2(Ω)) ≤M−1/2
(
1− Γ(d/2− 1)‖V−‖Kd(Ω)

4πd/2

)−1/2

θ−1/2

for any θ > 0.
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Proof. First we prove the assertion (i). Since HV is the self-adjoint operator on
L2(Ω), we obtain (5.3), (5.4), (5.6) and (5.7) by the spectral resolution. In fact,
we have

‖RV,θf‖2L2(Ω) =

∫ ∞

inf σ(HV )

1

(θλ +M)2
d‖EHV (λ)f‖2L2(Ω)

≤

⎧⎪⎪⎨
⎪⎪⎩

1

M2
‖f‖2L2(Ω), if inf σ(HV ) ≥ 0,

1

[M + inf σ(HV )]2
‖f‖2L2(Ω), if inf σ(HV ) < 0

for any f ∈ L2(Ω), since 0 < θ ≤ 1. This proves (5.3).

Next we consider the estimate for ∇RV,θf . Since RV,θf ∈ D(HV ) for any
f ∈ L2(Ω), we estimate

‖∇RV,θf‖2L2(Ω) =

∫
Ω

(∇RV,θf · ∇RV,θf + V |RV,θf |2 − V |RV,θf |2
)
dx

= 〈HVRV,θf,RV,θf〉L2(Ω) +

∫
Ω

(V− − V+)|RV,θf |2 dx

≤ 〈HVRV,θf,RV,θf〉L2(Ω) +

∫
Ω

V−|RV,θf |2 dx =: I + II.

Then we estimate the first term I as

I =

∫ ∞

inf σ(HV )

λ

(θλ+M)2
d‖EHV (λ)f‖2L2(Ω)

≤
∫ ∞

max{inf σ(HV ),0}
θ−1 · θλ

θλ+M
· 1

θλ+M
d‖EHV (λ)f‖2L2(Ω)

≤M−1θ−1

∫ ∞

inf σ(HV )

d ‖EHV (λ)f‖2L2(Ω) =M−1θ−1‖f‖2L2(Ω).

As to the second term II, by using the inequality (2.5) for ε ∈ (0, 1) from
Lemma 2.3 and estimate (5.3), we have

II ≤ ε ‖∇RV,θf‖2L2(Ω) + bε‖RV,θf‖2L2(Ω)

≤ ε ‖∇RV,θf‖2L2(Ω) + C bε θ
−1‖f‖2L2(Ω),

(5.8)

since 0 < θ ≤ 1. Combining the above three estimates, we conclude the esti-
mate (5.4).

We now turn to the proof of (ii). In this case we have inf σ(HV ) ≥ 0. It is
sufficient to prove only the estimate (5.7) for ∇RV,θf , since the proof of (5.6)
is similar to (5.3). If V− satisfies assumption (5.5), then we have, by using the
inequality (2.7) from Lemma 2.3,

II ≤ Γ(d/2− 1)‖V−‖Kd(Ω)

4πd/2
‖∇RV,θf‖2L2(Ω).

Using this estimate instead of (5.8), the estimate (5.7) is proved for any θ > 0 in
the same way as (5.4). The proof of Lemma 5.2 is complete. �
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We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1. Let us denote by D(Ω) the totality of the test functions
on Ω, and by D ′(Ω) its dual space. We regard X as D(Ω) and Y as D ′(Ω) in the
definition of operator Ad. Then we have, by Lemma B.2 in appendix B,

Ad0(RV,θ) = RV,θ, Ad1(RV,θ) = −2θRV,θ∂xjRV,θ,(5.9)

Adk(RV,θ) = θ
{− 2kAdk−1(RV,θ)∂xjRV,θ + k(k − 1)Adk−2(RV,θ)RV,θ

}
(5.10)

for k ≥ 2.

First we prove the assertion (i). Let 0 < θ ≤ 1. Since RV,θ and ∂xjRV,θ are

bounded on L2(Ω) by (5.3) and (5.4) from Lemma 5.2, operators Adk(RV,θ) are
also bounded on L2(Ω) for each k ≥ 0. Before going to prove the estimates (5.2),
we prepare the following estimates for Adk(RV,θ): let k be a non-negative integer.
Then there exists a constant Ck > 0 such that

(5.11) ‖Adk(RV,θ)‖B(L2(Ω)) ≤ Ckθ
k/2

for any 0 < θ ≤ 1. We prove (5.11) by induction. For k = 0, 1, we have, by using
the identity (5.9) and estimates (5.3) and (5.4) from Lemma 5.2,

‖Ad0(RV,θ)‖B(L2(Ω)) = ‖RV,θ‖B(L2(Ω)) ≤ C0,

‖Ad1(RV,θ)‖B(L2(Ω)) = 2θ ‖RV,θ∂xjRV,θ‖B(L2(Ω)) ≤ C θ · θ−1/2 = C1 θ
1/2.

Let us suppose that (5.11) is true for k ∈ {0, 1, . . . , l}. Combining identities (5.10)
and estimates (5.3) and (5.7) from Lemma 5.2, we get (5.11) for k = l + 1:∥∥Adl+1(RV,θ)

∥∥
B(L2(Ω))

=
∥∥θ{− 2(l+ 1)Adl(RV,θ)∂xjRV,θ + l(l + 1)Adl−1(RV,θ)RV,θ

}∥∥
B(L2(Ω))

≤ 2l(l + 1) θ
{‖Adl(RV,θ)‖B(L2(Ω))‖∂xjRV,θ‖B(L2(Ω))

+ ‖Adl−1(RV,θ)‖B(L2(Ω))‖RV,θ‖B(L2(Ω))

}
≤ Cl+1 θ

{
θl/2 · θ−1/2 + θ(l−1)/2

} ≤ Cl+1 θ
(l+1)/2.

