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Algebraic connections vs. algebraic D-modules:
regularity conditions

Maurizio Cailotto and Luisa Fiorot

Abstract. This paper is devoted to the comparison of the notions of reg-
ularity for algebraic connections and regularity for (holonomic) algebraic
D-modules.

Introduction

In the dictionary between the language of (algebraic integrable) connections and
that of (algebraic) D-modules, the notion of regularity is of great importance, and
in some sense this justifies different approaches to the definition itself. In the
context of algebraic connections the definition of regularity comes from the theory
of regular singular points of ordinary differential equations due to Fuchs: a monic
differential operator P =

∑n
i=1 ai(x)(x∂x)

i (with an(x) = 1) is regular at 0 if the
coefficients ai(x) are regular (no poles at 0), or equivalently if in the expression
P =

∑
i bi(x)∂

i
x (with bn(x) = 1) the coefficients bi(x) have the property that

ord0 bi(x) ≥ i − n (n is the order of P ). In several variables, several notions of
regularity (along a polar divisor) have been considered. The general notion of
regularity for an algebraic connection, as developed by Manin, Deligne and many
other authors, is the existence (after suitable localization and completion) of a
sub-lattice stable under logarithmic derivations. In the context of D-modules the
notion of regularity, which generalizes that of regular singular points, is due to
Kashiwara, i.e.: a holonomic D-module is regular if the annihilator of its graded
module w.r.t. a suitable good filtration is a radical ideal. In the ordinary case, that
is for analytic functions of one variable, these two notions are equivalent by the
following elementary argument (see [13]). Let P be as before, and let us consider
the holonomic D-module M = D/DP . Then P is regular at 0 if and only if M
is regular. In fact for the (good) filtration of M defined by F0(M) being the
O-module generated by u, (x∂x)u, . . . , (x∂x)

n−1u, and Fk(M) = Fk(D)F0(M), we
have that x∂x belongs (and then generates) the annihilator of the graded module if
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and only if x∂xFk(M) ⊆ Fk(M), if and only if the operator P has coefficients ai(x)
which are regular.

In this paper we prove that these two definitions in the general case, under
suitable conditions, correspond to each other in the dictionary. Thus we answer
a question addressed to us by André and Baldassarri (as a complement of their
book [3]). Even if some authors consider these two notions as equivalent, there
seems to be no proof of this statement in the literature. Hence, this work provides
a sequel of our paper [7] in the general problem of comparing various notions for
algebraic connections and for algebraic D-modules.

Finally, we want to thank the anonymous referee for valuable suggestions that
have allowed us to improve the paper.

1. Generalities on connections and D-modules

Let X be a smooth K-variety of pure dimension dX = dimX , where K is a
field of characteristic 0. Following the terminology of [12, IV, §16], we denote
by Ω1

X the OX -module of differentials (i.e., the quotient I/I2 where I in the
ideal of the diagonal immersion of X in X ×X , that is the kernel of the product
map OX ⊗ OX → OX) and the differential map by d : OX → Ω1

X (i.e., d(x) =
1⊗ x− x⊗ 1).

We also use DerX or ΘX to denote the OX -module of derivations (OX -dual
of Ω1

X , endowed with the usual structure of Lie-algebra), and DX to indicate
the graded (left) OX -algebra of differential operators. On DX we consider the
increasing filtration F defined by the order of differential operators: F iDX = DX,i.
Then the associated graded OX -algebra, denoted by GrDX , is commutative and it
is generated (as OX -algebra) by DerX ⊆ DX,1.

