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Long wave asymptotics
for the Euler–Korteweg system

Sylvie Benzoni-Gavage and David Chiron

Abstract. The Euler–Korteweg system (EK) is a fairly general nonlinear
waves model in mathematical physics that includes in particular the fluid
formulation of the NonLinear Schrödinger equation (NLS). Several asymp-
totic regimes can be considered, regarding the length and the amplitude
of waves. The first one is the free wave regime, which yields long acoustic
waves of small amplitude. The other regimes describe a single wave or two
counter propagating waves emerging from the wave regime. It is shown
that in one space dimension those waves are governed either by invis-
cid Burgers or by Korteweg–de Vries equations, depending on the spatio-
temporal and amplitude scalings. In higher dimensions, those waves are
found to solve Kadomtsev–Petviashvili equations. Error bounds are pro-
vided in all cases. These results extend earlier work on defocussing (NLS)
(and more specifically the Gross–Pitaevskii equation), and sheds light on
the qualitative behavior of solutions to (EK), which is a highly nonlinear
system of PDEs that is much less understood in general than (NLS).

1. Introduction

The Euler–Korteweg system is a dispersive perturbation of the Euler equations for
compressible fluids. In its most general form, it reads

(gEK)

{
∂tρ+∇ · (ρu) = 0,

∂tu+ (u · ∇)u+∇(δF [ρ]) = 0 ,

for a compressible fluid whose velocity field is u, whose energy density F is allowed
to depend on the fluid density ρ and on its spatial gradient ∇ρ, and δF [ρ] denotes
the variational derivative of F at ρ. The standard Euler equations correspond to
F = F (ρ) only, so that δF [ρ] = F ′(ρ) (and the pressure of the fluid is p(ρ) =
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ρF ′(ρ)−F (ρ)). We are most interested in the classical form of the Euler–Korteweg
system, which corresponds to

F = F (ρ) +
1

2
K(ρ)|∇ρ|2 ,

where the so-called capillarity coefficient K = K(ρ) is allowed to depend on the
density ρ in an arbitrary way, provided that K is smooth and takes only positive
values. In this case, (gEK) ‘reduces’ to

(EK)

⎧⎨
⎩

∂tρ+∇ · (ρu) = 0,

∂tu+ (u · ∇)u+∇(g(ρ)) = ∇
(
K(ρ)Δρ+

1

2
K ′(ρ)|∇ρ |2

)
,

where g
def
= F ′. Would K be zero, the system (EK) would of course reduce to the

standard Euler equations again, in which the sound speed is given by
√
ρg′(ρ) as

long as g is a nondecreasing function of ρ. In the special case when K(ρ) = 1/(4ρ),
the system (EK) can be derived from the (generalized) nonlinear Schrödinger equa-
tion (NLS) via the Madelung transform. An even more special case is g(�) = �−1,
which corresponds to the Gross–Pitaevskii equation. In fact, (EK) is a ubiqui-
tous system in mathematical physics, with various choices of K and g, see for
instance [3] for more details.

Associated with (gEK) is a local conservation law for the total energy 1
2ρ |u|2+

F (ρ,∇ρ). However, the Cauchy problem for (gEK) has never been addressed for
general energy densities F . Because of analytical difficulties inherent in all systems
involving high order derivatives (namely here, third order derivatives), the Cauchy
problem analysis has been concentrated on (EK). The local well-posedness of (EK)
is shown in [5] (one space dimension) and [4] (arbitrary space dimension). Our
purpose here is to investigate the behavior of solutions of (EK) on longer times,
by considering small perturbations of constant, thermodynamically stable states.
By small we mean small amplitude perturbations that are significant on large
space-time scales. By thermodynamically stable we mean reference densities �
such that g′(�) is positive. For any �, the condition g′(�) > 0 is equivalent to
the hyperbolicity of the Euler equations at (�, 0) (or (�,u) for any velocity u,
by Galilean invariance) – and when applied to the fluid formulation of (NLS), it
corresponds to what is known as the defocussing case. This paper aims at justifying
several asymptotic limits regarding small amplitude, long wave solutions to the
Euler–Korteweg system (EK), thus extending a series of recent work on (NLS)
– and similar results known for the water wave equations.

The starting point is as follows. Constant states (�, 0) are obviously global
solutions to (EK) – and even (gEK). Small amplitude perturbations (ρ̂, û)) of (�, 0)
are formally governed, at leading order, by the acoustic equations{

∂tρ̂+ �∇ · û = 0,

∂tû+ g′(�)∇ρ̂ = 0 .

For (gEK), it suffices to replace g′(�) by ∂2F
∂ρ2 (�, 0). We are only interested here

in the case when these equations are well-posed, which amounts to requiring
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that g′(�) > 0. From now on, we assume that g is as smooth as necessary near � �= 0
–vacuum being excluded from our analysis –, that g′(�) > 0, and we denote by

c
def
=
√
�g′(�) > 0

the sound speed at �. The acoustic equations admit particular solutions that are
planar traveling waves (ρ̂, û) = (ρ̂, û)(x − cnt) propagating with speed c in any
direction n. A natural idea is to seek genuine solutions to (EK) that are of small
amplitude about (�, 0) and vary slowly in the frame attached to this linear wave.

In one space dimension, a prominent asymptotic regime corresponding to a
weakly nonlinear limit can easily be identified by rescaling the solutions to the
one D version of (EK) – or even (gEK)– as

(1.1) ρ(t, x) = �+ ε2ρ̃(θ, Y ) , u(t, x) = ε2ũ(θ, Y ) , θ = ε3t , Y = ε(x− ct) ,

for a small parameter ε > 0 (here above, the scalar, fluid velocities are denoted
by u instead of the bold letter u). Using that ∂t = ε3∂θ − εc∂Y and ∂x = ε∂Y , we
see that for (ρ, u) to solve (gEK) in one D we must have⎧⎪⎨

⎪⎩
∂θρ̃− c

ε2
∂Y ρ̃+

1

ε2
∂Y ((�+ ε2ρ̃)ũ) = 0,

∂θũ− c

ε2
∂Y ũ+ ũ ∂Y ũ+

1

ε4
∂Y (δF [�+ ε2ρ̃]) = 0 .

Furthermore, by Taylor expansion we have

δF [� + ε2ρ̃] =
∂F

∂ρ
(�, 0) + ε2

∂2F

∂ρ2
(�, 0) ρ̃+

1

2
ε4
∂3F

∂ρ3
(�, 0) ρ̃2

− ε4
∂2F

∂ρ2x
(�, 0) ∂2Y ρ̃ + O(ε5) ,

which enables us to rewrite the system above as⎧⎪⎨
⎪⎩

∂θρ̃− c

ε2
∂Y ρ̃+

�

ε2
∂Y ũ+ ∂Y (ρ̃ũ) = 0,

∂θũ− c

ε2
∂Y ũ+ ũ ∂Y ũ+

c2

ε2�
∂Y ρ̃+ δ ρ̃ ∂Y ρ̃−K ∂3Y ρ̃ = O(ε),

with

c2 = �
∂2F

∂ρ2
(�, 0) , δ

def
=

∂3F

∂ρ3
(�, 0) , K

def
=

∂2F

∂ρ2x
(�, 0) .

If we go on at a formal level, we find by inspecting theO(ε−2) terms that necessarily
cρ̃ ≈ �ũ, and by taking a linear combination of the O(1) terms in the system above,

we see that w
def
= 1

2 (ρ̃ +
�
c
ũ) should approximately satisfy the Korteweg–de Vries

(KdV) equation
∂θw+ Γw ∂Y w = κ ∂3Y w

with

Γ
def
=

3c

2�
+
� δ

2c
, κ

def
=

�K

2c
.
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When dealing with (EK), we merely have δ = g′′(�) and K = K(�). Of course, if
K = 0 we recover the well-known Burgers equation

∂θw+ Γw ∂Y w = 0

as an asymptotic equation for the weakly nonlinear wave solutions to the Euler
equations. The parameter Γ is nonzero provided that the characteristic fields are
genuinely nonlinear in the neighborhood of �. Indeed, both characteristic fields of
the Euler equations are genuinely nonlinear in the neighborhood of � if and only
if ∂ρ(ρ

√
ρg′(ρ))|� �= 0, and by definition of c we have

∂ρ(ρ
√
ρg′(ρ))|� = c+

�

2c

( c2
�

+ � g′′(�)
)
= �Γ .

In fact, the dimensionless number �Γ/c measures nonlinearity of pressure waves,
and is positive in standard fluids.

More generally, in order to find relevant asymptotic regimes, we seek solutions
to (EK) of the form

(1.2) ρ(t, x) = �+ η ρ̂(εt, εx) , u(t, x) = η û(εt, εx) ,

with η > 0 and ε > 0 some small, a priori independent parameters. The for-
mer gives an order of magnitude for the amplitude of solutions, and 1/ε is a
spatio-temporal scale on which solutions are supposed to vary significantly. The
distinction between the time evolution scale and the spatial scale comes later in
the analysis.

After the linear wave regime considered in Section 3, the Korteweg–de Vries
and the Burgers regimes described above –which correspond to the special case
η = ε and η = ε2 in (1.2) – are fully justified in Section 4 for solutions to (EK)
with well-prepared initial data, along with alternate regimes in which dispersive
effects are weaker – i.e., when ε2 � η. Section 5 is devoted to more general
initial data, and asymptotic regimes obtained by decoupling left-going and right-
going waves. Finally, multidimensional, weakly transverse effects are taken into
account in Section 6, in which we justify the so-called Kadomtsev–Petviashvili
regime for (EK). The rigorous derivation of the KdV equation (and KP equation)
has already been given for the water waves problem (see [17], [26]), for hyperbolic
systems (cf. [1], [2]), and for the Schrödinger map equation in [18].

2. Preliminary material

2.1. Statement of uniforms bounds

The ansatz (1.2) obviously transforms (EK) into the rescaled system

(EKε,η)

⎧⎨
⎩

∂T ρ̂+∇X · ((�+ ηρ̂) û) = 0 ,

∂T û+ η (û · ∇X)û+ g′(�+ ηρ̂)∇X ρ̂

= ε2∇X

(
K(�+ ηρ̂)ΔX ρ̂+

η
2 K

′(�+ ηρ̂) |∇X ρ̂ |2
)
,

where T = εt, X = εx.
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Note that the acoustic equations are formally obtained by setting η = 0, ε = 0
in (EKε,η). For η > 0, ε > 0, the local well-posedness of the Cauchy problem
associated with (EKε,η) follows from the following result.

Theorem 2.1 ([4]). Let us take s > 1+ d/2, and (ρin,uin) ∈ (�, 0)+Hs+1(Rd)×
(Hs(Rd))d such that ρin is positive and bounded by below in Rd. Then, there exists
a time t∗ > 0 such that the system (EK) possesses a unique solution (ρ,u) in

(�, 0) + C ([0, t∗], Hs+1(Rd)× (Hs(Rd))d) ∩ C 1([0, t∗], Hs−1(Rd)× (Hs−2(Rd))d)

such that (ρ,u)(0) = (ρin,uin). Moreover, the mapping (ρin,uin) �→ (ρ,u) is con-
tinuous.

However, we need refined estimates of solutions that: 1) keep track of the
parameters (η, ε); 2) take into account the nonlinear term g′(� + ηρ̂)∇X ρ̂ – and
not as a source term as in [4] –, which will be possible thanks to the positivity
of g′(�). Furthermore, the following result implies that, as expected, the smaller
the initial data, the longer the time of existence of the solution.

Theorem 2.2. Let s be a real number greater than 1 + d/2 and η ∈ (0, 1]. For
ε > 0 and M > 0, we consider

Bs,ε(M)
def
= {(ρ̂, û) ∈ Hs+1(Rd)× (Hs(Rd))d ;

‖(ρ̂, û)‖(Hs(Rd))d+1 + ε ‖ρ̂‖Hs+1(Rd) �M} .
If � > 0, g′(�) > 0, and (ρ̂in, ûin) ∈ Bs,ε(M), then there exists T∗ > 0, depending
only on M , s and d, such that the maximal solution to (EKε,η) in Hs+1(Rd) ×
(Hs(Rd))d with (ρ̂, û)(0) = (ρ̂in, ûin) exists at least on [0, T∗/η], and (ρ̂, û)(T ) ∈
Bs,ε(2M) for all T ∈ [0, T∗/η].

A similar result is shown in [6] (Theorem 1 there) for the hydrodynamical for-
mulation of the Gross–Pitaevskii equation obtained with the Madelung transform.
However, it is stated in terms of ‖(ρ̂, û)‖Hs+1×Hs instead of ‖(ρ̂, û)‖Hs +ε ‖ρ̂‖Hs+1

(with our notations), which seems to be a slight mistake. A priori estimates rely
indeed on Proposition 1 in [6], in which some quantity denoted by z is controlled
in Hs, but the imaginary part of z is 2∇ρ/ρ with ρ = 1+ερ̂, so that only ε‖ρ̂‖Hs+1

is controlled. The estimate in Theorem 2 of [6] should certainly be modified ac-
cordingly. Apart from this harmless correction, the main novelty here compared
to [6] is twofold. First, the capillarity is arbitrary, which means in particular that
it is not assumed to be proportional to 1/ρ. As already known from [4], the a
priori estimates are much trickier when ρK(ρ) is not constant. The other point
is that we do not assume the vector field u to be potential – unlike what happens
when dealing with the fluid formulation of (NLS). This is again known to make a
priori estimates more complicated. However, it is important to deal with general
capillarities and velocity fields for various applications.

Remark 2.3. The special case η = ε2 is called the Boussinesq regime. If, in
addition, the capillarity K is a positive constant and g is a convex, quadratic
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polynomial (i.e., g′ = constant > 0), then (EKε,ε2) belongs to the (a, b, c, d)-class
of Boussinesq type systems as introduced in [9] and [10], with a = b = d = 0
and c = −K < 0. In this case, the existence and uniqueness of (strong) solutions
on the time scale ε−2 has been shown in [25], using hyperbolic techniques (see
Theorem 1.1 in [25], case (12) in the sense of their definition 1.2). Our own result
(Theorem 2.2 here above) applied to η = ε2, K = constant > 0, g′ = constant > 0,
provides an alternate proof of theirs in that case.

Theorem 2.2 is a building block for the rigorous justification of asymptotic
regimes. We need some material in order to prove it.

2.2. Basic tools for the proof of uniform bounds

As in [4], we shall derive uniform Sobolev bounds through an extended formulation
of the system (EK). The idea is to introduce the complex-valued unknown z =
u+ iw that is naturally involved in the global energy

E =

∫
Rd

(1
2
ρ |u|2 + F (ρ) +

1

2
K(ρ)|∇ρ|2

)
dx .

This integral is indeed well defined provided that we redefine F (ρ)
def
=
∫ ρ

�
g, which

merely amounts to adding a constant to F so that F (�) = 0, and conserved along
(smooth) solutions (ρ,u) to (EK) that tend to (�, 0) sufficiently fast at infinity. In
addition, we can write

1

2
ρ |u|2 + 1

2
K(ρ)|∇ρ|2 =

1

2
ρ |z|2, with z = u+ iw , w

def
=

√
K(ρ)

ρ
∇ρ .