Thus (5.11) is true for any k ≥ 0.
We prove (5.2) also by induction. Clearly, (5.2) is true for k = 0. As to the

case k = 1, by using the estimate (5.11) and the formula (B.7) from Lemma B.3
in appendix B:

Ad1(e−itRV,θ ) = −i
∫ t

0

e−isRV,θAd1(RV,θ) e
−i(t−s)Rθ,V ds

for each t ∈ R, we have∥∥Ad1(e−itRV,θ )
∥∥

B(L2(Ω))

≤
∫ |t|

0

∥∥e−isRV,θ
∥∥

B(L2(Ω))

∥∥Ad1(RV,θ)
∥∥

B(L2(Ω))

∥∥e−i(t−s)RV,θ
∥∥

B(L2(Ω))
ds

≤ C1

∫ |t|

0

θ1/2 ds ≤ C1 θ
1/2(1 + |t|)
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for any t ∈ R. Hence, (5.2) is true for k = 1. Let us suppose that (5.2) holds for
k ∈ {0, 1, . . . , �}. Then, by using the estimate (5.11) and the formula (B.8) from
Lemma B.3:

Adl+1(e−itRV,θ )

= −i
∫ t

0

∑
l1+l2+l3=l

Γ(l1, l2, l3)Ad
l1(e−isRθ,V )Adl2+1(RV,θ)Ad

l3(e−i(t−s)RV,θ ) ds,

where constants Γ(l1, l2, l3) are trinomial coefficients:

Γ(l1, l2, l3) =
l!

l1! l2! l3!
,

we estimate

∥∥Adl+1(e−itRV,θ )
∥∥

B(L2(Ω))

≤ Cl+1

∫ t

0

∑
l1+l2+l3=l

∥∥Adl1(e−isRV,θ )
∥∥

B(L2(Ω))

∥∥Adl2+1(RV,θ)
∥∥

B(L2(Ω))

× ∥∥Adl3(e−i(t−s)RV,θ )
∥∥

B(L2(Ω))
ds

≤ Cl+1

∫ t

0

∑
l1+l2+l3=l

θl1/2(1 + |s|)l1 · θ(l2+1)/2 · θl3/2(1 + |t− s|)l3 ds

≤ Cl+1 θ
(l+1)/2(1 + |t|)l+1

for any t ∈ R. Hence (5.2) is true for k = l + 1. Thus (5.2) holds for any k ≥ 0.

The assertion (ii) is proved in the same way as assertion (i) by using the es-
timate (5.7) from Lemma 5.2 instead of (5.4). The proof of Proposition 5.1 is
complete. �

6. Lp-estimates for ϕ(θHV )

In this section we prove Lp-boundedness of ϕ(θHV ). The goal in this section is
the following:

Theorem 6.1. Let ϕ ∈ S (R). Suppose that the potential V satisfies assump-
tion A. Let 1 ≤ p ≤ ∞. Then ϕ(HV ) is extended to a bounded linear operator
on Lp(Ω). Furthermore, the following assertions hold:

(i) There exists a constant C > 0 such that

(6.1) ‖ϕ(θHV )‖B(Lp(Ω)) ≤ C

for any 0 < θ ≤ 1.
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(ii) Assume further that V− satisfies⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then the estimate (6.1) holds for any θ > 0.

To begin with, let us introduce a family Aα of operators, which is useful to
prove the theorem.

Definition. Let α > 0 and θ > 0. We say that L ∈ Aα(= Aα,θ) if L ∈ B(L2(Ω))
and

(6.2) |||L|||α := sup
n∈Zd

∥∥| · −θ1/2n|αLχCθ(n)

∥∥
B(L2(Ω))

<∞.

First we prepare two lemmas.

Lemma 6.2. Let θ > 0, and let L ∈ Aα for some α > d/2. Then there exists a
constant C > 0 depending only on α and d such that

(6.3) ‖Lf‖l1(L2)θ ≤ C
(‖L‖B(L2(Ω)) + θ−d/4|||L|||d/2αα ‖L‖1−d/2α

B(L2(Ω))

)‖f‖l1(L2)θ

for any f ∈ l1(L2)θ.

Proof. If we prove that∑
m∈Zd

∥∥χCθ(m)LχCθ(n)f
∥∥
L2(Ω)

≤ C
(‖L‖B(L2(Ω)) + θ−d/4|||L|||d/2αα ‖L‖1−d/2α

B(L2(Ω))

)‖χCθ(n)f‖L2(Ω)(6.4)

for any θ > 0 and n ∈ Zd, then, summing up (6.4) with respect to n ∈ Zd, we
conclude the required estimate (6.3):

‖Lf‖l1(L2)θ ≤
∑
n∈Zd

∑
m∈Zd

∥∥χCθ(m)LχCθ(n)f
∥∥
L2(Ω)

≤ C
(‖L‖B(L2(Ω)) + θ−d/4|||L|||d/2αα ‖L‖1−d/2α

B(L2(Ω))

)‖f‖l1(L2)θ

for any θ > 0 and f ∈ l1(L2)θ. Hence we have only to prove the estimate (6.4).

Let n ∈ Zd be fixed. For any ω > 0, we write∑
m∈Zd

∥∥χCθ(m)LχCθ(n)f
∥∥
L2(Ω)

=
∑

|m−n|>ω

|θ1/2m− θ1/2n|−α|θ1/2m− θ1/2n|α∥∥χCθ(m)LχCθ(n)f
∥∥
L2(Ω)

+
∑

|m−n|≤ω

∥∥χCθ(m)LχCθ(n)f
∥∥
L2(Ω)

=: I(n) + II(n).
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By using the Schwarz inequality we estimate I(n) as

I(n) ≤ θ−α/2
( ∑

|m−n|>ω

|m− n|−2α
)1/2

×
( ∑

|m−n|>ω

|θ1/2m− θ1/2n|2α ∥∥χCθ(m)LχCθ(n)f
∥∥2
L2(Ω)

)1/2

.

(6.5)

The first factor of (6.5) is estimated as

(6.6)
∑

|m−n|>ω

|m− n|−2α =
∑

|m|>ω

|m|−2α ≤ C(d, α)ω−2α+d.

In fact, since α > d/2, the right member of (6.6) is estimated as

∑
|m|>ω

|m|−2α ≤
d∏

j=1

∑
|mj|>ω/

√
d

|mj |−2α/d ≤ C(d, α)

d∏
j=1

∑
|mj |>ω/

√
d

(1 + |mj |)−2α/d

≤ C(d, α)

d∏
j=1

∫
{σ>ω/

√
d}
σ−2α/d dσ ≤ C(d, α)

d∏
j=1

ω−2α/d+1 = C(d, α)ω−2α+d,

which implies (6.6). As to the second factor of (6.5), noting that

|θ1/2m− θ1/2n|
2

≤ |x− θ1/2n|

for any x ∈ Cθ(m), we estimate as∑
|m−n|>ω

|θ1/2m− θ1/2n|2α ∥∥χCθ(m)LχCθ(n)f
∥∥2
L2(Ω)

=
∑

|m−n|>ω

|θ1/2m− θ1/2n|2α
∫
Cθ(m)

|LχCθ(n)f |2 dx

≤ 22α
∑

|m−n|>ω

∫
Cθ(m)

∣∣ |x− θ1/2n|αLχCθ(n)f
∣∣2 dx.

Moreover, by the definition (6.2) of |||L|||α, we estimate as

∑
|m−n|>ω

∫
Cθ(m)

∣∣ |x− θ1/2n|αLχCθ(n)f
∣∣2 dx ≤ ∥∥| · −θ1/2n|αLχCθ(n)f

∥∥2
L2(Ω)

≤ |||L|||2α
∥∥χCθ(n)f

∥∥2
L2(Ω)

.