Connections and D-modules

Let E be an OX -module. The following supplementary structures on E are equiv-
alent:

(i) a connection, that is a morphism of abelian sheaves ∇ : E → Ω1
X ⊗OX E

which satisfies the Leibniz rule with respect to sections ofOX , plus the integrability
condition, that is ∇2 = 0 for the natural extension of ∇ to the De Rham sequence;

(ii) an OX -linear Lie-algebra homomorphism Δ : DerX → DiffX(E) (for the
usual Lie-algebra structures), where DiffX(E) is the sheaf of differential operators
of E ;

(iii) a structure of left DX -module on E .
The dictionary between these equivalent structures is well known: for any ∂

section of DerX , the morphism Δ is defined by Δ∂ = (∂ ⊗ id) ◦ ∇, i.e., Δ∂(e) =
〈∂,∇(e)〉. On the other hand, the reconstruction of∇ from Δ involves a description
using local coordinates xi on X (dxi and ∂i are the dual bases of differentials and
derivations): if e is a section of E , then ∇(e) =

∑
i dxi ⊗Δ∂i(e).

The morphism Δ is equivalent to the data of a left DX -module structure on E
since it extends to a left action of DX on E (see [6, VI, 1.6]).
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Morphisms

A morphism of connections on X is an OX -linear morphism h : E → E ′ compatible
with the data, that is, such that ∇′◦h = (id⊗h)◦∇, or equivalently Δ′

∂ ◦h = h◦Δ∂

for any section ∂ of DerX , or finally which is DX -linear.

Coherence and quasi-coherence conditions

The connection E is said to be quasi-coherent (resp. coherent) if E enjoys the cor-
responding property as OX -module. Recall that coherence implies locally freeness
for integrable connections (see [5, 2.17]). Let denote by MIC(X) (resp. MICqc(X),
resp. MICc(X)) the category of integrable (resp. quasi-coherent, resp. coherent so
locally free of finite type) connections.

For us a DX -module is a left algebraic DX -module and we denote this category
by DX -Mod. A DX -module M is quasi-coherent (resp. coherent) for any x ∈ X
there exists an affine neighborhood U and an exact sequence

D(I)
U

�� D(J)
U

�� M|U �� 0

where I, J are arbitrary (resp. finite) sets of indexes and D(I)
U represents the di-

rect sum of the sheaf DU (i.e., DX restricted to U) indexed by I. We denote by
DX -Modqc (resp. DX -Modc) the category of quasi-coherent (resp. coherent) DX -
modules. It is well known that coherent DX -modules may not be coherent as OX -
modules, (for exampleDX is coherent asDX -module but it is only quasi-coherent as
OX -module), but they are quasi-coherent as OX -module (see [6, VI.2.11]). More-
over a DX -module which is coherent as OX -module is locally OX -free of finite
type ([6, VI.1.7]) and we denote by DX -ModOX-c the full subcategory of DX -Mod
whose objects are OX -coherent DX -modules.

Any quasi-coherent DX -module is quasi-coherent as OX -module (because DX

is a quasi-coherent OX -module and direct sums of quasi-coherent OX -modules are
quasi-coherent OX -modules). Moreover any DX -module which is quasi-coherent
as OX -module is also quasi-coherent as DX -module. In fact for any x ∈ X there
exists an affine neighborhood U and an epimorphism

O(J)
U

g
�� M|U �� 0.

Let g be the morphism obtained by extension of scalars fromOU to DU . Then g too
is an epimorphism whose kernel as DU -modules coincides with that as OU -modules
and it will be denoted by KU . Hence KU is a DU -module which is quasi-coherent
as OU -module and (since U is affine) there exist I and f such that the morphism

f : O(I)
U −→ KU is surjective. As before let f be the morphism obtained from f

extending the scalars to DU . We obtain an exact sequence

D(I)
U

�� D(J)
U

�� M|U �� 0

which proves that M is a quasi-coherent DX -module.
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In summary, we have the following commutative diagram whose horizontal
arrows are isomorphisms of categories:

MICc(X) ��

��

DX -ModOX-c

��

MICqc(X) ��

��

DX -Modqc

��

MIC(X) �� DX -Mod.

In the following we consider only quasi-coherent DX -modules.

2. Definitions of regularity

Good filtrations of DX-modules

A filtration F i(M) of a DX -module M is an increasing Z-indexed family of coher-
ent sub-OX -modules of M such that F iM = 0 for i � 0, M is the union of all the
F iM and DX,i F

jM ⊆ F i+jM. The filtration is said to be good (or coherent) if
one of the following equivalent conditions holds:

(i) for j � 0 and all i ∈ N we have DX,i F
jM = F i+jM;

(ii) the associated graded module GrFM =
⊕

i∈Z
GriFM (where GriFM =

F iM/F i−1M) is a coherent GrDX -module.