Then, if we introduce

a(ρ)
def
=
√
ρK(ρ) , b(ρ)

def
=

ρg′(ρ)
a(ρ)

,

by differentiating the first equation in (EK) we obtain the following, equivalent
system for (ρ, z),

(ES)

{
∂tρ+∇ · (ρu) = 0 ,

∂tz+ (u · ∇)z+ i(∇z)w + b(ρ)w + i∇(a(ρ)∇ · z) = 0 ,

in which the notation (∇z)w stands for the standard product of the matrix-valued
function ∇z = (∂jzk)1�j,k�d and the vector field w, so that

((∇z)w)j =

d∑
k=1

(∂jzk)wk = (∂jz) ·w ,

where we use the notation u · v =
∑d

j=1 ujvj for u, v ∈ Cd. The scaling in (1.2)
urges us to define

(2.1) ŵ
def
= ε

√
K(ρ)

ρ
∇X ρ̂ , ẑ

def
= û+ iŵ ,
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so that z(t, x) = η (û+ iŵ)(T,X) = ηẑ(T,X), and (ES) equivalently reads

(ESε,η)

⎧⎨
⎩

∂T ρ+ η∇X · (ρ û) = 0 ,

∂T ẑ+ η (û · ∇X)ẑ+ iη (∇X ẑ)ŵ +
1

ε
b(ρ)ŵ + iε∇X(a(ρ)∇X · ẑ) = 0 .

Our main purpose here is to derive some a priori estimates for solutions to (ESε,η)
that are valid uniformly in (ε, η). In this respect, we are going to use a modified
version of the energy

E =
η2

2εd

∫
Rd

(
ρ |ẑ|2 + 2

η2
F (�+ ηρ̂)

)
dX .

Recalling that we have redefined F so that F (�) = 0, omitting the linear term
in ρ̂ in the Taylor expansion of F about �, which is justified by the fact this term
does not contribute – at least to the lowest order – to a priori estimates since ρ̂ is
conserved, and removing the factor η2ε−d, we arrive at the modified energy

E0(ρ̂, ẑ)
def
=

1

2

∫
Rd

ρ |ẑ|2 + g′(ρ) ρ̂2 dX , ρ = �+ ηρ̂ .

Clearly, even though E0 depends on η through ρ, the assumption g′(�) > 0 ensures
that

√
E0[ρ̂, ẑ] is equivalent to the L2 norm of (ρ̂, ẑ) as long as ρ and g′(ρ) remain

bounded and bounded away from zero. Moreover, going back to (2.1), we may
see E0 as a functional applied to (ρ̂, û), and, as such, E0[ρ̂, û] enjoys the following
estimates.

Proposition 2.4. Let r ∈ (0, �/2] be such that g′(ρ) > 0 and K(ρ) > 0 if |ρ− �|
� r. Then for all (ρ̂, û) ∈ H1 × L2 such that ‖ρ̂‖L∞ � r, for all η ∈ (0, 1], for all
ε > 0,

c0 (‖û‖2L2 + ‖ρ̂‖2L2 + ε2 ‖ρ̂‖2H1) � E0[ρ̂, û] � C0 (‖û‖2L2 + ‖ρ̂‖2L2 + ε2 ‖ρ̂‖2H1) ,

where c0 > 0 and C0 > 0 depend only on r (and the functions g, K).

Proof. We have these inequalities with, explicitly,

c0
def
=

1

2
min

|ρ−�|�r
min

(
ρ, g′(ρ),

√
K(ρ)/ρ)

)
,

C0
def
=

1

2
max

|ρ−�|�r
max

(
ρ, g′(ρ),

√
K(ρ)/ρ)

)
.

�

Now, the following zero-th order a priori estimate is reminiscent of the fact that
the exact energy E is conserved along solutions of (EK).

Proposition 2.5. Let η ∈ (0, 1]. Assume that (ρ̂, û) ∈ C ([0, t∗], Hs+1(Rd) ×
(Hs(Rd))d) ∩ C 1([0, t∗], Hs−1(Rd) × (Hs−2(Rd))d) is a solution of (EKε,η) for
some s > 1 + d/2, such that ‖ρ̂‖L∞ � r, where r is as in Proposition 2.4. Then
there exists C > 0 depending only on r such that

d

dT
E0[ρ̂, û] � Cη ‖(∇X ρ̂,∇Xu)‖L∞ E0[ρ̂, û] .
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Proof. Of course, we are going to use that (ρ̂, ẑ = û + iŵ) solves (ESε,η) if
ρŵ = εa(ρ)∇X ρ̂ – this equality just being a different way of writing (2.1). Re-
call also that a(ρ)b(ρ) = ρg′(ρ). The notation 〈·, ·〉 will stand everywhere for

real-valued inner products, and more precisely 〈z, ζ〉 = 1
2

∑d
j=1(zjζj+zjζj) for all

z, ζ ∈ Cd (whatever d, including d = 1). Using (ESε,η), we find by straightforward
differentiation that

2
d

dT
E0[ρ̂, û] =− η

∫
∇X · (ρû)|ẑ|2 − η

∫
ρû · ∇X |ẑ|2 − 2η

∫
ρ 〈i(∇X ẑ)ŵ, ẑ〉

− 2

ε

∫
ρ b(ρ)〈ŵ, û〉 − 2ε

∫
ρ 〈i∇X(a(ρ)∇X · ẑ), ẑ〉

+

∫
û · ∇X(2ρg′(ρ)ρ̂+ η (ρg′′(ρ)− g′(ρ))ρ̂2) .

By the relations recalled above and an integration by part, this reduces to

2
d

dT
E0[ρ̂, û] =− 2ε

∫
a(ρ) 〈i(∇X ẑ) · ∇Xρ, ẑ〉

− 2

∫
ρ g′(ρ)(û · ∇X ρ̂) + 2ε

∫
a(ρ) 〈i∇X · ẑ, ẑ · ∇Xρ〉

+

∫
û · ∇X(2ρg′(ρ)ρ̂+ η (ρg′′(ρ)− g′(ρ))ρ̂2) .

Now, using that a(ρ)∇ρ is potential, we see that the ε-terms cancel out, and
simplifying/integrating by parts the remaining terms we obtain

2
d

dT
E0[ρ̂, û] = 2η

∫
∂ρ(ρg

′(ρ)) ρ̂ û · ∇X ρ̂− η

∫
(ρg′′(ρ)− g′(ρ)) ρ̂2 ∇X û .

The claimed inequality thus holds true with

C =
1

c0
max

|ρ−�|�r

(|∂ρ(ρg′(ρ))| + |ρg′′(ρ)− g′(ρ)|) . �

Since it involves the W 1,∞ norm of the solution (ρ̂, û), the estimate in (2.5) is
clearly not sufficient to get a priori estimates without loss of derivatives. In order
to close the estimates, we need higher order ones. If s is a large enough integer,
we may use

Es[ρ̂, ẑ]
def
=

s∑
σ=0

Ėσ[ρ̂, ẑ] ,

Ėσ[ρ̂, ẑ]
def
=

∑
α∈N

d
0,

|α|=σ

σ!

α!

∫
Rd

1

2
a(ρ)σ

(
ρ |∂αẑ|2 + g′(ρ)(∂αρ̂)2

)
dX , ρ = �+ ηρ̂ ,

where ∂α stands for ∂|α|/∂Xα1
1 . . . ∂Xαd

d . The coefficients σ!/α! here above, as well
as the weights aσ, are chosen so as to eliminate bad terms in our a priori estimates,
as we shall see. The usefulness of these estimates will be based on the following,
in which Es is viewed as a functional applied to (ρ̂, û), by using (2.1) as for E0.
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Proposition 2.6. Let s be a positive integer. Let r ∈ (0, �/2] be as in Proposi-
tion 2.4. Then for all (ρ̂, û) ∈ Hs+1(Rd)× (Hs(Rd))d such that ‖ρ̂‖W 1,∞ � r, for
all η ∈ (0, 1], for all ε > 0,

c (‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖ρ̂‖2Hs+1) � Es[ρ̂, û] � C (‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖ρ̂‖2Hs+1) ,

where c > 0 and C > 0 depend only on r, s, d (and the functions g, K).

Proof. As in the proof of Proposition 2.4, we readily see that

cσ (‖∂αẑ‖2L2 + ‖∂αρ̂‖2L2) �
∫
Rd

a(ρ)σ
(
ρ |∂αẑ|2 + g′(ρ)(∂αρ̂)2

)
dX

� Cσ (‖∂αẑ‖2L2 + ‖∂αρ̂‖2L2) ,

with

cσ
def
= min

|ρ−�|�r

(
a(ρ)σ min(ρ, g′(ρ),

√
K(ρ)/ρ))

)
,

Cσ
def
= max

|ρ−�|�r

(
a(ρ)σ max(ρ, g′(ρ),

√
K(ρ)/ρ))

)
.

By summation we thus find cs > 0 and Cs > 0 such that

cs (‖ẑ‖2Hs + ‖ρ̂‖2Hs) � Es[ρ̂, û] � Cs (‖ẑ‖2Hs + ‖ρ̂‖2Hs) .

So the only point is to check that ‖ẑ‖2Hs + ‖ρ̂‖2Hs is equivalent to ‖û‖2Hs + ‖ρ̂‖2Hs +
ε2‖ρ̂‖2Hs+1 when ẑ = û+ iŵ, ŵ = εc(�+ηρ̂)∇X ρ̂ for some smooth function c (here

c(ρ) =
√
K(ρ)/ρ). This comparison relies on rather standard estimates, which are

stated in the appendix (Proposition A.1) for convenience. Indeed, we have

‖c(�+ ηρ̂)∇X ρ̂‖Hs � c(�)‖∇X ρ̂‖Hs + 2γ ‖c‖L∞([�−r,�+r])‖∇X ρ̂‖Hs

+ γ ‖c′‖W s,∞([�−r,�+r]) (1 + ‖ρ̂‖L∞)σ ‖∇X ρ̂‖L∞ ‖ρ̂‖Hs

� C (‖ρ̂‖W 1,∞) ‖ρ̂‖Hs+1 ,

and in a similar way, using the notation d for 1/c,

ε‖∇X ρ̂‖Hs � d(�)‖ŵ‖Hs + γ ‖d′‖W s,∞([�−r,�+r]) (1 + ‖ρ̂‖L∞)σ ‖ŵ‖L∞ ‖ρ̂‖Hs

+ 2γ ‖c‖L∞([�−r,�+r])‖ŵ‖Hs

� C (‖(ρ̂, ŵ)‖L∞) ‖ρ̂‖Hs + C(r) ‖ŵ‖Hs .

Here above, γ stands for a ‘universal’ constant (depending only on s and d),
and C(q) stands for a positive number depending only on q, whatever the quan-
tity q. We can thus conclude that

‖ẑ‖2Hs + ‖ρ̂‖2Hs � max(1, C(‖ρ̂‖W 1,∞)2) (‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖ρ̂‖2Hs+1) ,

‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖ρ̂‖2Hs+1 � max(1+2C(‖(ρ̂, ŵ)‖L∞)2, C(r)2) (‖z‖2Hs + ‖ρ̂‖2Hs).

�
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2.3. Proof of uniform bounds in the potential case

In this section, we are going to prove that for any integer s > 1+d/2, Es enjoys an
a priori estimate that is similar to the one in Proposition 2.5 for E0, at least when
the velocity vector field u is potential. We start with this simpler case for the sake
of clarity – all computations below are detailed enough to be readable without a
pen. As was noticed in [4], the fact that u is potential or, equivalently, that u is
curl-free is preserved along (smooth) solutions. So it is sufficient to assume that
the initial velocity field is curl-free for these computations to be valid.

Proposition 2.7. Assume that

(ρ̂, û) ∈ C ([0, t∗], Hs+1(Rd)× (Hs(Rd))d) ∩ C 1([0, t∗], Hs−1(Rd)× (Hs−2(Rd))d)

is a solution of (EKε,η), such that ‖ρ̂‖L∞ � r, where r is as in Proposition 2.4.
Assume moreover that û(0) is curl-free. Then there exists C > 0 depending only
on r, s and d such that

d

dT
Es[ρ̂, û] � Cη

(‖(∇X ρ̂,∇X û)‖L∞ + ε ‖D2
X ρ̂‖L∞

)
(1 + η ε ‖∇X ρ̂‖L∞)Es[ρ̂, û] .

Proof. Let 0 � σ � s be given and α ∈ Nd
0 such that |α| = σ. We work in the X

variable only, and use the simplified notations ∂j = ∂Xj , ∇ = ∇X . We recall
that when ẑ is related to (ρ̂, û) through (2.1), if the latter satisfies (EKε,η) then
(ρ = � + ηρ̂, ẑ) satisfies (ESε,η). Applying ∂α to the second equation in (ESε,η),
we obtain

∂T∂
αẑ+ η (û · ∇)∂αẑ+ iη (∇∂αẑ)ŵ +

1

ε
b(ρ) ∂αŵ + iε ∂α∇(a(ρ)∇ · ẑ)(2.2)

= η [û · ∇, ∂α] ẑ+ iη
(
(∇∂αẑ)ŵ − ∂α((∇ẑ)ŵ)

)
+

1

ε
[b(ρ), ∂α] ŵ

def
= R .

Here above, the notation [·, ·] stands for a commutator, that is,

[∂α, û ·∇] ẑ
def
= ∂α((û ·∇)ẑ)−(û ·∇)(∂αẑ) , [∂α, b(ρ)] ŵ

def
= ∂α(b(ρ)ŵ)−b(ρ)∂αŵ .

All three commutators in the right-hand side R of (2.2) can be estimated by
using the inequality (A.4) recalled in the appendix, and by noting in addition that
[∂α, b(ρ)] = [∂α, b(ρ)− b(�)] (since � is constant), and, by definition of ŵ and since
s− 1 > d/2, that

‖ŵ‖Hs−1� C(r) ε ‖∇ρ̂‖Hs−1 � C(r) ε ‖ρ̂‖Hs � C(r) ε
√
Es[ρ̂, ẑ]

(by definition of Es). We then infer that

‖R‖L2 � C(r, s, d) η
(
‖∇ẑ‖L∞‖ẑ‖Hs +

1

ε
‖ρ̂‖Hs‖ŵ‖L∞ +

1

ε
‖∇ρ̂‖L∞‖ŵ‖Hs−1

)
� C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞

√
Es[ρ̂, ẑ] .

Here above and in what follows, C(q) stands for a positive number depending only
on q, whatever the quantity q. For convenience, the actual value of C(q) may
change from line to line.
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Therefore, using that

∂

∂T
(aσ(ρ)ρ) + η û · ∇(aσ(ρ)ρ) + ηρ ∂ρ(ρ a

σ(ρ))∇ · û = 0

by the first equation in (ESε,η), we obtain after integrations by parts that

d

dT

∫
Rd

ρ aσ(ρ)|∂αẑ|2 dX �
6∑

k=1

Ik + C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞ Es[ρ̂, ẑ] ,(2.3)

I1 def
= −η

∫
Rd

(û · ∇(ρ aσ(ρ)))|∂αẑ|2 dX ,

I2 def
= −η

∫
Rd

ρ ∂ρ(ρ a
σ(ρ))(∇ · û)|∂αẑ|2 dX ,

I3 def
= η

∫
Rd

(∇ · (ρ aσ(ρ)û))|∂αẑ|2 dX ,

I4 def
= −2η

∫
Rd

ρ aσ(ρ)〈i(∇(∂αẑ))ŵ, ∂αẑ〉 dX ,

I5 def
= −2

ε

∫
Rd

ρ aσ(ρ) b(ρ)〈∂αŵ, ∂αû〉 dX ,

I6 def
= 2ε

∫
Rd

ρ aσ(ρ)〈i∂αẑ, ∂α(∇(a(ρ)∇ · ẑ))〉 dX .