Hence, summarizing the above two estimates, we deduce that

(6.7)
∑

|m−n|>ω

|θ1/2m−θ1/2n|2α∥∥χCθ(m)LχCθ(n)f
∥∥2
L2(Ω)

≤ 22α|||L|||2α
∥∥χCθ(n)f

∥∥2
L2(Ω)

.
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Thus we find from (6.5)-(6.7) that

(6.8) I(n) ≤ C(d, α) θ−α/2 ω−(α−d/2) |||L|||α
∥∥χCθ(n)f

∥∥
L2(Ω)

.

Let us turn to the estimation of II(n). It is readily to see that

II(n) ≤
( ∑

|m−n|≤ω

1
)1/2( ∑

|m−n|≤ω

∥∥χCθ(m)LχCθ(n)f
∥∥2
L2(Ω)

)1/2

.

Since ∑
|m−n|≤ω

1 ≤ 1 + ωd,

we deduce from the same argument as in I(n) that

II(n) ≤ (1 + ωd/2)
( ∑

|m−n|≤ω

∥∥χCθ(m)LχCθ(n)f
∥∥2
L2(Ω)

)1/2

≤ (1 + ωd/2)
∥∥LχCθ(n)f

∥∥
L2(Ω)

≤ (1 + ωd/2)‖L‖B(L2(Ω))

∥∥χCθ(n)f
∥∥
L2(Ω)

.(6.9)

Combining the estimates (6.8) and (6.9), we get∑
m∈Zd

‖χCθ(m)LχCθ(n)f‖L2(Ω)

≤ C(d, α)
{
θ−α/2ω−(α−d/2)|||L|||α + (1 + ωd/2)‖L‖B(L2(Ω))

}∥∥χCθ(n)f
∥∥
L2(Ω)

.

Finally, taking
ω = (|||L|||α/‖L‖B(L2(Ω)))

1/α · θ−1/2,

we obtain the required estimate (6.4). The proof of Lemma 6.2 is complete. �

Lemma 6.3. Let ϕ ∈ S (R). Suppose that the potential V satisfies assumption A.
Let α > 0. Then the following assertions hold:

(i) The operator ϕ(θHV ) belongs to Aα for any 0 < θ ≤ 1. Furthermore, there
exist a constant C > 0 such that

(6.10) |||ϕ(θHV )|||α ≤ Cθα/2

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
4πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then the same conclusion as in the assertion (i) holds for any θ > 0.
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Proof. To begin with, we prove the assertion (i). Let 0 < θ ≤ 1 and M be a real
number such that

(6.11) M > max{− inf σ(HV ), 0}.
We may assume that suppϕ ⊂ [−M,∞) without loss of generality. Let us choose
ψ ∈ C∞

0 (R) such that
ψ(μ) = χ(μ)ϕ(μ−1 −M),

where χ is a smooth function on R such that

(6.12) χ(μ) =

⎧⎪⎨
⎪⎩
1 for 0 ≤ μ ≤ 1

M + inf σ(HV )
+ 1,

0 for μ ≤ −1 and μ ≥ 1

M + inf σ(HV )
+ 2.

When we consider the operator θHV for 0 < θ ≤ 1, it is possible to take, indepen-
dently of θ, the real number M satisfying (6.11). Then we write

ψ(RV,θ) = ψ
(
(θHV +M)−1

)
= ϕ(θHV ).

In order to prove the estimate (6.10), it suffices to show that

(6.13) |||ψ(RV,θ)|||α ≤ C θα/2
∫ ∞

−∞
(1 + |t|)α |ψ̂(t)| dt,

where ψ̂ is the Fourier transform of ψ onR and the integral on the right is absolutely
convergent, since ψ̂ ∈ S (R). The proof is based on the formula:

(6.14) ψ(RV,θ) = (2π)−1/2

∫ ∞

−∞
e−itRV,θ ψ̂(t) dt.

Applying the formula (6.14), we obtain

|||ψ(RV,θ)|||α = sup
n∈Zd

∥∥| · −θ1/2n|αψ(RV,θ)χCθ(n)

∥∥
B(L2(Ω))

≤ (2π)−1/2 sup
n∈Zd

∫ ∞

−∞

∥∥ | · −θ1/2n|αe−itRV,θχCθ(n)

∥∥
B(L2(Ω))

|ψ̂(t)| dt.

Let N be a positive integer. Thanks to Lemma B.1 for A = B = xj − θ1/2nj and
L = e−itRV,θ , we find from the assertion (i) in Proposition 5.1 that∥∥ | · −θ1/2n|Ne−itRV,θχCθ(n)

∥∥
B(L2(Ω))

≤
N∑

k=0

C(N, k)
∥∥Adk(e−itRV,θ )

∥∥
B(L2(Ω))

∥∥| · −θ1/2n|N−kχCθ(n)

∥∥
B(L2(Ω))

≤
N∑

k=0

C(N, k) θk/2(1 + |t|)k θ(N−k)/2 ≤ C θN/2(1 + |t|)N .
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Now, it follows from the Calderón–Lions interpolation theorem (see Theorem IX.20
in Reed and Simon [20]) that∥∥ | · −θ1/2n|α e−itRV,θχCθ(n)

∥∥
B(L2(Ω))

≤ C θα/2(1 + |t|)α

for any α > 0 and t ∈ R. Thus we conclude (6.13), which proves (6.10).
As to the assertion (ii), noting that inf σ(HV ) ≥ 0, we can prove the esti-

mate (6.10) for any θ > 0 in the same way as assertion (i) by using the asser-
tion (ii) in Proposition 5.1 instead of assertion (i) in Proposition 5.1. The proof of
Lemma 6.3 is finished. �

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. First we prove the assertion (i). Let 0 < θ ≤ 1. It suffices to
show L1-estimate for ϕ(θHV ). In fact, if L1-estimate is proved, then L∞-estimate
is also obtained by duality argument, and hence, the Riesz–Thorin interpolation
theorem allows us to conclude Lp-estimates (6.1) for 1 ≤ p ≤ ∞.

Let us proceed the proof of L1-estimate. Going back to the definition of l1(L2)θ,
we estimate

‖ϕ(θHV )f‖L1(Ω) =
∑
n∈Zd

‖ϕ(θHV )f‖L1(Cθ(n))

≤
∑
n∈Zd

|Cθ(n)|1/2‖ϕ(θHV )f‖L2(Cθ(n)) ≤ θd/4 ‖ϕ(θHV )f‖l1(L2)θ ,(6.15)

where we used the inequality

|Cθ(n)|1/2 ≤ θd/4.