We recall that in the algebraic setting (and unlike the analytic case) any co-
herent DX -module admits a global good filtration ([15, I.2.5.4]).

Characteristic variety of DX-modules

Let T ∗X = V((Ω1
X)∨) be the cotangent bundle of X (we use in general the termi-

nology of [12, II]). We denote by π = πX the canonical morphism of K-varieties
T ∗X → X and by ι = ιX : X → T ∗X the zero section of π, whose image is T ∗

XX .

For any DX -module M and any good filtration F on it, the graded module
GrFM is an OT∗X = GrDX -module. The characteristic variety ChM of M is de-
fined as the support in T ∗X of GrFM, that is the closed subset of T ∗X correspond-
ing to the annihilator IF (M) = AnnGrDX (GrFM) of GrFM in OT∗X . We recall
that the ideal IF (M) depends on the filtration F , but the characteristic variety
ChM does not, that is, the radical of IF (M) is independent of F (see for example
[10] and [13, 2.6]). Moreover the characteristic variety of a DX -module is always
a conical involutive closed subset in T ∗X (see [6, VI.1.9], [15, I.2.3;2.5], [10]), and
in particular the Bernstein inequality holds: dimChM ≥ dimX (see [6, VI.1.10]
and [15, I.2.3.4;2.5]).

A DX -module M is OX -coherent if and only if ChM = T ∗
XX .
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Holonomic DX-modules

A coherent DX -module M is said to be holonomic if dimChM ≤ dimX (so
that the equality holds, and the characteristic variety has the minimal possible
dimension). We denote by DX -Modh the category of holonomic DX -modules (as
a full subcategory of DX -Mod). Since any OX -coherent DX -module is holonomic,
DX -ModOX-c is a full subcategory of DX -Modh. Notice that a DX -module is
holonomic if and only if its characteristic variety is lagrangian (and so a union of
conormal varieties).

Regularity for holonomic DX-modules

Following Kashiwara (see [13, 5.2]), a holonomic DX -module M is said to be
regular, or to have regular singularities (or to be RS) if it admits a good filtration F
such that IF (M) is a radical ideal, or equivalently the (reduced) ideal I(ChM) of
ChM annihilates GrFM.

Let M be an OX -coherent DX -module. Then M belongs to DX -Modh and it
always has regular singularities; in fact we can take F i(M) = M for any i ≥ 0
and F i(M) = 0 if i < 0. Then IF (M) =

⊕
k≥1 GrkDX which is a radical ideal.

Let M be a DX -module. A point x ∈ X is called a singularity for M if(
π−1(x)�T ∗

XX
)∩Ch(M) �= ∅. In particular, a DX -module which is OX -coherent

has no singular points.

Regularity for connections

Let X be a smooth K-variety and let Z be a smooth irreducible hypersurface
of X . Following [3, I,3.4] a connection (E ,∇) on U = X � Z is said to be regular
along Z if (and only if) E = EηX (ηX is the generic point of X , and U) is a
κ(X)/K-differential module regular at the divisorial valuation v corresponding

to Z, that is, the completion of E w.r.t. v admits a sub-ÔX,ηZ -lattice stable under
x∂x where x is a local equation for Z (a generator for the ideal IZ of Z in OX),
and ∂x is a derivation transversal to Z (i.e., such that ∂x(mX,Z) �⊂ mX,Z where

mX,Z = ÎZ,ηZ ) satisfying ∂x(x) = 1.
Let X be a smooth K-variety. A connection (E ,∇) on X is said to be regular

if E = EηX is a κ(X)/K-differential module regular at any divisorial valuation of
κ(X)/K.