We can expand the divergence in I3 and notice that the term involving û·∇(ρ aσ(ρ))
cancels out with I1. As a consequence,

I1 + I2 + I3 = η

∫
Rd

(
ρ aσ(ρ)− ρ ∂ρ(ρ a

σ(ρ))
)
(∇ · û) |∂αẑ|2 dX

= −η
∫
Rd

ρ2∂ρ(a
σ(ρ))(∇ · û)|∂αẑ|2 dX � C(r, s, d) η ‖∇ · û‖L∞ Es[ρ̂, ẑ] .

Concerning I6, an integration by parts and the Leibniz formula give

I6 = −2ε

∫
Rd

〈i∇ · (ρ aσ(ρ)∂αẑ), ∂α(a(ρ)∇ · ẑ)〉 dX

= −2ε

∫
Rd

〈
iρ aσ(ρ)∇ · (∂αẑ) + i(∇(ρ aσ(ρ))) · ∂αẑ,

a(ρ)∇ · (∂αẑ) +
∑
β�α,

|β|=σ−1

(
α

β

)
∂α−β(a(ρ))∇ · (∂β ẑ) + L

〉
dX ,

where the lower order terms in L are such that

ε ‖∇L‖L2 � C(r, s, d) η
(‖ẑ‖Hs ‖εD2ρ̂‖L∞ + ε ‖ρ̂‖Hs+1 ‖∇ẑ‖L∞

)
(2.4)

� C(r, s, d) η ‖(∇ρ̂,∇ẑ)‖L∞
√
Es[ρ̂, ẑ] .

We now expand the big inner product involved in I6, and notice that:

• the term 〈iρ aσ(ρ)∇ · (∂αẑ), a(ρ)∇ · (∂αẑ)〉 vanishes point wise (recall that
〈·, ·〉 stands for a for real-valued inner product);
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• by (2.4) and an integration by parts, the contribution of L to I6 is bounded by

εC(r, s, d) η ‖(∇ρ̂,∇ẑ)‖L∞(1 + η‖∇ρ̂‖L∞)Es[ρ̂, ẑ] ;

• the contribution of derivatives of ẑ of order σ, coming from the inner product
of the second term in the left factor and the sum on β in the right factor of the
integrand, is bounded by εC(r, s, d)η2‖∇ρ̂‖2L∞‖ẑ‖2Hs by the Cauchy–Schwarz
inequality.

This in turn gives

I6 � −2ε

∫
Rd

〈
iρ aσ(ρ)∇ · (∂αẑ),

∑
β�α,

|β|=σ−1

(
α

β

)
∂α−β(a(ρ))∇ · (∂β ẑ)

〉
dX

+ S + C(r, s, d)η ε ‖(∇ρ̂,∇ẑ)‖L∞(1 + η‖∇ρ̂‖L∞)Es[ρ̂, ẑ] ,

S def
= −2ε

∫
Rd

〈i(∇(ρ aσ(ρ))) · ∂αẑ, a(ρ)∇ · (∂αẑ)〉 dX .

By (2.1) we readily have that ∇(ρ aσ(ρ)) = ηρ
εa(ρ)∂ρ(ρ a

σ(ρ))ŵ, and integrating by

parts once more we see that

S � 2η

∫
Rd

ρ ∂ρ(ρ a
σ(ρ))〈i∇(∂αẑ)ŵ, ∂αẑ〉 dX + 2η ‖∇(ρ ∂ρ(ρ a

σ(ρ))ŵ)‖L∞Es[ρ̂, ẑ] .

We now use that

η‖∇(ρ ∂ρ(a
σ(ρ)ρ)ŵ)‖L∞ � C(r, s, d) η

(
η ‖ŵ‖L∞‖∇ρ̂‖L∞ + ‖∇ŵ‖L∞

)
� C(r, s, d) εη

(
η ‖∇ρ̂‖2L∞ + ‖D2ρ̂‖L∞

)
to infer

S � 2η

∫
Rd

ρ ∂ρ(ρ a
σ(ρ))〈i∇(∂αẑ)ŵ, ∂αẑ〉 dX

+ C(r, s, d) εη
(
η ‖∇ρ̂‖2L∞ + ‖D2ρ̂‖L∞

)
Es[ρ̂, ẑ] .

Since ∂ρ(ρ a
σ(ρ)) = aσ(ρ) + ρ ∂ρ(a

σ(ρ)), the addition of

I4 = −2η

∫
Rd

aσ(ρ)ρ〈i(∇(∂αẑ))ŵ, ∂αẑ〉 dX

to I6 cancels out the term involving aσ(ρ) in the bound found above for S, so that

I4 + I6 � C(r, s, d) εη
(‖(∇ρ̂,∇ẑ, D2ρ̂)‖L∞(2.5)

+ η ‖(∇ρ̂,∇ẑ)‖L∞‖∇ρ̂‖L∞
)
Es[ρ̂, ẑ] +K +

∑
β�α,

|β|=σ−1

Jβ ,

Jβ
def
= −2ε

∫
Rd

ρ aσ(ρ)
〈
i∇ · (∂αẑ),

(
α

β

)
∂α−β(a(ρ))∇ · (∂β ẑ)

〉
dX ,

K def
= 2η

∫
Rd

ρ2∂ρ(a
σ(ρ))〈i(∇∂αẑ)ŵ, ∂αẑ〉 dX .
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If, for any smooth enough mapping Z : Rd → Cd we denote by curlZ the matrix-
valued function defined by

(curlZ)jk = ∂jZk − ∂kZj ,

we see that for W, Y any other smooth enough mappings Rd → Cd,

〈(∇Z)W,Y〉 = 〈(W · ∇)Z,Y〉 + 〈(curlZ)W,Y〉 .
In particular, we can write

K = 2ση

∫
Rd

ρ2aσ−1(ρ)a′(ρ)〈iŵ · ∇∂αẑ, ∂αẑ〉 dX(2.6)

+ 2ση

∫
Rd

ρ2aσ−1(ρ)a′(ρ)〈i(∂α curl ẑ)ŵ, ∂αẑ〉 dX .

On the other hand, using that ∂α−β(a(ρ)) = a′(ρ)∂α−βρ when α − β has length
one, we have

Jβ = −2ε

∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)〈i∇ · (∂αẑ),∇ · (∂β ẑ)〉 dX ,

which gives, after integrating by parts and using (A.4),

Jβ � 2ε

∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)〈i∂αẑ,∇(∇ · (∂β ẑ))〉 dX

+ C(r, s, d) ε ‖∇(ρ aσ(ρ)a′(ρ)∂α−βρ)‖L∞Es[ρ̂, ẑ] .

Now, observing that for any smooth enough mappings Z,Y : Rd → Cd,

〈Z,∇(∇ ·Y)〉 = 〈Z,ΔY〉 + 〈Z,∇ · (curlY)〉 ,
(where we have used the notation ∇ ·M for the vector field defined by (∇ ·M)j =∑d

k=1 ∂kMjk, associated with the matrix-valued function M = curlY), we find
that

Jβ � C(r, s, d) εη
(
η‖∇ρ̂‖2L∞ + ‖D2ρ̂‖L∞

)
Es[ρ̂, ẑ]

+ 2ε

∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)〈i∂αẑ,Δ∂β ẑ〉 dX

+ 2ε

∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)〈i∂αẑ,∇ · (∂β curl ẑ)〉 dX .

To finish with the estimate of Jβ , we integrate by parts again, and arrive at

Jβ � C(r, s, d) εη
(
η‖∇ρ̂‖2L∞ + ‖D2ρ̂‖L∞

)
Es[ρ̂, ẑ](2.7)

− 2ε

∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)

d∑
j=1

〈i∂α−β∂j∂
β ẑ, ∂j∂

β ẑ〉 dX

− 2ε

∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)
〈
i∂αDẑ, ∂β curl ẑ

〉
Md(C)

dX ,

where 〈A,B〉Md(C)
def
= Re(Tr(AB∗)) is the usual real inner product on Md(C), and

Dẑ
def
= (∇ẑ)

T
.



258 S. Benzoni-Gavage and D. Chiron

The remaining term I5 will turn out to cancel out, up to a remainder term,
with the time derivative of

∫
Rd g

′(ρ)aσ(ρ)(∂αρ̂)2 dX . In order to see this, we
differentiate the first equation in (ESε,η) and obtain

∂T ∂
αρ̂+ η (û · ∇)∂αρ̂+ ρ∇ · ∂αû = −η [∂α, û · ∇] ρ̂− [∂α, ρ∇·] û .

By (A.4), the commutators in the right-hand side here above have an L2 norm
bounded by

C(r, s, d) η ‖(∇ρ̂,∇û)‖L∞
√
Es[ρ̂, ẑ] .

Furthermore, by the first equation in (ESε,η) again, we have

∂T (g
′(ρ)aσ(ρ)) + η û · ∇(g′(ρ)aσ(ρ)) + ηρ ∂ρ(g

′(ρ)aσ(ρ))∇ · û = 0 .

Arguing as for I1 + I2 + I3, we thus find that

d

dT

∫
Rd

g′(ρ)aσ(ρ)(∂αρ̂)2 dX � C(r, s, d) η ‖(∇ρ̂,∇û)‖L∞ Es[ρ̂, ẑ]

−
∫
Rd

2ρg′(ρ) aσ(ρ) ∂αρ̂∇ · (∂αû) dX .

Integrating by parts, using again that

ρ ŵ = εa(ρ)∇ρ̂ , ‖ŵ‖Hs−1 � Cs,d ε
√
Es[ρ̂, ẑ]

and combining this with (A.4), we arrive at

d

dT

∫
Rd

g′(ρ)aσ(ρ)(∂αρ̂)2 dX � C(r, s, d) η ‖(∇ρ̂,∇û)‖L∞Es[ρ̂, ẑ](2.8)

+
2

ε

∫
Rd

ρ
ρg′(ρ)
a(ρ)

aσ(ρ)〈∂αŵ, ∂αû〉 dX .

Since a(ρ)b(ρ) = ρg′(ρ), the integral in the right-hand side of (2.8) here above
cancels out with the integral I5 in (2.3). Therefore, using (2.6) and (2.7) in (2.5),
and combining (2.8) with (2.3), we obtain

d

dT

∫
Rd

ρ aσ(ρ)|∂αẑ|2 + g′(ρ)aσ(ρ)(∂αρ̂)2 dX(2.9)

� C(r, s, d) η
(‖(∇ρ̂,∇ẑ)‖L∞(1 + η ε ‖∇ρ̂‖L∞) + ε ‖D2ρ̂‖L∞

)
Es[ρ̂, ẑ]

+ 2ση

∫
Rd

ρ2aσ−1(ρ)a′(ρ)〈iŵ · ∇∂αẑ, ∂αẑ〉 dX

+ 2ση

∫
Rd

ρ2aσ−1(ρ)a′(ρ)〈i(∂α curl ẑ)ŵ, ∂αẑ〉 dX

− 2
∑
β�α,

|β|=σ−1

ε

(
α

β

)∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)

d∑
j=1

〈i∂α−β∂j∂
β ẑ, ∂j∂

β ẑ〉 dX

− 2
∑
β�α,

|β|=σ−1

ε

(
α

β

)∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)
〈
i∂αDẑ, ∂β curl ẑ

〉
Md(C)

dX .
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At this stage, we use the hypothesis that ẑ is a gradient vector field, so that the
two terms involving the curl operator in (2.9) cancel out. Summing over α with
|α| = σ then gives

(2.10)
d

dT
Ėσ(ρ̂, ẑ) � C(r, s, d) η ‖(∇ρ̂,∇ẑ)‖L∞(1+η ε ‖∇ρ̂‖L∞)Es[ρ̂, ẑ]

+ 2η σ!
∑
|α|=σ

σ

α!

∫
Rd

ρ2aσ−1(ρ)a′(ρ)〈iŵ · ∇∂αẑ, ∂αẑ〉 dX

− 2σ!
∑
|α|=σ

∑
β�α,

|β|=σ−1

ε

α!

(
α

β

)∫
Rd

ρ aσ(ρ)a′(ρ)(∂α−βρ)

d∑
j=1

〈i∂α−β∂j∂
β ẑ, ∂j∂

β ẑ〉 dX.

In the double sum, there holds 1
α!

(
α
β

)
= 1

β! , since α−β has length one. Exchanging

the order of summation on α and β, then summing at fixed α′ = β+ ej, and using
again that εa(ρ)∂kρ = ηρŵk, we can rewrite this double sum as

ε
∑

|β|=σ−1

1

β!

d∑
k=1

∫
Rd

ρ aσ(ρ) a′(ρ) ∂kρ
d∑

j=1

〈i∂k∂j∂β ẑ, ∂j∂β ẑ〉 dX

= η
∑

|β|=σ−1

1

β!

∫
Rd

ρ2aσ−1(ρ) a′(ρ)
d∑

j=1

〈iŵ · ∇∂j∂β ẑ, ∂j∂β ẑ〉 dX

= η
∑

|α′|=σ

d∑
j=1

α′
j

(α′)!

∫
Rd

ρ2aσ−1(ρ) a′(ρ) 〈iŵ · ∇∂α′
ẑ, ∂α

′
ẑ〉 dX

= ησ
∑

|α′|=σ

1

(α′)!

∫
Rd

ρ2aσ−1(ρ) a′(ρ) 〈iŵ · ∇∂α′
ẑ, ∂α

′
ẑ〉 dX

since the integral does not depend on j and
∑

j α
′
j = σ. Therefore, the two sums

in (2.10) cancel out (this is due to the coefficients 1/α! in the definition of Ėσ).
The conclusion then follows by summation over σ. �

2.4. Proof of uniform bounds in the general case

In this section, s is any real number greater than 1+d/2. Our aim is to prove The-
orem 2.2 in the general case. As we have seen in the a priori estimates above, there
remain some ‘bad’ terms when the velocity field u is not potential. This is why, as
in [4], the solenoidal and potential parts of u require different weights. In fact, our
proof of Theorem 2.2 will parallel very closely the proof of Proposition 3.4 in [4],
except that we pay attention to the parameters (η, ε), and insert the contribution
of the nonlinear function g′(ρ).

As in the proof of Proposition 2.7, ∇ stands for ∇X in what follows. As a
preliminary step, we rewrite the second equation in (ESε,η) as an equation for

Ẑ
def
=

√
ρẑ instead of ẑ. Using that ρηŵ = εa(ρ)∇ρ (which is just a reformulation
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of (2.1)), the first order term iη (∇ẑ)ŵ can combined with the second order one
iε∇(a(ρ)∇ · ẑ) to obtain

∂T Ẑ+ η (û · ∇)Ẑ+
1

ε
b(ρ)ŵ + iε∇(a(ρ)∇ · Ẑ) + iε a(ρ)(∇0Ẑ)∇ log

√
ρ

= −1

2
η (∇ · û)Ẑ+ iε∇(a(ρ)∇√

ρ)
Ẑ√
ρ
,

where the operator ∇0 is defined by

(∇0Z)jk = ∂jZk − (∇ · Z) δjk , or equivalently , ∇0Z
def
= ∇Z− (∇ · Z) I .

The advantage of this formulation is that it trivializes the proof of zeroth order
estimates (Proposition 2.5), since∫

Rd

〈i(∇0Ẑ)W, Ẑ〉 = 0

for all potential vector fields W, and in particular for W = a(ρ)∇ log
√
ρ. The

idea is to keep this nice structure for higher order derivatives, which means writing
equations for Ẑs :=

√
ρΛsẑ instead of Λsẑ, where Λs denotes the Fourier multiplier

operator

Λs def
= (1−Δ)s/2 .