Here, given a positive real number β, we choose ϕ̃ ∈ S (R) as

(6.16) ϕ̃(λ) = (λ+M)βϕ(λ) for λ ∈ σ(HV ),

where M is a real number such that

M > max{ω, 0},
where ω is the constant in Proposition 3.1. Then we write

‖ϕ(θHV )f‖l1(L2)θ =
∥∥ϕ(θHV )(θHV +M)β(θHV +M)−βf

∥∥
l1(L2)θ

=
∥∥ϕ̃(θHV )(θHV +M)−βf

∥∥
l1(L2)θ

.

Applying ϕ̃(θHV ) to the operator A in Lemma 6.2, we get∥∥ϕ̃(θHV )(θHV +M)−βf
∥∥
l1(L2)θ

≤ C
(‖ϕ̃(θHV )‖B(L2(Ω)) + θ−d/4|||ϕ̃(θHV )|||d/2αα ‖ϕ̃(θHV )‖1−d/2α

B(L2(Ω))

)
(6.17)

× ∥∥(θHV +M)−βf
∥∥
l1(L2)θ

,
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where α > d/2. Thanks to (6.10) from Lemma 6.3 and (4.4) from Theorem 4.1,
the right-hand side of the above inequality is estimated as

C
{
1 + θ−d/4 · (θα/2)d/2α} θ−d/4 ‖f‖L1(Ω) = 2C θ−d/4‖f‖L1(Ω).

Summarizing the estimates obtained now, we find that

(6.18) ‖ϕ(θHV )f‖l1(L2)θ ≤ C θ−d/4‖f‖L1(Ω).

Therefore, combining the estimates (6.15) and (6.18), we conclude that

‖ϕ(θHV )f‖L1(Ω) ≤ C ‖f‖L1(Ω)

for any 0 < θ ≤ 1 and f ∈ L1(Ω).
The assertion (ii) is proved in the same way as assertion (i) by using asser-

tions (ii) in Proposition 4.1 and Lemma 6.3 instead of assertions (i) in Proposi-
tion 4.1 and Lemma 6.3, respectively. The proof of Theorem 6.1 is complete. �

7. Proof of Theorems 1.1 and 1.2

This section is devoted to proving the main theorems.

Proof of Theorem 1.1. We prove only the assertion (i), since the assertion (ii) is
proved in the same way as assertion (i). Let 0 < θ ≤ 1. Let M be a real number
such that

M > max{ω, 0},
where ω is the constant in Proposition 3.1. Given a positive real number β satis-
fying

β >
d

2

(1
p
− 1

q

)
,

we choose ϕ̃ ∈ S (R) as

ϕ̃(λ) = (λ+M)βϕ(λ) for λ ∈ σ(HV ).

By using Proposition 4.1 and Theorem 6.1, we estimate

‖ϕ(θHV )‖B(Lp(Ω),Lq(Ω)) = ‖ϕ(θHV )(θHV +M)β(θHV +M)−β‖B(Lp(Ω),Lq(Ω))

≤ ‖ϕ̃(θHV )‖B(Lq(Ω))‖(θHV +M)−β‖B(Lp(Ω),Lq(Ω))

≤ C θ−(d/2)(1/p−1/q)

for any p, q satisfying 1 ≤ p ≤ q ≤ ∞. The proof of Theorem 1.1 is complete. �

In the rest of this section we prove Theorem 1.2; Lp-estimates for ∇ϕ(θHV ).
We recall the definition (6.2) of norms |||L|||α of an operator L:

|||L|||α := sup
n∈Zd

∥∥| · −θ1/2n|αLχCθ(n)

∥∥
B(L2(Ω))

<∞

for each θ > 0.
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Lemma 7.1. Let ϕ ∈ S (R). Suppose that the potential V satisfies assumption A.
Let α > 0. Then the following assertions hold:

(i) The operator ∇ϕ(θHV ) belongs to Aα for any 0 < θ ≤ 1. Furthermore, there
exist a constant C > 0 such that

‖∇ϕ(θHV )‖B(L2(Ω)) ≤ Cθ−1/2,(7.1)

|||∇ϕ(θHV )|||α ≤ Cθ(α−1)/2(7.2)

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
4πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then the same conclusion as in the assertion (i) holds for any θ > 0.

Proof. First we prove the assertion (i). Let 0 < θ ≤ 1. We prove the estimate (7.1).
Since ϕ(θHV )f ∈ D(HV ) for any f ∈ L2(Ω), we estimate

‖∇ϕ(θHV )f‖2L2(Ω)

=

∫
Ω

(∇ϕ(θHV )f · ∇ϕ(θHV )f + V |ϕ(θHV )f |2 − V |ϕ(θHV )f |2
)
dx

= 〈HV ϕ(θHV )f, ϕ(θHV )f〉L2(Ω) +

∫
Ω

(V− − V+)|ϕ(θHV )f |2 dx(7.3)

≤ 〈HV ϕ(θHV )f, ϕ(θHV )f〉L2(Ω) +

∫
Ω

V−|ϕ(θHV )f |2 dx
=: I + II.

Then, applying Theorem 1.1 to HV ϕ(θHV )f and ϕ(θHV )f , we estimate I as

(7.4) I ≤ ‖HV ϕ(θHV )f‖L2(Ω) ‖ϕ(θHV )f‖L2(Ω) ≤ C θ−1‖f‖2L2(Ω).

As to the second term II, by using the inequality (2.5) from Lemma 2.3, we have

II ≤ ε ‖∇ϕ(θHV )f‖2L2(Ω) + bε ‖ϕ(θHV )f‖2L2(Ω)

for any ε > 0. Noting the trivial inequality θ−1 > 1, and using (6.1) from Theo-
rem 6.1, we get

bε ‖ϕ(θHV )f‖2L2(Ω) ≤ C bε θ
−1‖f‖2L2(Ω);

whence

(7.5) II ≤ ε ‖∇ϕ(θHV )f‖2L2(Ω) + Cbε θ
−1‖f‖2L2(Ω).

Here we choose ε as 0 < ε < 1. Then, combining the estimates (7.3)–(7.5), we
conclude the estimate (7.1).
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Next we prove the estimate (7.2). Let M be a real number such that

M > max{− inf σ(HV ), 0}.

We may assume that suppϕ ⊂ [−M,∞) without loss of generality. Let us choose
ψ ∈ C∞

0 (R) such that

(7.6) ψ(μ) = χ(μ)μ−1ϕ(μ−1 −M),

where χ is a smooth function on R satisfying (6.12). Then we write

∇ϕ(θHV ) = ∇RV,θψ(RV,θ).