This definition shows immediately that the notion of regularity is a birational
invariant. It is useful to have a more concrete characterization: (E ,∇) on X is
regular if there exists a normal compactification X of X such that the connection
is regular along any component of the boundary Z = X\X which is of codimension
one in X. This characterization is easier to prove if we suppose Z to be a normal
crossing divisor: on one hand, any component of the divisor defines a divisorial
valuation, and on the other every valuation of the function field has a center in
a closed irreducible subset of any proper model of the function field. The general
case has been proved with analytic methods by Deligne (in [9] the proof of this
criterion contains a mistake, and a correct proof is given in the “erratum” of 1971).
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A proof with algebraic methods has been proposed by Y. André in [1] and [2] as a
consequence of the study of the Poincaré–Katz rank of irregularity of a connection:
to estimate the irregularity of the connection induced on a curve, the problem is
reduced to the case of surfaces where suitable blow-ups are performed in order
to obtain a good formal structure for the connection; hence a suitable divisor
associated to the connection permits to estimate the irregularity of the connection
induced on the curve in terms of intersection multiplicities with the exceptional
divisors of the blow-ups and irregularities on the original polar divisor.

Whenever Z = X\X is a normal crossing divisor, a connection (E ,∇) is regular

if and only if there exists an extension Ẽ of E to X , and ∇̃ of ∇ with logarithmic
poles along Z. Such an extension is unique if the eigenvalues of the residues of
the connection are forced to belong to the image of a section τ of the canonical
projection K → K/Z: this is the τ -extension of Deligne, constructed in [9] with
analytic methods. An algebraic construction of the τ -extension is performed in [3]:
one proceed by local constructions and then gluing them by unicity. In this way one
can obtain a logarithmic (locally free) extension outside of a divisor of codimension
two. Then by direct image one obtain a reflexive extension to X , endowed with
a logarithmic connection, and the delicate point is to prove that it is locally free:
this is done using the formal theory of connections of Gerard–Levelt.

Connections with poles

Let X be a smooth K-variety, Z a divisor with normal crossings in X (we denote
by j the inclusion of the open complement U in X) and E an OU -coherent DU -
module (so that it is locally free of finite rank as OU -module). Let E be a coherent
OX -module contained in j∗(E) such that j−1(E) = E . We call such an E a coherent
extension of E to X . We have j∗E ∼= E(∗Z) := lim−→i I−i

Z E for any coherent extension

E of E as before and in particular j∗OU
∼= OX(∗Z) := lim−→i I−i

Z OX and j∗Ω1
U

∼=
Ω1

X(∗Z) := lim−→i I−i
Z Ω1

X .

Let us denote by ΘX,Z ⊂ ΘX the sheaf of derivations which respect the ideal IZ
(logarithmic derivations with respect to Z) and by DX,Z the sub-OX -algebra of DX

generated by the derivations ΘX,Z .

As an example, let us consider the sheaf OU endowed with the trivial connec-
tion. Then j∗(OU ) = OX(∗Z) is a regular holonomic DX -module and Ch(j∗(OU ))
= V (ΘX,ZGr(DX)), whereΘX,ZGr(DX) is the ideal generated by ΘX,Z in Gr(DX).
More precisely, let F be the good filtration on j∗(OU ) which is zero for negative
degrees and is generated (as OX -module) in degree i by sections of j∗(OU ) with
poles of order i on Z. Then AnnGrF (j∗(OU )) = ΘX,ZGr(DX). In fact, let us
suppose Z has locally equation x1 · · ·xd using local coordinates x1, . . . , xn in X .
Then DX,iF

j(j∗(OU )) = F j+i(j∗(OU )) for any j ≥ r, so that F is a good filtration.
Clearly ΘX,ZGr(DX) is contained in AnnGrF (j∗(OU )). On the other side, a local
computation shows immediately that any section s of AnnGrF (j∗(OU )) belongs to
ΘX,ZGr(DX) (for example, applying s to 1/xi for all i = 1, . . . , r).
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Proposition 2.1. Let (E ,∇) be a regular connection on U . Then j∗(E) is a co-
herent holonomic DX-module and Ch(j∗(E)) = T ∗

ZX, where T ∗
ZX in the closed

subvariety of T ∗X defined by the ideal generated by ΘX,Z (it consists of all conor-
mal cones of the smooth components of the natural stratification of the divisor Z).