However, we have to cope with a ‘bad’ commutator, namely in∇[a(ρ),Λs]∇·, which
already appears in the equation for Λsẑ. Pointing out its principal part, we can
write as in [4]

∇[a(ρ),Λs]∇ · ẑ def
= R0 + s∇(∇a(ρ) · Λs−2∇(∇ · ẑ))
def
= R0 +R00 − s∇a(ρ) · ∇(QΛsẑ) ,

where

‖R0‖L2 � ‖D2a(ρ)‖Hs−1 ‖∇ · ẑ ‖L∞ + ‖D2a(ρ)‖L∞ ‖∇ · ẑ ‖Hs−1 ,

‖R00‖L2 � ‖∇a(ρ)‖W 1,∞‖ẑ ‖Hs ,

and Q is the L2-orthogonal projector onto potential vector fields. Consequently,
by applying Λs to the second equation in (ESε,η), multiplying by

√
ρ, and using

also the first equation in (ESε,η), we see that

∂T Ẑ
s+ η (û · ∇)Ẑs +

1

ε
b(ρ)

√
ρΛsŵ + iε∇(a(ρ)∇ · Ẑs)

+ iε a(ρ)(∇0Ẑ
s)∇ log

√
ρ+ iε s

√
ρ∇a(ρ) · ∇(QΛsẑ)

= −1

2
η (∇ · û)Ẑs + iε∇(a(ρ)∇√

ρ)
Ẑs

√
ρ

+ iε
√
ρ (R0 +R00) +

√
ρR

with

R
def
= η [û · ∇,Λs] ẑ+ iη

(
(∇Λsẑ)ŵ − Λs((∇ẑ)ŵ)

)
+

1

ε
[b(ρ),Λs] ŵ
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being bounded as in the proof of Proposition 2.7 by

‖R‖L2 � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖Hs ,

and also, by the estimates mentioned above,

‖iε(R0 +R00)‖L2 � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖Hs ,

using the fact that ε ‖ρ̂‖Hs+1 � C(r, s, d)‖(ρ̂, ẑ)‖Hs . Therefore, apart form the
term ε−1 b(ρ)

√
ρΛsŵ that we will deal with afterwards, the only troublesome term

regarding the time derivative of ‖Ẑs‖L2 is the one involving ∇(QΛsẑ), which cor-
responds to derivatives of order s + 1. This is where the use of an appropriate
weight comes into play. In fact, whatever the positive-valued weight (or gauge)

ψ = ψ(ρ), the equation above for Ẑs and the first equation in (ESε,η) give, after
some manipulations,

∂T Ŷ
s + η (û · ∇)Ŷs +

1

ε
b(ρ)

√
ρψ(ρ)Λsŵ+ iε∇(a(ρ)∇ · Ŷs)

+ iε a(ρ)(∇0Ŷ
s)∇ log

(√ρas(ρ)
ψ(ρ)

)

− iε s
√
ρψ(ρ)(∇PΛsẑ)∇a(ρ) + iε a(ρ)(∇ · Ŷs)∇ log

( as(ρ)
ψ2(ρ)

)
= − 1

2η (∇ · û)(1 + ρ ∂ρ log(ψ
2(ρ)))Ŷs

+ iε
(∇(a(ρ)∇√

ρ)√
ρ

+
∇(a(ρ)∇ψ(ρ))

ψ(ρ)
+ a(ρ)(∇ logψ(ρ))⊗∇ log

(as(ρ)
ψ(ρ)

))
Ŷs

+ iε
√
ρψ(ρ) (R0 +R00) +

√
ρψ(ρ)R

with Ŷs def
= ψ(ρ)Ẑs =

√
ρψ(ρ)Λsẑ, and P def

= I − Q. From this expression and
previous estimates, we see that the loss of spatial derivatives in the time derivative
of ‖Ŷs‖L2 is only due to the terms in the third row. Of course, these terms vanish
when û, and thus also ẑ, is potential (hence PΛsẑ = ΛsP ẑ = 0), if we choose
ψ2(ρ) = as(ρ). Provided that the term ε−1 b(ρ)

√
ρΛsŵ is properly handled, this

gives a shorter proof, compared to that of Proposition 2.7, of uniform bounds in the
potential case. In the general case, the idea is to estimate separately ‖QŶs‖L2 and

‖PX̂s‖L2 where X̂s def
= ϕ(ρ)Ẑs =

√
ρϕ(ρ)Λsẑ for some other weight ϕ. These esti-

mates will be based, as in [4], on a preliminary observation using only integration
by parts and the properties ∇ · P ≡ 0, curlQ ≡ 0, which gives that

d

dT
1
2‖QŶs‖2L2 =

∫
Rd

〈QŶs, (∂t + ηû · ∇)Ŷs〉 dX

+ η

∫
Rd

(∇ · û)〈QŶs, 12QŶs + PŶs〉 dX − η

∫
Rd

〈PŶs, (∇û)QŶs〉 dX ,
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and

d

dT
1
2‖PX̂s‖2L2 =

∫
Rd

〈PX̂s, (∂t + ηû · ∇)X̂s〉 dX + η

∫
Rd

(∇ · û)12 〈PX̂s,PX̂s〉 dX

+ η

∫
Rd

〈PX̂s, (∇û)QX̂s〉 dX .

Using the equations satisfied by Ŷs and X̂s – the latter being identical to the
former if we substitute X̂s for Ŷs and ϕ for ψ –, and summing the equations
here above, we are left with harmless remainder terms, that may be bounded by
C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖2Hs , plus a number of terms that must be handled
carefully. Among these delicate terms is

I def
= −1

ε

∫
Rd

〈QŶs, b(ρ)
√
ρψ(ρ)Λsŵ〉+ 〈PX̂s, b(ρ)

√
ρϕ(ρ)Λsŵ〉 dX .

Noting that both ε−1b(ρ)
√
ρψ(ρ)Λsŵ and ε−1b(ρ)

√
ρϕ(ρ)Λsŵ are ‘almost’ po-

tential, that is, equal to a gradient up to a remainder term bounded in L2 by
C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖Hs (like R), we see that I reduces to

I = −1

ε

∫
Rd

〈Ŷs, b(ρ)
√
ρψ(ρ)Λsŵ〉 dX+R = −1

ε

∫
Rd

b(ρ)ρψ2(ρ)Λsu ·Λsŵ dX+R

with |R| � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖2Hs . Similarly as what is done in the
potential case (in the previous section), this remainingO(ε−1) in I can be cancelled

out by adding to d
dT

1
2 (‖QŶs‖2L2 + ‖PX̂s‖2L2) the time derivative

d

dT

∫
Rd

1
2 ψ

2(ρ) g′(ρ)(Λsρ̂)2 dX

= −η
∫
Rd

(û · ∇(ψ2(ρ)g′(ρ)) + ρ ∂ρ(ψ
2(ρ)g′(ρ))∇ · û)(Λsρ̂)2 dX

+ η

∫
Rd

∇ · (ψ2(ρ) g′(ρ))û)(Λsρ̂)2 dX −
∫
Rd

ρψ2(ρ) g′(ρ)(Λsρ̂)∇ · Λsû dX

= R1 +

∫
Rd

ρψ2(ρ) g′(ρ)∇(Λsρ̂) · Λsû dX

with |R1| � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖2Hs . Now, observing that

∇(Λsρ̂) =
1

ε
Λs
( ρŵ
a(ρ)

)
=

ρ

εa(ρ)
Λsŵ +R1

with ‖R1‖L2 � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖Hs (like R again), and recalling
that b(ρ) = ρg′(ρ)/a(ρ), we arrive at∣∣∣I +

d

dT

∫
Rd

1
2 ψ

2(ρ) g′(ρ)(Λsρ̂)2 dX
∣∣∣ � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖2Hs .

Appropriate choices of ψ and ϕ will enable us to get rid of the other tricky
terms, exactly as in [4]. Of course, there is no reason to change ψ, and we set
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ψ2(ρ) = as(ρ) as in the potential case. As regards ϕ, it turns out that a good
choice is given by

ϕ2(ρ) =
A(ρ)

ρ
, with A′(ρ) = as(ρ)− ρ∂ρ(a

s(ρ)) .

For convenience, we keep abstract notations for ψ and ϕ in what follows, and use
only that ψ2(ρ) = as(ρ) to simplify the equation satisfied by Ŷs. Since ∇ · P ≡ 0,
we have ∫

Rd

〈QŶs, i∇(a(ρ)∇ · Ŷs)〉 =
∫
Rd

〈Ŷs, i∇(a(ρ)∇ · Ŷs)〉 = 0 ,∫
Rd

〈PX̂s, i∇(a(ρ)∇ · X̂s)〉 = 0 .

From our previous computations this implies

(2.11)
d

dT

1

2

(
‖QŶs‖2L2 + ‖PX̂s‖2L2 +

∫
Rd

ψ2(ρ)g′(ρ)(Λsρ̂)2 dX
)

= R2+

∫
Rd

〈QŶs,−iεa(ρ)(∇0Ŷ
s)∇ log(

√
ρψ(ρ)) + iεs

√
ρψ(ρ)(∇PΛsẑ)∇a(ρ)〉dX

+

∫
Rd

〈
PX̂s,−iεa(ρ)(∇0X̂

s)∇ log
(√ρas(ρ)

ϕ(ρ)

)
+ iεs

√
ρϕ(ρ)(∇PΛsẑ)∇a(ρ)

〉
dX

−
∫
Rd

〈
PX̂s, iεa(ρ)(∇ · X̂s)∇ log

( as(ρ)
ϕ2(ρ)

)〉
dX

with |R2| � C(r, s, d) η ‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖2Hs . Let us concentrate for a while
on the second line in (2.11) here above. By the same computations as in [4],
pp. 1516–1517, which heavily use that ψ2(ρ) = as(ρ) and rely on successive inte-
grations by parts together with commutator estimates, it is found to be equal to

R3 +
ε

2

∫
Rd

ρ as+1(ρ)
〈
QΛsẑ, i(∇PΛsẑ)∇ log

(as(ρ)
ρ

)〉
dX,

with |R3| � C(r, s, d)η ε ‖D2ρ̂‖L∞ ‖ẑ ‖2Hs . Furthermore, by a similar approach (as
in [4], p. 1518), the last two lines in (2.11) can be written as

R4 − ε

2

∫
Rd

ρ a(ρ)ϕ2(ρ)
〈QΛsẑ , i(∇PΛsẑ)∇ log(ρϕ2(ρ))

〉
dX,

with |R4| � C(r, s, d)η ε ‖D2ρ̂‖L∞ ‖ẑ ‖2Hs . Therefore, the appropriate choice of ϕ is
dictated by the fact that we want to get rid of the terms involving s+1 derivatives
of ẑ. If we set ϕ so that

as(ρ)∇ log
(as(ρ)

ρ

)
− ϕ2(ρ)∇ log(ρϕ2(ρ)) = 0 ,

which is merely equivalent to

∇(ρϕ2(ρ)) = (as(ρ)− ρ ∂ρ(a
s(ρ)))∇ρ ,
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we deduce from (2.11) that

d

dT

1

2

(
‖QŶs‖2L2 + ‖PX̂s‖2L2 +

∫
Rd

ψ2(ρ)g′(ρ)(Λsρ̂)2 dX
)
= R2 +R3 +R4 .

On the one hand, the right-hand side has been estimated above by

R2 +R3 +R4 � C(r, s, d) η
(‖(∇ẑ,∇ρ̂)‖L∞‖(ρ̂, ẑ)‖2Hs + ε ‖D2ρ̂‖L∞ ‖ẑ ‖2Hs

)
.

On the other hand, the expression

‖QŶs‖2L2 + ‖PX̂s‖2L2 +

∫
Rd

ψ2(ρ) g′(ρ)(Λsρ̂)2 dX

is equivalent to (‖û‖2Hs +‖ρ̂‖2Hs +ε2‖ρ̂‖2Hs+1) as long as ‖ρ̂‖W 1,∞ remains bounded,
as shown in Proposition 2.8 below. In addition, ‖ρ̂‖W 1,∞ is controlled by the
Sobolev embedding Hs ↪→ W 1,∞, which is valid since s > 1 + d/2. We can
thus complete the proof of Theorem 2.2 by a standard, Gronwall-type/bootstrap
argument. �

Proposition 2.8. Let s be a positive real number. Let r ∈ (0, �/2] be such that
g′(ρ) > 0 and K(ρ) > 0 if |ρ−�| � r. We denote by ψ and ϕ the positive functions
defined for |ρ− �| � r by

a2(ρ) = ρK(ρ) , ψ2(ρ) = as(ρ) , ρϕ2(ρ) = 2

∫ ρ

�−r

as+2 max
|θ−�|�r

(θas(θ))−ρas(ρ) ,

by Λs the operator (1 − Δ)s/2, by Q the L2-orthogonal projector onto potential
vector fields, and by P = I −Q the L2-orthogonal projector onto solenoidal vector
fields. Then for all (ρ̂, û) ∈ Hs+1(Rd)× (Hs(Rd))d such that ‖ρ̂‖W 1,∞ � r, for all
η ∈ (0, 1], for all ε > 0,

c (‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖ρ̂‖2Hs+1)

� ‖Q(
√
ρψ(ρ)Λsẑ)‖2L2 + ‖P(

√
ρϕ(ρ)Λsẑ)‖2L2 + ‖

√
g′(ρ)ψ(ρ)Λsρ̂‖2L2

� C(‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖ρ̂‖2Hs+1) ,

where ρ = � + ηρ̂, ẑ = û + iεa(ρ)ρ ∇ρ̂, and the constants c > 0 and C > 0 depend

only on r, s, d (and the functions g, K).

Proof. The proof is to some extent similar to that of Proposition 2.6. We just have
to check that ‖Q(

√
ρψ(ρ)Λsẑ)‖2L2 + ‖P(

√
ρϕ(ρ)Λsẑ)‖2L2 is ‘equivalent’ to ‖ẑ‖2Hs ,

i.e., there exist c > 0 and C > 0 depending only on r, s, d such that

c‖ẑ‖2Hs � ‖Q(
√
ρψ(ρ)Λsẑ)‖2L2 + ‖P(

√
ρϕ(ρ)Λsẑ)‖2L2 � C‖ẑ‖2Hs .(2.12)

The inequality on the right is straightforward since Q and P are projectors in L2,
and ρ, ψ(ρ) and ϕ(ρ) are bounded for |ρ− �| � r, which is the case for ρ = �+ ηρ̂
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as soon as ‖ρ̂‖L∞ � r and η ∈ (0, 1]. Furthermore, since ρ, ψ(ρ) and ϕ(ρ) are
positive and bounded away from zero for |ρ− �| � r, there exists C(r) such that

‖ẑ ‖Hs = ‖Λsẑ ‖L2 � ‖QΛsẑ ‖L2 + ‖PΛsẑ ‖L2

� C(r) (‖√ρψ(ρ)QΛsẑ ‖L2 + ‖√ρϕ(ρ)PΛsẑ ‖L2) .

Finally,

‖√ρϕ(ρ)PΛsẑ ‖L2 � ‖P(
√
ρϕ(ρ) Λsẑ)‖L2 + ‖[√ρϕ(ρ),P ]Λsẑ ‖L2 ,

and the commutator here above enjoys an estimate of the form

‖[√ρϕ(ρ),P ]Λsẑ ‖L2 � C(r, s, d)‖ẑ ‖Hs−1 .