Hence we have only to show that there exists a constant C > 0 such that

(7.7) |||∇RV,θψ(RV,θ)|||α ≤ C θ(α−1)/2

for any 0 < θ ≤ 1.
It suffices to show the estimate (7.7) for positive integers α by using the Cal-

derón–Lions interpolation theorem. We prove (7.7) only for α = 1, since the cases
α ≥ 2 are proved by the induction with Lemmas B.2 and B.3. Let j ∈ {1, 2, . . . , d}
be fixed. By the formula (6.14), we have∣∣∣∣∣∣∂xjRV,θψ(RV,θ)

∣∣∣∣∣∣
1

= sup
n∈Zd

∥∥| · −θ1/2n| ∂xjRV,θψ(RV,θ)χCθ(n)

∥∥
B(L2(Ω))

(7.8)

≤ sup
n∈Zd

(2π)−1/2

∫ ∞

−∞

∥∥| · −θ1/2n| ∂xjRV,θ e
−itRθχCθ(n)

∥∥
B(L2(Ω))

|ψ̂(t)| dt.

If we show that

(7.9)
∥∥| · −θ1/2n| ∂xjRV,θ e

−itRθχCθ(n)

∥∥
B(L2(Ω))

≤ C(1 + |t|)

for any t ∈ R and n ∈ Z
d, then we conclude from (7.8) that

∣∣∣∣∣∣∂xjRV,θψ(RV,θ)
∣∣∣∣∣∣

1
≤ C(2π)−1/2

∫ ∞

−∞
(1 + |t|) |ψ̂(t)| dt ( = C θ(1−1)/2

)
for all j = 1, 2, . . . , d, which is the estimate (7.7) for α = 1. Hence we pay attention
to prove (7.9). Writing

(xk − θ1/2nk) ∂xjRV,θ e
−itRV,θ

= ∂xj

[
(xk − θ1/2nk)RV,θ e

−itRV,θ
]− δjk RV,θ e

−itRV,θ

= ∂xjRV,θ(xk − θ1/2nk) e
−itRV,θ + ∂xjAd

1(RV,θ)e
−itRV,θ − δjk RV,θ e

−itRV,θ

= ∂xjRV,θ e
−itRV,θ (xk − θ1/2nk) + ∂xjRV,θAd

1(e−itRV,θ )

+ ∂xjAd
1(RV,θ)e

−itRV,θ − δjk RV,θ e
−itRV,θ



1312 T. Iwabuchi, T. Matsuyama and K. Taniguchi

for all k = 1, 2, . . . , d, where we have chosen A and B in the operators Ad1(RV,θ)
and Ad1(e−itRV,θ ) as

A = B = xk − θ1/2 nk,

and δjk is Kronecker’s delta, we estimate∥∥(xk − θ1/2nk)∂xjRV,θ e
−itRθχCθ(n)

∥∥
B(L2(Ω))

≤ ∥∥∂xjRV,θ e
−itRV,θ (xk − θ1/2nk)χCθ(n)

∥∥
B(L2(Ω))

+
∥∥∂xjRV,θAd

1(e−itRV,θ )χCθ(n)

∥∥
B(L2(Ω))

+
∥∥∂xjAd

1(RV,θ)e
−itRV,θχCθ(n)

∥∥
B(L2(Ω))

+
∥∥δjkRV,θ e

−itRV,θχCθ(n)

∥∥
B(L2(Ω))

=: I + II + III + IV

for all k = 1, 2, . . . , d. Noting that there exists a constant C > 0 such that

(7.10)
∥∥(xk − θ1/2nk)χCθ(n)f

∥∥
L2(Ω)

≤ C θ1/2‖f‖L2(Ω)

for any θ > 0 and n ∈ Zd, we use the estimate (5.4) on ∇RV,θ from Lemma 5.2 to
deduce that

I ≤ ∥∥∂xjRV,θ

∥∥
B(L2(Ω))

‖e−itRV,θ‖B(L2(Ω))

∥∥(xk − θ1/2nk)χCθ(n)

∥∥
B(L2(Ω))

≤ C θ−1/2 · θ1/2 = C .

As to the second term II, we estimate by using (5.2) for k = 1 from Proposition 5.1
and (5.4) from Lemma 5.2:

II ≤ ∥∥∂xjRV,θ

∥∥
B(L2(Ω))

∥∥Ad1(e−itRV,θ )
∥∥

B(L2(Ω))

∥∥χCθ(n)

∥∥
B(L2(Ω))

≤ C θ−1/2 · θ1/2(1 + |t|) = C (1 + |t|).
As to the third term III, we use (B.3) from Lemma B.2:

Ad1(RV,θ) = −2θRV,θ ∂xk
RV,θ.

Then we estimate, by using (5.4) from Lemma 5.2,

III = 2θ
∥∥∂xjRV,θ∂xk

RV,θ e
−itRV,θχCθ(n)

∥∥
B(L2(Ω))

≤ 2θ
∥∥∂xjRV,θ

∥∥
B(L2(Ω))

∥∥∂xk
RV,θ

∥∥
B(L2(Ω))

∥∥e−itRV,θχCθ(n)

∥∥
B(L2(Ω))

≤ C θ · θ−1/2 · θ−1/2 = C .

As to the fourth term IV , we readily see that

IV ≤ ∥∥RV,θ

∥∥
B(L2(Ω))

∥∥e−itRV,θ
∥∥

B(L2(Ω))

∥∥χCθ(n)

∥∥
B(L2(Ω))

≤ C .

Combining all the above estimates, we arrive at the following:∥∥(xk − θ1/2nk)∂xjRV,θ e
−itRθχCθ(n)

∥∥
B(L2(Ω))

≤ C (1 + |t|)
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for all k = 1, 2, . . . , d, which imply the estimate (7.9). The assertion (ii) is proved
in the similar way to assertion (i). In fact, we have only to use the inequality (2.7)
instead of (2.5), and assertions (ii) instead of assertions (i) from Lemmas 5.2
and 6.3. Thus the proof of Lemma 7.1 is finished. �

Proof of Theorem 1.2. We prove only the assertion (i), since the assertion (ii) is
proved in the same way as assertion (i). Let 0 < θ ≤ 1. It suffices to show
L1-estimate for ∇ϕ(θHV ), since L2-estimate has been already proved in (7.1)
and Lp-estimates are proved by the Riesz–Thorin interpolation theorem.

Going back to the definition of l1(L2)θ, we estimate∥∥∇ϕ(θHV )f
∥∥
L1(Ω)

=
∑
n∈Zd

‖∇ϕ(θHV )f‖L1(Cθ(n))

≤
∑
n∈Zd

|Cθ(n)|1/2‖∇ϕ(θHV )f‖L2(Cθ(n)) ≤ θd/4‖∇ϕ(θHV )f‖l1(L2)θ ,(7.11)

where we used
|Cθ(n)|1/2 ≤ θd/4.