Proof. Since the problem is local, we may assume to have local coordinates x1, ..., xn

in X such that Z has local equation x1 · · ·xd = 0. Hence, by the Gerard–Levelt
theory [11] of regular connections with several variables, the connection (E ,∇) is
given by successive extensions of rank one regular connections where xi∂xi acts
via a constant ai for i ≤ d. Since j is affine, so j∗ is exact functor, the direct
image j∗(E) admits the same description as successive extensions of rank one DX -
modules. Therefore its characteristic variety will be the union of the characteristic
varieties of these modules, which in turn are all equal to T ∗

ZX by an explicit com-
putation using the filtration by the order of the poles along x1, . . . , xd. �

Remark 2.2. The previous proposition says that for any good filtration F of j∗(E)
(with (E ,∇) a regular connection), we have that

√
AnnGrF (j∗(E)) = ΘX,ZGr(DX),

so that in particular AnnGrF (j∗(E)) ⊆ ΘX,ZGr(DX). Following a remark of C. Sab-
bah we may obtain, at the cost of using analytical-transcendental tools, a better
understanding of the situation: the latter inclusion holds without the regularity
assumption, but in general it can be strict, that is the characteristic variety can
be bigger than T ∗

ZX . In fact, using the exact sequence of perverse sheaves

0 −→ IrrZ(j∗E) −→ DR(j∗E) −→ Rj∗DR(E) −→ 0

due to Mebkhout (see [16]) we see that the characteristic variety of the middle
term Ch(j∗E) = Ch(DR(j∗E)) is the sum of Ch(Rj∗DR(E)) (which is by Riemann–
Hilbert the characteristic variety of a regular holonomic D-module, so that it is
exactly T ∗

ZX), and Ch(IrrZ(j∗E)) (and the irregularity sheaf need not to be adapted
to the natural stratification of Z).

For example if we consider the irregular module with solution ex/y (using x, y
local coordinates of the plane), it has poles only along Z defined by y = 0. As
OU -module, it is generated by one section m with action of DU determined by
∂x(m) = 1

ym and ∂y(m) = − x
y2m. The operators y∂x, y2∂y and x∂2

x gener-

ates the annihilator of the graded module (using for example the filtration with
F 0 = OX · m), therefore the characteristic variety has three components: T ∗

XX ,
T ∗
ZX and T ∗

0X (due to the lack of a good formal structure at 0). If we perform a
blow-up at the origin, and we consider the affine chart with coordinates x, t with
xt = y (the exceptional divisor has equation x = 0), the inverse image is the irregu-
lar module with solution e1/t. Using the section n = 1

xe
1/t as a generator over OU ,

the actions of the derivations are given by ∂x(n) = − 1
xn and ∂t(n) = − 1

t2n. The
operators x∂x, and t2∂t generate the annihilator (of the graded module using the
filtration with F 0 = OX · n), therefore the characteristic variety has the compo-
nents of the conormal cone over xt = 0, subject to some multiplicity (due to the
irregularity).
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3. Comparison

We now compare the notion of regularity for connections and D-modules. Let us
remark that the notion of regular connection (E ,∇) (with E a coherentOU -module)
takes in account the so called regularity at infinity where the connection has poles.
If we consider (E ,∇) as a DU -module it is always regular in the sense of Kashiwara
(as previously noticed). Hence we need to pass to a compactification in order to
compare correctly these notions.

Theorem 3.1. Let U be a smooth K-variety and let j : U ↪→ X be an open dense
immersion where X is a smooth proper K-variety and Z := X � U is a divisor
with strict normal crossings. Let (E ,∇) be a coherent connection on U . Then the
following are equivalent:

(1) (E ,∇) is regular;

(2) j∗E is a regular holonomic DX-module.