(See Lemma A.4 in [4]). This estimate has in fact already been used, in a hid-
den way, in the estimate of R4 above.) We can proceed in a similar manner for
‖QΛsẑ ‖L2, and thus prove the inequality on the left in (2.12). �

3. Free wave regime

Theorem 3.1. We choose a real number s with s > 1 + d/2, and a positive real
number M . For η > 0, ε > 0, any initial data

(ρ̂in, ûin) ∈ Bs,ε(M) = {(ρ̂, û) ∈ Hs+1(Rd)× (Hs(Rd))d ;

‖(ρ̂, û)‖(Hs(Rd))d+1 + ε ‖ρ̂‖Hs+1(Rd) �M}

is associated with the solution (ρ̂, û) ∈ C ([0, T∗/η],Bs,ε(2M)) of (EKε,η) given by
Theorem 2.2. Let (r, u) ∈ Cb(R+, H

s(Rd)×(Hs(Rd))d) solve the acoustic equations

(W)

{
∂T r+ �∇X · u = 0

∂Tu+ g′(�)∇Xr = 0 ,

with initial data (r, u)|T=0 = (ρ̂in, ûin). Then at each time T ∈ [0, T∗/η] we have

(3.1) ‖(ρ̂, û)− (r, u)‖Hs−2(Rd)×(Hs−2(Rd))d � C(η + ε)T ,

and

(3.2) ‖(ρ̂, û)− (r, u)‖Hs−3(Rd)×(Hs−3(Rd))d � C(η + ε2)T ,

where C depends only on M, s and d.

Remark 3.2. For solutions (r, u) of (W) it is clear that the divergence-free part
of the velocity field u remains constant in time.
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The difference between the estimates in (3.1) and (3.2) is the regularity index.
When ε � η, both estimates (3.1) and (3.2) provide an O(ηT ) error. By contrast,
when ε2 � η � ε, they yield respectively an O(εT ) and an O(ηT ) error, so that
the second one is smaller. Therefore, η ≈ ε appears to be a threshold at which we
lose one derivative. The estimates (3.1) and (3.2) provide an L∞ error bound only
for s > 2 + d/2 and s > 3 + d/2 respectively.

In the special case corresponding to the Gross–Pitaevskii equation (K(ρ) =
1/(4ρ), g(�) = � − 1), the first rigorous justification of the free wave regime was
given by Colin and Soyeur [15] in a bounded domain in terms of weak conver-
gence. Strong convergence was proved much more recently by Béthuel, Danchin
and Smets [6].

Proof. By (EKε,η) and (W), we see that (ρ̂− r, û− u) solves⎧⎪⎪⎨
⎪⎪⎩

∂T (ρ̂− r) + �∇ · (û− u) = −η∇ · (ρ̂ û)
∂T (û− r) + g′(�)∇(ρ̂− r) = −η û · ∇û− [g′(�+ ηρ̂)− g′(�)]∇ρ̂

+ ε2∇
(
K(�+ ηρ̂)Δρ̂+

η

2
K ′(�+ ηρ̂)|∇ρ̂ |2

)
with null initial data. As in [6], the proof of Theorem 3.1 amounts to estimating
the source terms in this system. By Theorem 2.2, we have

‖η∇X · (ρ̂ û)‖Hs−1 � C(s, d,M) η ,

and

‖−η û · ∇X û ‖Hs−2 + ‖[g′(�+ ηρ̂)− g′(�)]∇X ρ̂ ‖Hs−2

+
∥∥∥ ε2 ∇X

(
K(�+ ηρ̂)ΔX ρ̂+

η

2
K ′(�+ ηρ̂)|∇X ρ̂ |2

)∥∥∥
Hs−2

� C(s, d,M)(η + ε+ ε2η) � C(s, d,M)(η + ε) ,

where we have used the bound on ερ̂ in Hs+1 for the term ε2 ∇XΔX ρ̂, and

‖−η û · ∇X û ‖Hs−3 + ‖[g′(�+ ηρ̂)− g′(�)]∇X ρ̂ ‖Hs−3

+
∥∥∥ε2 ∇X

(
K(�+ ηρ̂)ΔX ρ̂+

η

2
K ′(�+ ηρ̂)|∇X ρ̂ |2

)∥∥∥
Hs−3

� C(s, d,M)(η + ε2 + ε2η) � C(s, d,M)(η + ε2) ,

using this time that ε2 ∇XΔX ρ̂ in Hs−3 is bounded by ε2‖ρ̂‖Hs . The conclusion
follows from Duhamel’s formula and the fact that the wave group is unitary on Hs.

�

Remark 3.3. One may wish to include the linear, ε-dependent, dispersive term
ε2K(�)∇Δρ̂ to the wave equation and consider the solution (rε, uε) to the system

(3.3)

{
∂T rε + �∇X · uε = 0,

∂Tuε + g′(�)∇Xrε = ε2K(�)∇XΔXrε ,
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with initial data (rε, uε)|T=0 = (ρ̂in, ûin), which is a (symmetrizable) Boussinesq
type system. It is then easy to show the comparison estimate

‖(ρ̂, û)− (rε, uε)‖Hs−2(Rd)×(Hs−2(Rd))d � C η T .

In [6], when d � 2 and for the Gross–Pitaevskii equation, the use of the dispersive
properties of (3.3) allows to improve the existence time T∗/η for (EKε,η).

In one space dimension (d = 1), solutions to the acoustic equations in (W)
are exactly combinations of left-going and right-going waves. More precisely, there
exist w and v such that

1

2

(
r+

�

c
u
)
(T,X) = w(X − cT ) and

1

2

(
r− �

c
u
)
(T,X) = v(X + cT ) .

In what follows, we aim at characterizing the counterpart of these linear waves at
the weakly nonlinear, and possibly weakly dispersive level.

4. One-way propagating waves

In this section, the space dimension is d = 1, and the fluid velocity is denoted by
u instead of the bold letter u. We are going to show that the evolution of the
two weakly nonlinear / weakly dispersive counter propagating waves is governed
by Burgers equations if the parameters η and ε are of the same order, by weakly
dispersive Korteweg–de Vries (KdV) equations if ε2 � η, and by regular (KdV)
equations if η and ε2 are of the same order. By weakly dispersive, we mean that
the coefficient in front of the third order dispersive term is small (and not that the
dispersion is of order less than three). What remains of the reference density �
in these equations lies in the two quantities pointed out in the introduction and
defined by

Γ
def
=

3c

2�
+
�g′′(�)
2c

, κ
def
=

�

2c
K(�) ,

which already appeared in a special form in earlier results on (NLS) by the second
author [14], [13], [12], [11].

4.1. Statement of errors bounds in various asymptotic regimes

A first, simpler result holds when the left-going wave v is negligible, so that cρ̂ ≈ �û
(at least for small enough T ) by (3.1) and (3.2). More precisely, we are going to
show that, if the initial norm of the difference ρ̂−�û/c is small enough, then both ρ̂
and �û/c are either close to solutions Z to the (inviscid) Burgers equation

∂θZ+ ΓZ∂XZ = 0

if ε2 � η, or close to solutions ζ to the (KdV) equation

∂θζ + Γ ζ∂Xζ =
ε2

η
κ ∂3Xζ
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if ε2 = O(η). Note that this equation is clearly weakly dispersive if ε2 � η, and
reduces to

∂θζ + Γ ζ∂Xζ = κ ∂3Xζ

when η = ε2. Precise error bounds are given in the following.

Theorem 4.1. We assume d = 1, and take two real numbers s � 4 and M > 0.
For η ∈ (0, 1], ε ∈ (0, 1], any initial data

(ρ̂in, ûin) ∈ Bs,ε(M) =
{
(ρ̂, û) ∈ Hs+1(R)×Hs(R) ;

‖(ρ̂, û)‖(Hs(R))2 + ε ‖ρ̂‖Hs+1(R) �M
}

is associated with the solution (ρ̂, û) ∈ C ([0, T∗/η],Bs,ε(2M)) of (EKε,η) such that
(ρ, u)(0) = (ρin, uin), as given by Theorem 2.2 in the case d = 1. We also introduce
Z ∈ C ([0, θ∗], Hs(R)) a smooth solution of the inviscid Burgers equation

(4.1) ∂θZ+ ΓZ∂XZ = 0

such that Z(0) = ρ̂in, where the time of existence θ∗ depends continuously on M ,
and ζ ∈ C ([0,+∞), Hs(R)) the global solution of the (KdV) equation

(4.2) ∂θζ + Γ ζ∂Xζ =
ε2

η
κ ∂3Xζ

such that ζ(0) = ρ̂in. Then there exists a constant C, depending only on s and M ,
so that for 0 � T � min(T∗, θ∗)/η, the following hold:

(1) If σ ∈ [0, s− 3], or if (s > 7/2 and σ ∈ [0, s− 2]),

‖ρ̂− Z(ηT, · − cT )‖Hσ(R) +
∥∥∥�
c
û− Z(ηT, · − cT )

∥∥∥
Hσ(R)

� C
(
η + ε+

ε2

η
+
∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+1(R)

)
,

If (s � 4 and σ ∈ [0, s− 4]), or if (s > 9/2 and σ ∈ [0, s− 3]),

‖ρ̂− Z(ηT, · − cT )‖Hσ(R)+
∥∥∥�
c
û− Z(ηT, · − cT )

∥∥∥
Hσ(R)

� C
(
η +

ε2

η
+
∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+1(R)

)
,

(2) For all σ ∈ [0, s− 4],

‖ρ̂− ζ(ηT, · − cT )‖Hσ(R) +
∥∥∥�
c
û− ζ(ηT, · − cT )

∥∥∥
Hσ(R)

� C
(
1 +

ε2

η

)(
η + ε+

∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+3(R)

)
.
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If, in addition s � 5, then for all σ ∈ [0, s− 5],

‖ρ̂− ζ(ηT, · − cT )‖Hσ(R)+
∥∥∥�
c
û− ζ(ηT, · − cT )

∥∥∥
Hσ(R)

� C
(
1 +

ε2

η

)(
η + ε2 +

∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+3(R)

)
.

Observe that both Z and ζ are shifted to the right at speed c in the estimates
above. This theorem provides various types of errors, depending on the relation
between η and ε. Roughly speaking and neglecting the term ‖ρ̂in − �ûin/c‖Hσ(R),
which will be small enough provided that the initial data are well-prepared, Theo-
rem 4.1 ensures that ρ̂ ≈ �û/c is close, up to a rescaling in time and space shifting,
to the solution to

• the Burgers equation (4.1) if ε � η � 1, with an O(η) error;

• still the Burgers equation (4.1) if ε2 � η � ε� 1, with an O(ε2/η) error;

• but also the (KdV) equation (4.2) if ε2 � η � ε � 1 (which makes (4.2)
weakly dispersive), with a smaller error O(η) (because η � ε2/η) if we
use (2):

• and the (KdV) equation (4.2) if ε2 ≈ η � 1, with an O(η) error.

When η � ε2, the comparison with the solution Z of the Burgers equation given
in the inequalities of (1) are clearly meaningless. In the first statement of (1), we
have in the error term 2ε � η + ε2/η, so that the term ε seems superfluous, but
we have kept it in order to see the ε2/η gain in the second statement, which is the
dispersive term (ε2/η)κ ∂3Xζ of the (KdV) equation.

Note also that both statements (1) and (2) hold true if s � 5. For instance
in the case ε � η � 1, both (1) and (2) yield O(η) errors, but the advantage of
the second statements are that they control one more derivative. However, this
advantage is lost in the case ε2 � η � ε � 1, for which the first statement in (1)
and (2) provides O(ε) errors instead of the ‘natural’ O(η). In this sense, the case
ε ≈ η corresponds to a threshold across which the natural O(η) estimates lose the
control of one derivative.

The coefficient ε2/η in the dispersive term in (4.2) may be removed using the
scaling invariance of (KdV). Indeed, if ζ solves (4.2), then the function

ζ�(θ,X)
def
=

η

ε2
ζ
( η
ε2
θ,X

)
solves

∂θζ� + Γ ζ�∂Xζ� = κ ∂3Xζ�

with associated initial datum ζ�(θ = 0, X) = (η/ε2)ζ(0, X), which may be large or
small depending on the ratio η/ε2. In particular, ‖ζ�(θ = 0)‖Hs = (η/ε2)‖ζ(θ =
0)‖Hs for any s.

Our results subsume those of [8] and [11] as particular cases. Notice that in
Corollary 1 of [11], there are two misprints: the correct conclusion is actually
sup[0,min(τ0,τ∗)]‖Aε − ζε‖Hs−5 + ‖Uε − ζε‖Hs−5 � K(‖Ain

ε − U in
ε ‖Hs−2 + ε2).
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For the water waves problem in 1D, in the so-called Camassa–Holm regime
η � ε� 1, Constantin and Lannes have considered in [16] the class of equations

∂tu+ ∂xu+
3

2
η u∂xu+ ε2(α ∂3xu+ β ∂3xxtu) = η ε 2(γ u∂3xu+ δ ∂xu ∂

2
xu).

They have shown that equations in this class, with some conditions on the co-
efficients α, β, γ and δ, give an approximation up to O(ε4t) to solutions to the
Green–Naghdi equations and exhibit wave breaking. Under some constraints on
α, β, γ and δ, the equation reduces to Camassa–Holm or Degasperis–Procesi equa-
tion. Following the same strategy as in [16] for the system (EKε,η), one could
derive the class of equations

∂TU + ∂XU + Γη U∂XU + Γ2η
2 U2∂XU + Γ3η

3 U3∂XU + ε2κ ∂2X(α∂XU + β ∂TU)

= η ε 2K
′(�)
2c

(γ U∂3XU + δ ∂XU ∂2XU),

with some relations between α, β, γ and δ, and where the coefficients Γk involve
higher order derivatives of g at �.

4.2. Proof of error bounds for right-going waves

Concentrating on right-going waves, we can work in a moving frame, and introduce

ρ̃(T, Y )
def
= ρ̂(T, Y + cT ), ũ(T, Y )

def
= û(T, Y + cT ) .

This changes (EKε,η) into

(4.3)

⎧⎪⎪⎨
⎪⎪⎩

∂T ρ̃− c ∂Y ρ̃+ ∂Y ((�+ ηρ̃)ũ) = 0,

∂T ũ− c ∂Y ũ+ η ũ∂Y ũ+ g′(�+ ηρ̃) ∂Y ρ̃

= ε2∂Y

(
K(�+ ηρ̃) ∂2Y ρ̃+

η

2
K ′(�+ ηρ̃) (∂Y ρ̃)

2
)
.

In a first step, we estimate the L2 norm of ρ̃− � c−1ũ.

Lemma 4.2. We assume that s � 3. Then, in the framework of Theorem 4.1,
there exists a constant C, depending only on s and M , so that

sup
0�T�T∗/η

∥∥∥ρ̃− �

c
ũ
∥∥∥
L2

� C
∥∥∥ρ̃in − �

c
ũin
∥∥∥
L2

+ C(η + ε2) .

Proof. We argue as in the proof of Proposition 14 in [8] (see also Proposition 2
in [11]). Throughout the following computations, C will denote a positive constant
depending only on s and M that may change from line to line. From (4.3), we see
that the difference

v
def
= ρ̃− � c−1ũ

satisfies

∂Tv − 2c ∂Y v − η
c

�
v∂Y v = ∂YG ,(4.4)
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where

G
def
=

�

ηc
(g(�+ ηρ̃)− g(�)− ηg′(�)ρ̃)− η

c

�

ρ̃2

2

− ε2
�

c

(
K(�+ ηρ̃) ∂2Y ρ̃+

η

2
K ′(�+ ηρ̃)(∂Y ρ̃)

2
)
.(4.5)

The terms v∂Y v and ∂Y v in (4.4) do not contribute to the time evolution of ‖v‖L2,
and more precisely, (4.4) implies that

d

dT

∫
R

v2 dY = 2

∫
R

v ∂YG dY = −1

c

∫
R

(2c ∂Y v) G dY .