Let M be a real number such that

M > max{ω, 0},
where ω is the constant in Proposition 3.1. Here, given a positive real number β,
we choose ϕ̃ ∈ S (R) as

ϕ̃(λ) = (λ+M)βϕ(λ) for λ ∈ σ(HV ).

Then we write

‖∇ϕ(θHV )f‖l1(L2)θ =
∥∥∇ϕ̃(θHV )(θHV +M)−βf

∥∥
l1(L2)θ

.

Applying ∇ϕ̃(θHV ) to the operator A in Lemma 6.2, we get∥∥∇ϕ̃(θHV )(θHV +M)−βf
∥∥
l1(L2)θ

≤ C
(‖∇ϕ̃(θHV )‖B(L2(Ω)) + θ−d/4|||∇ϕ̃(θHV )|||d/2αα ‖∇ϕ̃(θHV )‖1−d/2α

B(L2(Ω))

)
× ∥∥(θHV +M)−βf

∥∥
l1(L2)θ

for any α > d/2. Thanks to Lemma 7.1 and (4.4) from Theorem 4.1, the right-hand
side of the above inequality is estimated as

C
{
θ−1/2 + θ−d/4 · (θ(α−1)/2)d/2α · (θ−1/2)1−d/2α

}
θ−d/4‖f‖L1(Ω)

≤ C θ−d/4−1/2‖f‖L1(Ω),

provided β > d/4. Summarizing the estimates obtained now, we find that

(7.12) ‖∇ϕ(θHV )f‖l1(L2)θ ≤ C θ−d/4−1/2‖f‖L1(Ω).

Therefore, combining the estimates (7.11) and (7.12), we conclude that

‖∇ϕ(θHV )f‖L1(Ω) ≤ C θ−1/2‖f‖L1(Ω)

for any 0 < θ ≤ 1 and f ∈ L1(Ω). The proof of Theorem 1.2 is complete. �
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8. Final remarks

In this section we shall give two remarks on the estimates for the operator ϕ(HV );
the first remark is to weaken the assumption that ϕ ∈ S (R) in Theorems 1.1
and 1.2, and the second one is about the estimates for the operators Hm

V ϕ(θHV )
for an integer m.

First, the function ϕ in Theorems 1.1 and 1.2 can be taken from the weighted
Sobolev spaces. In fact, let m be an integer with m > (d + 1)/2, and β a real
number with β > d/4 + (d/2)(1/p− 1/q). If the measurable potential V satisfies
assumption A, then there exists a constant C0 > 0, independent of ϕ, such that

(8.1) ‖ϕ(θHV )‖B(Lp(Ω),Lq(Ω)) ≤ C0

∥∥(1 + | · |2)(β+m)/2ϕ
∥∥
Hm(R)

for any 0 < θ ≤ 1. Needless to say, once the estimate (8.1) is established for
0 < θ ≤ 1, after some trivial changes, if we further assume (1.2) on V , then the
estimate (8.1) holds for any θ > 0. We prove this estimate only for 0 < θ ≤ 1.
To begin with, we show (8.1) for p = q. Let us define ϕ̃ as in (6.16):

ϕ̃(λ) = (λ+M)βϕ(λ) for λ ∈ σ(HV ),

where β > d/4. We note that

‖ϕ̃(θHV )‖B(L2(Ω)) ≤ ‖ϕ̃‖L∞(R)

for any 0 < θ ≤ 1. Indeed, we have:

‖ϕ̃(θHV )f‖2L2(Ω) =

∫ ∞

inf σ(HV )

|ϕ̃(θλ)|2 d‖EHV (λ)f‖2L2(Ω) ≤ ‖ϕ̃‖2L∞(R)‖f‖2L2(Ω)

for any 0 < θ ≤ 1. Then, following the proof of Theorem 6.1, we estimate

‖ϕ(θHV )‖B(Lp(Ω)) ≤ C
(‖ϕ̃‖L∞(R) + θ−d/4|||ϕ̃(θHV )|||d/2αα ‖ϕ̃‖1−d/2α

L∞(R)

)
(8.2)

for any α > d/2 and 0 < θ ≤ 1. To estimate the quantity |||ϕ̃(θHV )|||α, let us
choose ψ such that

(8.3) ψ(μ) = χ(μ) ϕ̃(μ−1−M),

where χ is a smooth function on R satisfying (6.12). Then we write

ϕ̃(θHV ) = ψ(RV,θ).

From the estimate (6.13) in the proof of Theorem 6.1, we get, by using Schwarz’
inequality and Plancherel’s identity,

|||ϕ̃(θHV )|||α ≤ C θα/2
∫ ∞

−∞
(1 + |t|)α|ψ̂(t)| dt,

≤ C θα/2
∥∥(1 + | · |)α−m

∥∥
L2(R)

∥∥(1 + | · |)mψ̂∥∥
L2(R)

= C θα/2‖ψ‖Hm(R),



Spectral multipliers for Schrödinger operators 1315

provided that the integer m satisfies

m > α+
1

2
>
d+ 1

2
.

Hence, noting from the definition (8.3) of ψ that

‖ψ‖2Hm(R) =

m∑
k=0

∫
R

∣∣∣ dk
dμk

{
χ(μ)ϕ̃(μ−1 −M)

}∣∣∣2 dμ
≤ C

{∫ ∞

inf σ(HV )

|ϕ̃(λ)|2(λ+M)−2dλ+

m∑
k=1

∫ ∞

inf σ(HV )

∣∣∣ dk
dλk

{
(λ+M)kϕ̃(λ)

}∣∣∣2 dλ}

≤ C
∥∥(1 + | · |2)m/2ϕ̃

∥∥2

Hm(R)
≤ C

∥∥(1 + | · |2)(β+m)/2ϕ
∥∥2
Hm(R)

,

we obtain

(8.4) |||ϕ̃(θHV )|||α ≤ C θα/2
∥∥(1 + | · |2)(β+m)/2ϕ

∥∥
Hm(R)

.

Furthermore, by using Sobolev’s inequality, we have

(8.5) ‖ϕ̃‖L∞(R) =
∥∥(·+M)βϕ

∥∥
L∞(R)

≤ C
∥∥(1 + | · |)βϕ∥∥

H1(R)
.

Therefore, applying (8.4) and (8.5) to (8.2), we conclude that∥∥ϕ(θHV )
∥∥

B(Lp(Ω))
≤ C0

∥∥(1 + | · |2)(β+m)/2ϕ
∥∥
Hm(R)

,

which implies (8.1) for p = q.
In the case when p < q, we can also prove (8.1) by the same way as above, if ϕ

in the above argument is replaced by (λ+M)β
′
ϕ for β′ > (d/2)(1/p− 1/q).