Proof. (1) ⇒ (2). Let (E ,∇) be a regular connection on U (along Z), and con-

sider a τ -extension (Ẽ , ∇̃) to X with logarithmic poles along Z. We have j∗E =

Ẽ ⊗OX OX(∗Z). For a suitable integer s the filtration defined by F 0(j∗E) =

Ẽ ⊗OX OX(sZ), and F i(j∗E) = DX,iF
0(j∗E) gives a good filtration, and the an-

nihilator of the associated graded module contains the ideal which preserves Ẽ ,
so that it contains the whole ideal ΘX,ZGr(DX). Since it cannot be bigger by
Proposition 2.1, the annihilator is just ΘX,ZGr(DX), which is a radical ideal.

(2)⇒ (1). Let (E ,∇) be a connection on U , and suppose that j∗E is a regular
holonomic DX -module. We have to prove that the connection is regular along
any one codimensional component Zi of Z. By hypothesis there exists a good
filtration F i on j∗E with the property that the annihilator of GrF (j∗E) is a rad-
ical ideal of Gr(DX). Up to a shift on the filtration we may suppose, defining

Ẽ := F 0(j∗E), that F i(j∗E) = DX,iẼ for i ≥ 0 and F i(j∗E) = 0 for i < 0. Now,

j∗E = Ẽ ⊗OX OX(∗Z), and let x1, . . . , xn be local coordinates such that x1 · · ·xd

is a local equation for Z. Hence we know that ∂xi acts on a trivialization of ẼηZi

(which is a finite torsion-free module over the DVR OX,ηZi
) via a matrix with

poles in x1 · · ·xd. Let us denote by s the maximal order of these poles. Therefore
(x1 · · ·xd)

sσ(∂xi) belongs to the annihilator of GrF (j∗E) since for any i = 1, . . . , d

we have (x1 · · ·xd)
s∂xi ẼηZi

⊆ ẼηZi
and so (x1 · · ·xd)

s∂xiDX,kẼηZi
⊆ DX,kẼηZi

which proves that (x1 · · ·xd)
sσ(∂xi)GrF (j∗E) = 0. Now the radicality of the an-

nihilator implies that also x1 · · ·xdσ(∂xi) belongs to the annihilator. In particu-

lar, ẼηZi
is stable under xi∂xi . Taking the completion w.r.t. the valuation induced

by Zi we have an ÔX,ηZi
-lattice stable under xi∂xi as required. �

Remark 3.2. The proof of (1) ⇒ (2) and Proposition 2.1 are strictly related with
the comparison map of Theorem 3.8 in [8], since a normal crossing divisor is the
simplest case of free divisors of linear Jacobian type.
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Remark 3.3. We note that the proof of (2) ⇒ (1) in Theorem 3.1 generalizes
to the case of Z a general hypersurface simply restricting to X \ Sing(Z). By
contrast, the implication (1) ⇒ (2) uses essentially the existence of τ -extensions,
which requires to have a normal crossing divisor.

Remark 3.4. We may try to prove the theorem by reduction to the case of
dimension one (i.e., for curves: in that case the equivalence of the definitions is
sketched in [13] and in the introduction of this paper), but it seem to be difficult
to prove that the Kashiwara definition of regular holonomic DX -modules can be
recovered in terms of curves.

Remark 3.5. The definition of regular singularity used in [14] (in the general
microlocal context) or [4] (in the algebraic D-modules context) is clearly equivalent
to the notion of regularity of the correspondent object of MIC. Hence, in its D-
module counterparts, it corresponds to the regularity of its direct image by an open
immersion to a proper variety with complement being a normal crossing divisor.

Proposition 3.6. In the above situation the following conditions are equivalent:

(a) the DX-module j∗E has regular singularities;

(b) there exists an OX-coherent extension E of E to X which is a DX,Z-module;

(c) there exists an OX -coherent extension E of E to X such that Im(DX,Z×E →
j∗(E)) is OX-coherent;

(d) for any OX-coherent extension E of E to X the OX-module Im(DX,Z × E →
j∗(E)) is OX-coherent.

It is the analog of the assertion 3.3.4 in chapter I of [3]. In items (a) and (b),
the extension E can be taken locally free over OX , for example the τ -extension.
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