Using again (4.4), we can substitute ∂T v − ηc�−1v∂Y v − ∂YG for 2c ∂Y v in the
previous identity, which gives after integration in time,

‖v‖2L2 =
∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2

+
1

c

∫ T

0

∫
R

(
− ∂τv + η

c

�
v∂Y v + ∂YG

)
G dY dτ .(4.6)

Of course the integral
∫
R
G ∂YG dY vanishes at all times. Moreover, since s � 3, we

have ‖∂YG‖L∞ � C ‖G‖Hs by Sobolev embedding, and ‖G‖Hs � C(η + ε2) � C.
Thus, by integration by parts,∫

R

η (v∂Y v) G dY = −η
2

∫
R

v2 ∂YG dY � Cη ‖∂YG‖L∞‖v‖2L2 � Cη ‖v‖2L2 .

Therefore, integrating by parts in time the remaining integral in (4.6), we deduce,
for 0 � T � T∗/η,

‖v‖2L2 �
∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2

+
1

c

∫
R

[
v(0)G(0)− v(T )G(T )

]
dY

+
1

c

∫ T

0

∫
R

v ∂τG dY dτ + Cη

∫ T

0

‖v‖2L2 dτ .

Combining the L2 bound (since s � 3) ‖G‖L2 � C(η+ε2) with Young’s inequality,
we infer

1

c

∫
R

[
v(0)G(0)− v(T )G(T )

]
dY � C (η + ε2) (‖v(T )‖L2 + ‖v(0)‖L2)

� 1

4
‖v‖2L2 + C(η + ε2)2 + C

∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2
.

As a consequence, putting the term 1
4‖v‖2L2 in the left-hand side,

3

4
‖v‖2L2 � C

∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2

+ C (η + ε2)2

+
1

c

∫ T

0

∫
R

v ∂τG dY dτ + Cη

∫ T

0

‖v‖2L2 dτ .
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Now, notice that from the first equation in (4.3) we have ∂τ ρ̃− c ∂Y v = −η∂Y (ρ̃ũ)
with s � 3, thus

(4.7) ‖∂τ ρ̃− c ∂Y v‖H2 � Cη ,

and this implies

∂τG =
�

c
(g′(�+ ηρ̃)− g′(�)) ∂τ ρ̃− η

c

�
ρ̃ ∂τ ρ̃

− ε2
�

c

(
K(�+ ηρ̃) ∂2Y ∂τ ρ̃+ ηK ′(�+ ηρ̃) ∂τ ρ̃ ∂

2
Y ρ̃

+ ηK ′(�+ ηρ̃)∂Y ρ̃ ∂Y ∂τ ρ̃+
η2

2
K ′′(�+ ηρ̃)(∂Y ρ̃)

2∂τ ρ̃
)

= � (g′(�+ ηρ̃)− g′(�)) ∂Y v − η
c2

�
ρ̃ ∂Y v − ε2�K(�) ∂3Y v

+OL∞([0,T∗/η],L2)(η (ε
2 + η)) .

We then deduce, by another use of Young’s inequality,

3

4
‖v‖2L2 � 1

c

∫ T

0

∫
R

(
�(g′(�+ ηρ̃)− g′(�))∂Y v − η

c2

�
ρ̃ ∂Y v− ε2�K(�) ∂3Y v

)
v dY dτ

+ C
∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2

+ C(η + ε2)2 + Cη

∫ T

0

‖v‖2L2 dτ .

An integration by parts gives

�

c

∫ T

0

∫
R

(g′(�+ ηρ̃)− g′(�))v∂Y v dY dτ = −�η
2c

∫ T

0

∫
R

g′′(�+ ηρ̃)(∂Y ρ̃)v
2 dY dτ

� Cη

∫ T

0

‖v‖2L2 dτ,

and similarly,

−η
∫ T

0

∫
R

c

�
ρ̃ ∂Y v v dY dτ =

η c

2�

∫ T

0

∫
R

v2∂Y ρ̃ dY dτ � Cη

∫ T

0

‖v‖2L2 dτ .

Furthermore,
∫
R
v ∂3Y v dY = 0 for all times, hence

3

4
‖v‖2L2 � C

∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2

+ C(η + ε2)2 + Cη

∫ T

0

‖v‖2L2 dτ .

By Gronwall’s lemma, this implies

‖v‖2L2 � C
(∥∥∥ρ̂in − �

c
ûin
∥∥∥2
L2

+ (η + ε2)2
)
eCηT . �

We can also estimate higher order Sobolev norms of ρ̃ − � c−1ũ. The natural
idea is to differentiate the equation with respect to Y and argue as for Lemma 4.2
(see Proposition 4 in [8], but here we lose three derivatives instead of six, which
seems to be a misprint in [8]). However, we shall see that this does not yield an
optimal result in terms of loss of derivatives (see Lemma 4.4 below).
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Lemma 4.3. We assume that s > 7/2. Then, in the framework of Theorem 4.1,
for any 0 � σ � s− 3, there exists C, depending only on s, σ and M , so that

sup
0�T�T∗/η

∥∥∥ρ̃− �

c
ũ
∥∥∥
Hσ

� C
( ∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ

+ η + ε2
)
.

Proof. We apply Λσ to both sides in (4.4):

∂TΛ
σv− 2c ∂Y Λ

σv− η
c

�
Λσ(v∂Y v) = ∂Y Λ

σG ,

which implies

d

dT

∫
R

(Λσv)2 dY = 2η
c

�

∫
R

ΛσvΛσ(v∂Y v) dY + 2

∫
R

ΛσvΛσ(∂YG) dY .

Of course here the term ‘v∂Y v’ does have a contribution, which we can control in
the usual way of dealing with Burgers’ equation. Namely, we have

∫
R

(Λσv) Λσ(v∂Y v) dY =

∫
R

(Λσv) v ∂Y (Λ
σv) dY +

∫
R

(Λσv) [Λσ, v∂Y ]v dY

� −1

2

∫
R

(∂Y v)(Λ
σv)2 dY + C ‖∂Y v‖L∞‖v‖2Hσ � C ‖v‖2Hσ ,(4.8)

where we have integrated by parts the first term, and we have used (A.4) to
estimate the commutator and the uniform bound on (ρ̃, ũ) in Hs ↪→ W 1,∞ (for
s � 2). For the last integral, we integrate by parts in space, substitute ∂Tv −
ηc�−1v∂Y v − ∂YG for 2c ∂Y v and integrate in time. This yields

‖Λσv‖2L2 �
∥∥∥Λσ(ρ̂in − �

c
ûin)

∥∥∥2
L2

+ Cη

∫ T

0

‖v‖2Hσ dτ

+
1

c

∫ T

0

∫
R

Λσ
(
− ∂τv + η

c

�
v∂Y v + ∂YG

)
ΛσG dY dτ ,(4.9)

and here again
∫
R
Λσ(∂YG) Λ

σGdY = 0. We use the commutator estimate (A.4)
and Young’s inequality to deduce

η

�

∫
R

Λσ(v∂Y v)Λ
σGdY � η

�

∫
R

v (Λσ∂Y v) Λ
σG dY + Cη ‖∂Y v‖L∞‖v‖Hσ‖ΛσG‖L2

� Cη ‖v‖L2 ‖Λσ∂Y v‖L∞ ‖ΛσG‖L2 + Cη ‖v‖Hσ ‖G‖Hσ

� Cη ‖v‖Hσ (η + ε2) � Cη ‖v‖2Hσ + η (η + ε2)2 .

Here above, we have also used that σ � s−3, so that Λσ∂Y v is uniformly bounded
in Hs−σ−1 ⊂ L∞ and ‖G‖Hσ � C(η+ ε2). Therefore, integrating by parts in time
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the remaining integral in (4.9), we deduce, for 0 � T � T∗/η,

‖Λσv‖2L2 �
∥∥∥ρ̂in − �

c
ûin
∥∥∥2
Hσ

+
1

c

∫
R

[
Λσv(0)ΛσG(0)− Λσv(T ) ΛσG(T )

]
dY

+
1

c

∫ T

0

∫
R

Λσv Λσ∂τG dY dτ + Cη

∫ T

0

‖v‖2Hσ dτ + C(η + ε2)2

� C
∥∥∥ρ̂in − �

c
ûin
∥∥∥2
Hσ

+
1

4
‖Λσv‖2Hσ

+
1

c

∫ T

0

∫
R

Λσv Λσ∂τG dY dτ + Cη

∫ T

0

‖v‖2Hσ dτ + C(η + ε2)2 ,

where we have used that ‖G‖Hσ � C(η + ε2), since σ − 3 � s. From the first
equation in (4.3) we have ∂τ ρ̃− c ∂Y v = −η∂Y (ρ̃ũ), thus

(4.10) ‖∂τ ρ̃− c ∂Y v‖Hs−1 � Cη ,

and this implies, since Hs−3 is an algebra (recall that s > 7/2) and σ � s− 3,

∂τG =
�

c
(g′(�+ ηρ̃)− g′(�))∂τ ρ̃− η

c

�
ρ̃ ∂τ ρ̃

− ε2
�

c

(
K(�+ ηρ̃) ∂2Y ∂τ ρ̃+ ηK ′(�+ ηρ̃) ∂τ ρ̃ ∂

2
Y ρ̃

+ η K ′(�+ ηρ̃) ∂Y ρ̃ ∂Y ∂τ ρ̃+
η2

2
K ′′(�+ ηρ̃)(∂Y ρ̃)

2 ∂τ ρ̃
)

= �(g′(�+ ηρ̃)− g′(�)) ∂Y v − η
c2

�
ρ̃∂Y v − ε2 �K(�) ∂3Y v

+OL∞([0,T∗/η],Hσ)(η (ε
2 + η)) .

We then deduce by Young’s inequality again that

3

4
‖Λσv‖2L2 � C

∥∥∥ρ̂in − �

c
ûin
∥∥∥2
Hσ

+ C(η + ε2)2 + Cη

∫ T

0

‖v‖2Hσ dτ

+
1

c

∫ T

0

∫
R

Λσ
(
�(g′(�+ ηρ̃)− g′(�))∂Y v− η

c2

�
ρ̃ ∂Y v

)
Λσv dY dτ

− ε2

c

∫ T

0

∫
R

Λσ
(
�K(�) ∂3Y v

)
Λσv dY dτ

� C
∥∥∥ρ̂in − �

c
ûin
∥∥∥2
Hσ

+ C(η + ε2)2 + Cη

∫ T

0

‖v‖2Hσ dτ ,

by computations similar to those of Lemma 4.2 and by using the tame esti-
mate (A.4). The conclusion then follows from Gronwall’s lemma. �

Our next result is an improvement of the previous one in terms of loss of
derivatives. The idea is to apply ∂T to the equation and estimate ∂T (ρ̃, ũ), as
in [11]. Since the equations in (4.3) are formally of the form ∂T ρ̃ − c ∂Y v = O(η)
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and ∂T ũ+ c�−1∂Y v = O(η+ ε2), where the remainder terms involve at most three
derivatives, this will allow to establish a better estimate, losing only two derivatives
instead of three.

Lemma 4.4. We assume that s > 7/2. Then, in the framework of Theorem 4.1,
the following estimates hold true.

For any 3/2 < σ � s−2, there exists C, depending only on s, σ and M , so that

sup
0�T�T∗/η

∥∥∥ρ̃− �

c
ũ
∥∥∥
Hσ

� C
( ∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ

+ η + ε2
)
.

For any 3/2 < σ � s−1, there exists C, depending only on s, σ and M , so that

sup
0�T�T∗/η

∥∥∥ρ̃− �

c
ũ
∥∥∥
Hσ

� C
(∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ

+ η + ε
)
.

Note that the second estimate here above may be poorer than the first one (if
η � ε) in terms of the error value, but it controls one more derivative.

Proof. The starting point is the system (4.3) written with the complex extended
formulation, namely

∂T z̃ − c ∂Y z̃ + η ũ ∂Y z̃ + iη (∂Y z̃)w̃ +
1

ε
b(ρ)w̃ + iε ∂Y (a(ρ) ∂Y z̃) = 0 .

Using the uniform bounds for (ũ, ∂Y z̃, w̃) in the algebra Hs−1 (s > 7/2), we infer

‖ηũ ∂Y z̃ + iη (∂Y z̃)w̃‖Hσ−1 � Cη.

In addition, since Hσ is an algebra (σ > 3/2),

‖ε∂Y (a(ρ)∂Y w̃)‖Hσ−1 � ε2‖a(ρ)∂Y (g′(ρ)∂Y ρ̃/b(ρ))‖Hσ � Cε2‖g′(ρ)∂Y ρ̃/b(ρ)‖Hσ+1

� Cε2‖∂Y ρ̃‖Hσ+1 �
{
Cε2 if σ + 2 � s,
Cε if σ + 1 � s.

We pursue the computations in the case σ � s− 2 and point out the modifications
to make when σ � s− 1. Then, we have

0 = ∂T z̃ − c ∂Y z̃ +
1

ε
b(ρ)w̃ + iε ∂Y (a(ρ)∂Y ũ) +OL∞([0,T∗/η],Hσ−1)(η + ε2)

= ∂T z̃ − c ∂Y ũ+ g′(ρ) ∂Y ρ̃− iε ∂Y (cb(ρ)
−1g′(ρ)∂Y ρ̃− a(ρ)∂Y ũ)

+OL∞([0,T∗/η],Hσ−1)(η + ε2)

= ∂T z̃ − c ∂Y ũ+ g′(�) ∂Y ρ̃− iε ∂Y (cb(�)
−1g′(�)∂Y ρ̃− a(�)∂Y ũ)

+OL∞([0,T∗/η],Hσ−1)(η + ε2) ,

using that, since Hs−1 is an algebra, we have

‖(g′(ρ)− g′(�)) ∂Y ρ̃‖Hσ � ‖(g′(ρ)− g′(�)) ∂Y ρ̃‖Hs−1 � Cη ,

‖(a(�)− a(ρ)) ∂Y ũ‖Hσ � ‖(a(�)− a(ρ)) ∂Y ũ‖Hs−1 � Cη ,
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and finally
‖(cb(ρ)−1g′(ρ)− cb(�)−1g′(�)) ∂Y ũ‖Hσ � Cη .

(If σ � s− 1, the error η + ε2 is replaced by η + ε and the term

‖ε∂Y
(
cb(�)−1g′(�)∂Y ρ̃− a(�) ∂Y ũ

)‖Hσ−1 � ε ‖cb(�)−1g′(�)∂Y ρ̃− a(�) ∂Y ũ‖Hs−1

� Cε

can be incorporated into the remainder.) Since a(�)b(�) = �g′(�) = c2, we deduce

0 = ∂T z̃ + c2�−1∂Y (ρ̃− � c−1ũ)− iε
ca(�)

�
∂2Y (ρ̃− � c−1ũ)

+OL∞([0,T∗/η],Hσ−1)(η + ε2)

= ∂T z̃ + c2�−1∂Y v− iε
ca(�)

�
∂2Y v +OL∞([0,T∗/η],Hσ−1)(η + ε2) .(4.11)

In particular, for T = 0,

‖(∂T z̃)|T=0‖Hσ−1 � C ‖∂Y v|T=0‖Hσ−1 + Cε ‖∂2Y v|T=0‖Hσ−1 + C(η + ε2) .