Secondly, in the proof of Theorem 1.1, if we choose ϕ̃ ∈ S (R) as

ϕ̃(λ) = λm(λ +M)βϕ(λ) for λ ∈ σ(HV ),

the argument is effective also for the operators Hm
V ϕ(HV ). More precisely, we

have:

Theorem 8.1. Let ϕ ∈ S (R). Suppose that the potential V satisfies assump-
tion A. Let m be a non-negative integer, and let 1 ≤ p ≤ q ≤ ∞. Then the
following assertions hold:

(i) There exists a constant C > 0 such that

(8.6)
∥∥Hm

V ϕ(θHV )
∥∥

B(Lp(Ω),Lq(Ω))
≤ C θ−(d/2)(1/p−1/q)−m

for any 0 < θ ≤ 1.

(ii) Assume further that V− satisfies⎧⎪⎨
⎪⎩
sup
x∈Ω

∫
Ω

V−(y)
|x− y|d−2

dy <
πd/2

Γ(d/2− 1)
, if d ≥ 3,

V− = 0, if d = 1, 2.

Then the estimate (8.6) holds for any θ > 0.
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We note that the estimates (8.6) are useful to discuss several properties of Besov
spaces generated by HV . This topic will be done elsewhere.

A. The Young inequality

In this appendix we introduce the Young inequality for scaled amalgam spaces.

Lemma A.1. Let d ≥ 1, and let 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞ be such that

1

p1
+

1

p2
− 1 =

1

p
and

1

q1
+

1

q2
− 1 =

1

q
.

If f ∈ lp1(Lq1)θ(R
d) and g ∈ lp2(Lq2)θ(R

d), then f ∗ g ∈ lp(Lq)θ(R
d) and

(A.1)
∥∥f ∗ g∥∥

lp(Lq)θ(Rd)
≤ 3d ‖f‖lp1(Lq1)θ(Rd) ‖g‖lp2(Lq2 )θ(Rd).

For the proof of Lemma A.1, see Fournier and Stewart [9] (see also [15]).

B. Recursive formula of operators

In this appendix we shall introduce some formulas on the operator Ad.

Lemma B.1 (Lemma 3.1 in [15]). Let X and Y be topological vector spaces,
and let A and B be continuous linear operators from X and Y into themselves,
respectively. If L is a continuous linear operator from X into Y , then there exists
a set of constants

{
C(n,m)

∣∣n ≥ 0, 0 ≤ m ≤ n
}
such that

(B.1) BnL =

n∑
m=0

C(n,m)Adm(L)An−m.

We shall derive two kind of recursive formulas of operator

(B.2) RV,θ = (θHV +M)−1, θ > 0,

where M is a certain large constant. Hereafter we put

X = D(Ω), Y = D ′(Ω),

where we denote by D(Ω) the totality of the test functions on Ω, and by D ′(Ω) its
dual space, and we take

A = B = xj − θ1/2 nj for some j ∈ {1, . . . , d}.
Lemma B.2. Let V be a measurable function on Ω such that HV is a self-adjoint
operator on L2(Ω) whose domain is given by

D(HV ) =
{
u ∈ H1

0 (Ω)
∣∣√V+u ∈ L2(Ω), HV u ∈ L2(Ω)

}
.
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Let M be an element of resolvent set of −θHV , and let us denote by RV,θ the re-

solvent operator defined by (B.2). Then the sequence {Adk(RV,θ)}∞k=0 of operators
satisfies the following recursive formula:

(B.3) Ad0(RV,θ) = RV,θ, Ad1(RV,θ) = −2θRV,θ ∂xjRV,θ,

and for k ≥ 2,

(B.4) Adk(RV,θ) = θ
{− 2kAdk−1(RV,θ)∂xjRV,θ + k(k − 1)Adk−2(RV,θ)RV,θ

}
.

Proof. When k = 0, the first equation in (B.3) is trivial. Hence it is sufficient
to prove the case when k > 0. For the sake of simplicity, we perform a formal
argument without considering the domain of operators. The rigorous argument is
given in the final part.

Let us introduce the generalized binomial coefficients Γ(k,m) as follows:

Γ(k,m) =

⎧⎨
⎩

k!

(k −m)!m!
, k ≥ m ≥ 0,

0, k < m or k < 0.

Once the following recursive formula is established:

(B.5) Adk(RV,θ) = −
k−1∑
m=0

Γ(k,m)Adm(RV,θ)Ad
k−m(θHV )RV,θ, k = 1, 2, . . . ,

identities (B.3) and (B.4) are an immediate consequence of (B.5), since

Ad1(θHV ) = 2θ∂xj , Ad2(θHV ) = −2θ, Adk(θHV ) = 0, k ≥ 3.

Hence, all we have to do is to prove (B.5). We proceed the argument by induction.
For k = 1, it can be readily checked that

Ad1(RV,θ) = xjRV,θ −RV,θxj = RV,θ(θHV +M)xjRV,θ −RV,θxj(θHV +M)RV,θ

= RV,θ

(
θHV xj − xj · θHV

)
RV,θ = −RV,θAd

1(θHV )RV,θ

= −Γ(1, 0)Ad0(RV,θ)Ad
1(θHV )RV,θ.

Hence (B.5) is true for k = 1. For l = 1, 2, . . . , let us suppose that (B.5) holds for
k = 1, . . . , l. Writing

(B.6) Adl+1(RV,θ) = xjAd
l(RV,θ)−Adl(RV,θ)xj ,

we see that the first term becomes

xjAd
l(RV,θ) = xj

{
−

l−1∑
m=0

Γ(l,m)Adm(RV,θ)Ad
l−m(θHV )

}
RV,θ

= −
l−1∑
m=0

Γ(l,m)
{
Adm+1(RV,θ)Ad

l−m(θHV ) + Adm(RV,θ)Ad
l−m+1(θHV )

}
RV,θ

−
l−1∑
m=0

Γ(l,m)Adm(RV,θ)Ad
l−m(θHV )xjRV,θ

=: I1 + I2.
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Here I1 is written as

I1 = −
l∑

m=1

Γ(l,m− 1)Adm(RV,θ)Ad
l−m+1(θHV )RV,θ

−
l−1∑
m=0

Γ(l,m)Adm(RV,θ)Ad
l−m+1(θHV )RV,θ

= −
l∑

m=0

Γ(l,m− 1)Adm(RV,θ)Ad
l+1−m(θHV )RV,θ

−
l∑

m=0

Γ(l,m)Adm(RV,θ)Ad
l−m+1(θHV )RV,θ +Adl(RV,θ)Ad

1(θHV )RV,θ

= −
l∑

m=0

Γ(l + 1,m)Adm(RV,θ)Ad
l+1−m(θHV )RV,θ +Adl(RV,θ)Ad

1(θHV )RV,θ,

where we used
Γ(l,m− 1) + Γ(l,m) = Γ(l + 1,m)

in the last step. As to I2, we write as

I2 = −
{ l−1∑

m=0

Γ(l,m)Adm(RV,θ)Ad
l−m(θHV )RV,θ

}
(θHV +M)xjRV,θ

= Adl(RV,θ)(θHV +M)xjRV,θ.