Since σ � s− 2, we may now use the interpolation and Young’s inequalities

ε ‖∂2Y v‖Hσ−1 � ε ‖v‖1/2Hσ ‖v‖1/2Hσ+2 � C ‖v‖Hσ + Cε2

to infer
‖(∂T z̃)|T=0‖Hσ−1 � C ‖v|T=0‖Hσ + C(η + ε2) .

When σ � s− 1, the error is O(η + ε) and ε ‖∂2Y v‖Hσ−1 = O(ε) since σ + 1 � s.

Applying ∂T to the equation for z̃, we see that z̃T
def
= ∂T z̃ solves

∂T z̃T − c ∂Y z̃T + ηũ ∂Y z̃T + iη (∂Y z̃T )w̃ +
1

ε
b(ρ)w̃T + iε ∂Y (a(ρ)∂Y z̃T )(4.12)

= −η z̃T ∂Y z̃ − η

ε
b′(ρ) ∂T ρ̃ w̃ − iεη ∂Y (a

′(ρ)∂T ρ̃ ∂Y z̃) ,

and we wish to perform an Hσ−1 estimate, with σ−1 > 1/2. We first easily bound
some source terms by using that Hσ−1 is an algebra:

‖ηz̃T ∂Y z̃‖Hσ−1 � Cη ‖z̃T‖Hσ−1 ‖∂Y z̃‖Hσ−1 � Cη ‖z̃T ‖Hσ−1 .

In view of the equation ∂T ρ̃ = c ∂Y v− η∂Y (ρ̃ũ), we obtain (σ+ 1 � s), on the one
hand,

∥∥∥η
ε
b′(ρ)(∂T ρ̃− c ∂Y v) w̃

∥∥∥
Hσ−1

� C
η2

ε
‖ρ̃ũ‖Hσ ‖w̃‖Hσ−1 � Cη2,

and on the other hand,

‖εη ∂Y (a′(ρ)(∂T ρ̃− c ∂Y v) ∂Y z̃)‖Hσ−1 � Cεη2 ‖ρ̃ ũ‖Hσ+1 ‖∂Y z̃‖Hσ � Cεη2 .
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We now express, by the second equation in (4.3), ∂Y v in terms of the real part
of z̃T :

0 = ∂T ũ− c ∂Y ũ+ η ũ ∂Y ũ+ g′(�+ ηρ̃) ∂Y ρ̃

− ε2∂Y

(
K(�+ ηρ̃) ∂2Y ρ̃+

η

2
K ′(�+ ηρ̃)(∂Y ρ̃)

2
)

= Re (z̃T ) + c2�−1∂Y v +OL∞([0,T∗/η],Hσ−1)(η + ε2) ,

since σ + 2 � s (the error is O(η + ε) if σ + 1 � s), and infer

−η
ε
b′(ρ) ∂T ρ̃ w̃ = c�

η

ε
b′(ρ)Re (z̃T ) w̃ +OL∞([0,T∗/η],Hσ−1)(η (η + ε2))

= OHσ−1 (η‖z̃T ‖Hσ−1) +OL∞([0,T∗/η],Hσ−1)(η (η + ε2))

since w̃ = O(ε) in Hs−1. Concerning the term

εη ∂Y (a
′(ρ)∂T ρ̃ ∂Y z̃) = εη ∂Y (a

′(ρ) ∂Y z̃) ∂T ρ̃+ εη a′(ρ) ∂Y z̃ ∂Y ∂T ρ̃

in (4.12), the first term in the right-hand side satisfies

‖εη ∂Y (a′(ρ) ∂Y z̃) ∂T ρ̃‖Hσ−1 � Cεη ‖∂Y (a′(ρ) ∂Y z̃)Re (z̃T )‖Hσ−1 + Cεη2

� Cη ‖Re (z̃T )‖Hσ−1 + Cεη2 .

For the second one, we write

εη a′(ρ) ∂Y z̃ ∂Y ∂T ρ̃ = η a′(ρ) ∂Y z̃ ∂T (
√
ρ/K(ρ)w̃)

= η a′(ρ) ∂Y z̃
√
ρ/K(ρ) Im (z̃T ) + η a′(ρ) ∂Y z̃w̃ ∂T (

√
ρ/K(ρ))

= OHσ−1 (η‖z̃T ‖Hσ−1) +OHσ−1 (η2) .

Gathering all these estimates and inserting them in (4.12), we arrive at

∂T z̃T − c ∂Y z̃T + η ũ ∂Y z̃T + iη (∂Y z̃T )w̃ +
1

ε
b(ρ)w̃T + iε ∂Y (a(ρ)∂Y z̃T )(4.13)

= OHσ−1 (η‖z̃T ‖Hσ−1) +OL∞([0,T∗/η],Hσ−1)(η (η + ε2)) ,

Therefore, following the lines of the proof of Theorem 2.2, we infer that, for
0 � T � T∗/η,

‖(∂T ρ̃, z̃T )‖Hσ−1 � C ‖(∂T ρ̃, z̃T )(T = 0)‖Hσ−1 + C(η + ε2)

� C ‖z̃T (T = 0)‖Hσ−1 + C(η + ε2) ,

since (∂T ρ̃(T = 0) = −η∂X(ρ̃ũ) = OHσ−1 (η). As a consequence, considering the
real part of (4.11), we obtain

‖∂Y v‖Hσ−1 � C ‖Re(z̃T )‖Hσ−1 + C(η + ε2) � C ‖ρ̃in − � c−1ũin‖Hσ + C(η + ε2) ,

which completes the proof, since the L2-norm of v has been already estimated in
Lemma 4.2. �
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Proof of Theorem 4.1 completed. We focus first on (2) in the case s � 5 and
0 � σ � s− 5. In particular, we may apply Lemma 4.4 with 3/2 < σ + 3 � s− 2
to deduce

‖v‖Hσ+3 � C(η + ε2 + ‖ρ̂in − � c−1ûin‖Hσ+3) .

Combining the two equations in (4.3), we infer that

w
def
=

1

2

(
ρ̃+

�

c
ũ
)

satisfies

2 ∂Tw + 2η Γw∂Y w − 2ε2κ ∂3Y w

= −�
c

[
g′(�+ ηρ̃)− g′(�)− ηg′′(�)ρ̃

]
∂Y ρ̃

+ η
( c
�
− �

c
g′′(�)

)
v∂Y w+ η

( c
�
− �

c
g′′(�)

)
ρ̃ ∂Y v + 2ε2κ ∂3Y v(4.14)

+ ε2
�

2c
∂Y

(
[K(�+ ηρ̃)−K(�)] ∂2Y ρ̃+

η

2
K ′(�+ ηρ̃)(∂Y ρ̃)

2
)
.

From the Hσ+3 bound on v and the uniform bounds of Theorem 2.2, we infer
consistency with the (KdV) equation by using (A.1). Our consistency estimate
reads∥∥∂Tw + η Γw∂Y w − ε2κ ∂3Y w

∥∥
Hσ � C(η + ε2)

(
η + ε2 +

∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+3

)
.

for 0 � σ � s− 5, and allows by very standard estimates on the (KdV) equation
– like the one in (4.8) – to conclude that

‖w − ζ(ηT, · − cT )‖Hσ(R) � C
(
1 +

ε2

η

)(
η + ε2 +

∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+3(R)

)
.

Then it suffices to write

ρ̃ =
v + w

2
and ũ =

c

2�
(w − v),

and use Lemma 4.4 to complete the proof of the second statement of (ii). If s � 4,
we use the second estimate in Lemma 4.4.

We now turn to (1) in the case s � 4 (or s > 9/2), and write (4.14) under the
form

2∂Tw+ 2ηΓw∂Y w = −�
c

[
g′(�+ ηρ̃)− g′(�)− ηg′′(�)ρ̃

]
∂Y ρ̃

+ η
( c
�
− �

c
g′′(�)

)
v ∂Y w + η

( c
�
− �

c
g′′(�)

)
ρ̃ ∂Y v

+ ε2
�

2c
∂Y

(
K(�+ ηρ̃) ∂2Y ρ̃+

η

2
K ′(�+ ηρ̃)(∂Y ρ̃)

2
)
,



Long wave asymptotics for the Euler–Korteweg system 279

with the dispersive terms in the source terms. Note also that if (s � 4 and
σ ∈ [0, s − 4]), or if (s > 9/2 and σ ∈ [0, s − 3]), then Lemma 4.3 or Lemma 4.4
with 3/2 < σ + 1 � s− 2 gives

‖v‖Hσ+1 � C(η + ε2 + ‖ρ̂in − � c−1ûin‖Hσ+1) .

From this, we infer the consistency estimate

‖∂Tw + η Γw∂Y w‖Hσ � Cη
(
η +

ε2

η
+
∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+1

)
.

In the case (s � 3 and σ ∈ [0, s− 3]), or (s > 7/2 and σ ∈ [0, s− 2]), we have

‖v‖Hσ+1 � C(η + ε+ ‖ρ̂in − � c−1ûin‖Hσ+1)

and

‖∂Tw + η Γw∂Y w‖Hσ � Cη
(
η + ε+

ε2

η
+
∥∥∥ρ̂in − �

c
ûin
∥∥∥
Hσ+1

)
,

which completes the proof. �

4.3. The (KdV) regime for travelling waves

Under fairly general assumptions on the energy density F , (gEK) admits rich
families of planar travelling wave solutions. Indeed, for (ρ, u) = (R,U)(x − σt) to
solve the one D version of (gEK) the profile (R,U) must solve the ODEs⎧⎨

⎩
(R(U − σ))′ = 0(1
2
(U − σ)2 + δF [R])

)′
= 0 ,

which is equivalent to the existence of three constants (j, λ, μ) such that

(4.15)

⎧⎨
⎩

R(U − σ) = j

R′ ∂F

∂ρx
(R,R′)− F (R,R′) +

j2

2R
+ λR = μ

(see [3] for more details). If � > 0 and (j, λ) are such that (�, 0) is a strict local

minimum of the mapping H : (R, Ṙ) �→ Ṙ ∂F
∂ρx

(R, Ṙ)− F (R, Ṙ) + j2

2R + λR then
the level sets {

(R, Ṙ) ; Ṙ
∂F

∂ρx
(R, Ṙ)− F (R, Ṙ) +

j2

2R
+ λR = μ

}

consist of closed curves for μ greater than, and close to −F (�, 0)+ j2

2� +λ�. These

correspond to periodic travelling wave solutions to (gEK) oscillating around �.
Note that, since the Hessian matrix of H at (�, 0) is given by

HessH (�, 0) =

⎛
⎜⎜⎝

−∂
2F

∂ρ2
(�, 0) +

j2

�3
0

0
∂2F

∂ρ2x
(�, 0)

⎞
⎟⎟⎠ =

⎛
⎝ j2

�3
− c2

�2
0

0 K

⎞
⎠ ,
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the strict local minimization condition for H at (�, 0) is ensured by the inequalities
K > 0, j2 > �2c2, provided that (�, 0) is a critical point of H , which requires that

λ =
∂F

∂ρ
(�, 0) +

j2

2�2
.

This means that (gEK) admits periodic travelling waves solutions with sufficiently
large momentum in the frame attached to them. Solitary waves with endstate �
arise when (�, 0) is a saddle-point of H . They are of small amplitude if this
saddle-point is close to local minimum of H . This happens only if (�, 0) is close
to a critical point of H where the Hessian of H is singular. In other words, small
amplitude solitary waves occur when �2c2 − j2 is positive and close to zero. Note
that for small amplitude waves around (�, 0), we have j = R(U − σ) ≈ −�σ, so
that �2c2 − j2 being close to zero is equivalent to σ2 being close to c2.

Let us consider a travelling wave (ρ, u)(x, t) = (R,U)(x−σt) solution to (gEK),
of small amplitude around some reference state (�, 0). Assume moreover that its
speed σ is close to c, say σ = c + ε2σ̃ with ε > 0 small. Then of course we can
write

x− σt = (ε(x− ct)− σ̃ε3t)/ε,

so that if we use the KdV rescaling in (1.1),

(ρ, u)(x, t) = (�, 0) + ε2(ρ̃, ũ)(ε(x− ct), ε3t) ,

we have

(ρ̃, ũ)(Y, θ) =
1

ε2

(
(R,U)

(Y − σ̃θ

ε

)
− (�, 0)

)
= (R̂, Û)(Y − σ̃θ)

if we set

(R,U)(x) = (�, 0) + ε2(R̂, Û)(εx) .

As far as (EK) is concerned, we know by Theorem 4.1 that (ρ̃, ũ) is such that

w
def
= 1

2 (ρ̃+ � c−1ũ) approximately solves the (KdV) equation

∂θw+ Γw∂Y w = κ ∂3Y w .

Therefore, W
def
= 1

2 (R̂+ � c−1Û) is close to the profile of a travelling wave solution
to this (KdV) equation with speed σ̃. This can also be seen on the profile equations
themselves, which is especially interesting for (gEK), for which we do not have a
result like Theorem 4.1 at hand.

Theorem 4.5. Let � > 0 be such that ∂2F
∂ρ2 (�, 0) > 0 and ∂2F

∂ρ2
x
(�, 0) > 0. We

denote as before

c =

√
�
∂2F

∂ρ2
(�, 0) , Γ =

3c

2�
+
�

2c

∂3F

∂ρ3
(�, 0) , κ =

�

2c

∂2F

∂ρ2x
(�, 0) ,
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and assume that Γ > 0 (which is the case in ‘standard’ fluids). Let w =W (Y − σ̃θ)
be a travelling wave of speed σ̃ > 0 solution to the (KdV) equation

∂θw+ Γw∂Y w = κ ∂3Y w ,

and more precisely such that

1
2 κW

′2 − 1
6 ΓW

3 + 1
2 σ̃W

2 = m ∈ (0,m0) , m0
def
=

2σ̃3

3Γ2
.

Then there exists ε0 > 0 such that for all ε ∈ (0, ε0], there is a periodic traveling
wave (ρ, u)(x, t) = (R,U)(x − σt) solution to (gEK) with σ = c + ε2σ̃, satisfy-
ing (4.15) with

j = −�(c+ 1
2ε

2σ̃) , λ =
∂F

∂ρ
(�, 0)+

j2

2�2
, μ = �

∂F

∂ρ
(�, 0)−F (�, 0)+

j2

�
+

2c

�
ε6m,

and
(R,U)(x) = (�, 0) + ε2(R̂, Û)(εx)

with
inf
ξ∈R

‖R̂(·+ ξ)−W‖W 1,∞ = O(ε2) .

From a straightforward phase portrait analysis of the (KdV) travelling wave
ODEs, using that σ̃ is positive we see that the wave profile W is indeed periodic

for m ∈ (0,m0), and homoclinic to ρ0
def
= 2σ̃/Γ in the limiting case m = m0. As

explained above, there is no hope to get a solitary wave solution to (gEK) that
is homoclinic to � if j2 > �2c2. This explains why the (KdV) regime for solitary
waves requires σ̃ < 0, so that j = −�(c + 1

2ε
2σ̃) implies j2 < �2c2 for ε small

enough. The (KdV) regime for solitary waves is a little simpler than for periodic
waves, and can be justified as follows.

Theorem 4.6. With the same notations as in Theorem 4.5, we consider a travel-
ling wave for (KdV) of speed σ̃ < 0, w =W (Y − σ̃θ) such that

1
2 κW

′2 − 1
6 ΓW

3 + 1
2 σ̃W

2 = 0 .