Hence, summarizing the previous equations, we get

xjAd
l(RV,θ) = −

l∑
m=0

Γ(l + 1,m)Adm(RV,θ)Ad
l+1−m(θHV )

+ Adl(RV,θ)
{
Ad1(θHV ) + (θHV +M)xj

}
RV,θ.

Therefore, going back to (B.6), and noting

Ad1(θHV ) + (θHV +M)xj = xj(θHV +M),

we conclude that

Adl+1(RV,θ) = −
l∑

m=0

Γ(l + 1,m)Adm(RV,θ)Ad
l+1−m(θHV )

+ Adl(RV,θ)
{
Ad1(θHV ) + (θHV +M)xj

}
RV,θ −Adl(RV,θ)xj

= −
l∑

m=0

Γ(l + 1,m)Adm(RV,θ)Ad
l+1−m(θHV )

+ Adl(RV,θ)xj(θHV +M)RV,θ −Adl(RV,θ)xj

= −
l∑

m=0

Γ(l + 1,m)Adm(RV,θ)Ad
l+1−m(θHV ).

Hence (B.5) is true for k = l + 1.
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The above proof is formal in the sense that the domain of operators is not taken
into account in the argument. In fact, even for f ∈ C∞

0 (Ω), each xjRV,θf does not
necessarily belong to the domain of HV , since we only know the fact that

RV,θf ∈ D(HV ) =
{
u ∈ H1

0 (Ω)
∣∣√V+u ∈ L2(Ω), HV u ∈ L2(Ω)

}
.

Therefore, we should perform the argument by using a duality pair D′(Ω)〈·, ·〉D(Ω)

of D ′(Ω) and D(Ω) in a rigorous way. We may prove the lemma only for k = 1.
For, as to the case k > 1, the argument is done in a similar manner. Now we write

D′(Ω)〈Ad1(RV,θ)f, g〉D(Ω) = 〈RV,θf, xjg〉L2(Ω) − 〈xjf,RV,θg〉L2(Ω) =: I − II

for f, g ∈ C∞
0 (Ω). Since RV,θf,RV,θg ∈ H1

0 (Ω), there exist two sequences {fn}n,
{gm}m in C∞

0 (Ω) such that

fn → RV,θf and gm → RV,θg in H1(Ω) as n,m→ ∞.

Hence we obtain by xjfn, xjgm ∈ C∞
0 (Ω),

I = lim
n→∞ 〈fn, xjg〉L2(Ω)

= lim
n→∞ 〈xjfn, (θHV +M)RV,θg〉L2(Ω)

= lim
n→∞

{
θ 〈∇(xjfn),∇RV,θg〉L2(Ω) + 〈(θV +M)xjfn, RV,θg〉L2(Ω)

}
= lim

n,m→∞
{
θ 〈∇(xjfn),∇gm〉L2(Ω) + 〈(θV +M)xjfn, gm〉L2(Ω)

}
= lim

n,m→∞
{
θ
〈
fn, ∂xjgm

〉
L2(Ω)

+θ 〈xj∇fn,∇gm〉L2(Ω)+〈(θV +M)xjfn, gm〉L2(Ω)

}
and

II = lim
m→∞ 〈xjf, gm〉L2(Ω)

= lim
m→∞ 〈(θHV +M)RV,θf, xjgm〉L2(Ω)

= lim
m→∞

{
θ 〈∇RV,θf,∇(xjgm)〉L2(Ω) + 〈(θV +M)xjRV,θf, gm〉L2(Ω)

}
= lim

n,m→∞
{
θ 〈∇fn,∇(xjgm)〉L2(Ω) + 〈(θV +M)xjfn, gm〉L2(Ω)

}
= lim

n,m→∞
{
θ
〈
∂xjfn, gm

〉
L2(Ω)

+ θ 〈xj∇fn,∇gm〉L2(Ω)

+ 〈(θV +M)xjfn, gm〉L2(Ω)

}
.

Then, combining the above equations, we deduce that

D′(Ω)〈Ad1(RV,θ)f, g 〉D(Ω) = lim
n,m→∞ θ

{〈fn, ∂xjgm〉L2(Ω) − 〈∂xjfn, gm〉L2(Ω)

}
= lim

n,m→∞ θ〈−2∂xjfn, gm〉L2(Ω) = 〈−2θ∂xjRV,θf,RV,θg〉L2(Ω)

= 〈−2θRV,θ∂xjRV,θf, g〉L2(Ω)

for any f, g ∈ C∞
0 (Ω). Thus (B.3) is valid in a distributional sense. In a similar

way, (B.4) can be also shown in a distributional sense. The proof of Lemma B.2
is finished. �
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Lemma B.3. Assume that V satisfies the same assumption as in Lemma B.2. Let
A, B and L be as in Lemma B.2. Then the following formula holds for each t ∈ R:

(B.7) Ad1(e−itRV,θ ) = −i
∫ t

0

e−isRV,θAd1(RV,θ) e
−i(t−s)RV,θ ds.

Furthermore, the following formulas hold for k > 1:

(B.8) Adk+1(e−itRV,θ )

= −i
∫ t

0

∑
k1+k2+k3=k

Γ(k1, k2, k3)Ad
k1(e−isRV,θ )Adk2+1(RV,θ)Ad

k3(e−i(t−s)RV,θ ) ds,

where the constants Γ(k1, k2, k3) (k1, k2, k3 ≥ 0) are trinomial coefficients:

Γ(k1, k2, k3) =
k!

k1! k2! k3!
.

Proof. It is sufficient to prove the lemma without taking account of the domain of
operators as in the proof of Lemma B.2. We write

Ad1(e−itRV,θ ) = xje
−itRV,θ − e−itRV,θxj = −

∫ t

0

d

ds

(
e−isRV,θxj e

−i(t−s)RV,θ
)
ds

= −i
∫ t

0

e−isRV,θ (xjRV,θ −RV,θxj) e
−i(t−s)RV,θ ds

= −i
∫ t

0

e−isRV,θAd1(RV,θ) e
−i(t−s)RV,θ ds.

This proves (B.7). The proof of (B.8) is performed by induction argument. So we
may omit the details. The proof of Lemma B.3 is complete. �
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