Then there exists ε0 > 0 such that for all ε ∈ (0, ε0], there is a solitary traveling
wave (ρ, u)(x, t) = (R,U)(x − σt) solution to (gEK) with σ = c + ε2σ̃, satisfy-
ing (4.15) with

j = −�(c+ 1
2ε

2σ̃) , λ =
∂F

∂ρ
(�, 0) +

j2

2�2
, μ = �

∂F

∂ρ
(�, 0)− F (�, 0) +

j2

�
,

and
(R,U)(x) = (�, 0) + ε2(R̂, Û)(εx)

with
inf
ξ∈R

‖R̂(Y + ξ)−W (Y )‖W 1,∞ = O(ε2) .

This result was already known for the (KdV) regime associated with (NLS),
see [12].
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5. Approximation by counter propagating waves

5.1. Statement of error bounds for counter propagating waves

For the extension of Theorem 4.1 to left and right-going waves, we can no longer
change frame. In order to secure the interaction between those two waves, we shall
assume an additional bound on the initial data, ensuring some kind of decay at
infinity for the solutions of the (KdV) equations. For the similar issue concerning
water waves, some control on (1 + X2)2((ρ̂in ± �ûin/c)) in L2 was required by
Schneider and Wayne [26]. Béthuel, Gravejat, Saut and Smets [8] replaced this
assumption by a weaker one, expressed in terms of the M-norm defined by

‖F‖M def
= sup

a,b∈R

∣∣∣ ∫ b

a

F
∣∣∣ .

Theorem 5.1. We assume d = 1, and take an integer s � 3, and a real number
M > 0. For η ∈ (0, 1], ε ∈ (0, 1], any initial data

(ρ̂in, ûin) ∈ Bs,ε(M) = {(ρ̂, û) ∈ Hs+1(R)×Hs(R) ;

‖(ρ̂, û)‖(Hs(R))2 + ε ‖ρ̂‖Hs+1(R) �M}

is associated with the solution (ρ̂, û) ∈ C ([0, T∗/η],Bs,ε(2M)) of (EKε,η) such that
(ρ̂, û)(0) = (ρ̂in, ûin), as given by Theorem 2.2 in the case d = 1. We also introduce
Z± ∈ C ([0, θ±∗ ], Hs(R)) solutions of the uncoupled, inviscid Burgers equations

(5.1) ∂θZ
± ± ΓZ±∂XZ± = 0

such that
Z±(0) = 1

2 (ρ̂
in ± �ûin/c),

where the times of existence θ±∗ depend continuously on M , and the global solutions
ζ± ∈ C ([0,+∞), Hs(R)) of the uncoupled (KdV) equations

(5.2) ∂θζ
± ± Γ ζ±∂Xζ± = ±ε

2

η
κ ∂3Xζ

±

such that
ζ±(0) = 1

2 (ρ̂
in ± �ûin/c).

If, in addition,
‖(ρ̂in, ûin)‖M �M ,

then there exists a constant C, depending only on s and M , so that for 0 � T �
min(T∗, θ+∗ , θ−∗ )/η, the following hold:

(1)
∥∥∥1
2

(
ρ̂+

�

c
û
)
(T )− Z+(ηT, · − cT )

∥∥∥
Hs−3

+
∥∥∥1
2

(
ρ̂− �

c
û
)
(T )− Z−(ηT, ·+ cT )

∥∥∥
Hs−3

� C
(
η +

ε2

η

)
.
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(2) If in addition s � 6 and η � ε2, then

∥∥∥1
2

(
ρ̂+

�

c
û
)
(T )− ζ+(ηT, · − cT )

∥∥∥
Hs−6

+
∥∥∥1
2

(
ρ̂− �

c
û
)
(T )− ζ−(ηT, ·+ cT )

∥∥∥
Hs−6

� Cε2 .

The proof in [8] relies on a careful (and lengthy) estimate of the interaction
terms, such as those involving

∂X

(1
2

(
ρ̂+

�

c
û
)1
2

(
ρ̂− �

c
û
))
.

We use instead a systematic approach, and prove an error estimate between the
solution and an approximate solution involving the two counter propagating waves,
as well as terms associated with these interaction terms. This simplifies the energy
estimate performed in [8], and gives a natural explanation for introducing the
M-norm. The drawback of our approach is that we lose one more derivative.

5.2. Detailed proof of error bounds for counter propagating waves

Construction of an approximate solution in case (ii) (s � 6, η � ε2). The
aim of this paragraph is to construct an approximate solution to (4.3) up to a
sufficiently small error, namely O(η (η + ε2)). We consider ζ±, solutions of the
(KdV) equations in (5.2) associated with the initial data (ρ̂in±�ûin/c)/2, and seek
approximate solutions of the form

ρ̂app(T,X)
def
= ζ+(ηT,X − cT ) + ζ−(ηT,X + cT ) + η ρ̂1(ηT, T,X) ,

ûapp(T,X)
def
=

c

�

(
ζ+(ηT,X − cT )− ζ−(ηT,X + cT )

)
+ η û1(ηT, T,X),

where (ρ̂1, û1) will be defined later but have to be thought of order one in η. Then

Errρ
def
= ∂T ρ̂

app + ∂X((�+ ηρ̂app) ûapp)

= η ∂θζ
+(ηT,X − cT ) + η ∂θζ

−(ηT,X + cT )

+ η
c

�

(
∂X([ζ+(ηT,X − cT )]2)− ∂X([ζ−(ηT,X + cT )]2)

)
+ η ∂T ρ̂

1(ηT, T,X) + η� ∂X û
1(ηT, T,X) + η2 ∂θρ̂

1(ηT, T,X)

+ η2 ∂X(ρ̂1(ηT, T,X)û1(ηT, T,X))

and

Erru
def
= ∂T û

app + η ûapp ∂X û
app + g′(�+ ηρ̂app) ∂X ρ̂

app

− ε2∂X

(
K(�+ ηρ̂app) ∂2X ρ̂

app +
η

2
K ′(�+ ηρ̂app)(∂X ρ̂

app)2
)

= S + η ∂T û
1(ηT, T,X) + η g′(�) ∂X ρ̂1(ηT, T,X) + η2 ∂θû

1(ηT, T,X) +R,
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where S contains the terms of formal order η, namely

S def
= η

c

�
∂θζ

+(ηT,X − cT )− η
c

�
∂θζ

−(ηT,X + cT )

+
η c2

�2
ζ+(ηT,X − cT ) ∂Xζ

+(ηT,X − cT )

+
η c2

�2
ζ−(ηT,X + cT ) ∂Xζ

−(ηT,X + cT )

− η c2

�2
∂X [ζ+(ηT,X − cT ) ζ−(ηT,X + cT )] + η g′(�) ∂X ρ̂1(ηT, T,X)

+ g′′(�) η
(
[ζ+∂Xζ

+](ηT,X − cT ) + [ζ−∂Xζ−](ηT,X + cT )
)

+ g′′(�) η ∂X [ζ+(ηT,X − cT )ζ−(ηT,X + cT )]

− ε2K(�) ∂3Xζ
+(ηT,X − cT )− ε2K(�) ∂3Xζ

−(ηT,X + cT ),

and R contains terms of formal order O(η (η + ε2)), namely

R def
=

η2 c

2�
∂X
[ (
ζ+(ηT,X − cT )− ζ−(ηT,X + cT )

)
û1(ηT, T,X)

]
+ η3 û1(ηT, T,X) ∂X û

1(ηT, T,X)

+ η
(
g′(�+ ηρ̂app)− g′(�)

)
∂X ρ̂

1(ηT, T,X)

+
(
g′(�+ η ρ̂app)− g′(�)− g′′(�)η ρ̂app

)
∂Xζ

+(ηT,X − cT )

+
(
g′(�+ η ρ̂app)− g′(�)− g′′(�)η ρ̂app

)
∂Xζ

−(ηT,X + cT )

+ g′′(�)η2 ρ̂1(ηT, T,X) ∂X(ζ+(ηT,X − cT ) + ζ−(ηT,X + cT ))

− ε2η K(�) ∂3X ρ̂
1(ηT, T,X)− ε2 ∂X

(
[K(�)−K(�+ ηρ̂app)] ∂2X ρ̂

app
)

− ε2η

2
∂X
(
K ′(�+ ηρ̂app) (∂X ρ̂

app)2
)
.

At this stage we see the interaction terms, like

∂X [ζ+(ηT,X − cT ) ζ−(ηT,X + cT )],

appearing in S. We wish to define (ρ̂1, û1) so that the terms of formal order η
and ε2 cancel out, that is as the solutions of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂T ρ̂
1(θ, T,X) + �∂X û

1(θ, T,X)

= −∂θζ+(θ,X − cT )− ∂θζ
−(θ,X + cT )

− c

�

(
∂X([ζ+(θ,X − cT )]2)− ∂X([ζ−(θ,X + cT )]2)

)
,

∂T û
1(θ, T,X) + g′(�)∂X ρ̂1(θ, T,X) =

S
η
.

Here, θ is seen as a parameter, and for T = 0, we set zero initial data. In addi-
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tion, S is evaluated at θ instead of ηT . The system above equivalently reads

[∂T + c ∂X ] (ρ̂1 + � c−1û1)(θ, T,X)

= −2
[
∂θζ

+ + Γ ζ+∂Xζ
+ − ε2

η
κ ∂3Xζ

+
]
(θ,X − cT )

−
(�
c
g′′(�) +

c

�

)
(ζ−∂Xζ−)(θ,X + cT )(5.3)

−
(�
c
g′′(�)− c

�

)
∂X [ζ+(θ,X − cT ) ζ−(θ,X + cT )]

+
2κε2

η
∂3Xζ

−(θ,X + cT )

and

[∂T − c ∂X ] (ρ̂1 − � c−1û1)(θ, T,X)

= −2
[
∂θζ

− − Γ ζ−∂Xζ− − ε2

η
κ ∂3Xζ

−
]
(θ,X − cT )

+
(�
c
g′′(�)− c

�

)
(ζ−∂Xζ−)(θ,X + cT )(5.4)

+
(�
c
g′′(�)− c

�

)
∂X [ζ+(θ,X − cT ) ζ−(θ,X + cT )]

− 2κε2

η
∂3Xζ

+(θ,X + cT ).

Notice that the second line in (5.3) and (5.4) vanish since ζ+ and ζ− satisfy (KdV)
equations. The next lemma will allow us to derive estimates for the solutions
associated with the remaining interaction terms in the transport equation (5.3),
which have a specific form.

Lemma 5.2. (i) For F ∈ Hs(R), the solution h of

[∂T + c ∂X ]h(T,X) = ∂XF (X + cT ), h|T=0 = 0

satisfies, for any T � 0, ‖h(T )‖Hs � ‖F‖Hs/c.

(ii) Assume that s is a nonzero integer, that F+, F− ∈ Hs(R) and that
‖F−‖M < +∞. Then the solution h of

[∂T + c ∂X ]h(T,X) = ∂X [F+(X − cT )F−(X + cT )], h|T=0 = 0

satisfies
‖h(T )‖Hs−1 � C ‖F+‖Hs(‖F−‖Hs + ‖F−‖M)

for all T � 0, where C depends only on s and c.

When the source term is not an exact spatial derivative, we refer to Propo-
sition 3.2 in [21], where a norm growing like

√
t is in general unavoidable. This

growth is prevented by our assumption on the boundedness of the M norm of the
left-going part of the right-hand side.
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Proof. The estimate (i) is a direct consequence of the explicit formula h(T,X) =
(F (X + cT )−F (X − cT ))/(2c). For the proof of (ii), we obtain, by the method of
characteristics, the explicit formula

h(T,X) =

∫ T

0

∂X [F+(X − cT )F−(X − cT + 2cτ)] dτ

=

∫ T

0

∂XF
+(X − cT )F−(X − cT + 2cτ) dτ

+

∫ T

0

F+(X − cT ) ∂XF
−(X − cT + 2cτ) dτ

=
1

2c
∂XF

+(X − cT )

∫ X+cT

X−cT

F−

+ F+(X − cT ) [F−(X + cT )− F−(X − cT )].

Since X �→ ∫X+cT

X−cT
F− is bounded in L∞ by ‖F−‖M (independently of T ), we

immediately conclude that

‖h(T )‖L2 � C ‖F+‖H1(‖F−‖L2 + ‖F−‖M) .

The higher order estimates follow the same lines. Alternatively, we may differ-
entiate our transport equation, and observe that if F ∈ H1, then ‖∂XF‖M �
2C ‖F‖H1 , by Sobolev’s embedding. �

In order to apply Lemma 5.2, we need a bound on the M norms of ζ± for
0 � θ � θ±∗ .

Lemma 5.3. Let s be a real number, s � 3, and ζ ∈ C ([0, θ∗], Hs) be a solution
of the (KdV) equation

∂θζ + Γ ζ∂Xζ =
ε2

η
∂3Xζ .

Then, for any 0 � θ � θ∗, we have

‖ζ(θ)‖M � ‖ζ(0)‖M + C

∫ θ

0

(
‖ζ(ω)‖2Hs +

ε2

η
‖ζ(ω)‖Hs

)
dω ,

where the constant C depends only on Γ.

Proof. We consider two real numbers a < b and simply write∫ b

a

ζ(θ,X) dX −
∫ b

a

ζ(θ = 0, X) dX

=

∫ b

a

∫ θ

0

∂θζ(ω,X) dωdX = −
∫ θ

0

Γ

∫ b

a

ζ∂Xζ dXdω +
ε2

η

∫ θ

0

∫ b

a

∂3Xζ dXdω

= −Γ

2

∫ θ

0

(ζ2(ω, b)− ζ2(ω, a)) dω +
ε2

η

∫ θ

0

(∂2Xζ(ω, b)− ∂2Xζ(ω, a)) dω .
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We then obtain∣∣∣ ∫ b

a

ζ(θ,X) dX
∣∣∣ � ∣∣∣ ∫ b

a

ζ(θ = 0, X) dX
∣∣∣+ C

∫ θ

0

‖ζ(ω)‖2L∞ +
ε2

η
‖∂2Xζ(ω)‖L∞ dω,

and use the Sobolev embedding to conclude. �

Lemma 5.3 implies in particular that, for 0 � θ � θ±∗ ,

‖ζ±(θ)‖M � C(M) ,

provided ε2 � η. As already mentioned, only three terms remain in the right-
hand side of (5.3) and (5.4), since ζ+ and ζ− solve the (KdV) equation in (5.2)
with the + and − sign respectively. The first and last terms fall into case (i) in
Lemma 5.2, while the second one is as in case (ii). By the superposition prop-
erty of transport equations, we can add the contributions of these terms given
by Lemma 5.2. Thanks to the estimates of ζ± resulting from Lemma 5.3, this
eventually yields

sup
0�ηT,θ�min(T∗,θ+

∗ ,θ−
∗ )

‖ρ̂1 + � c−1û1‖Hs−2 � C(M)

and
sup

0�ηT,θ�min(T∗,θ+
∗ ,θ−

∗ )

‖ρ̂1 − � c−1û1‖Hs−2 � C(M) ,

hence
sup

0�ηT,θ�min(T∗,θ+
∗ ,θ−

∗ )

‖(ρ̂1, û1)‖Hs−2 � C(M) .

Consistency error and comparison estimate. To control the consistency
error, we have to bound ∂θρ̂

1 and ∂θû
1. Differentiating (5.3) with respect to θ we

obtain

0 = [∂T + c ∂X ]∂θ(ρ̂
1 + � c−1û1)(θ, T,X)

+
(�
c
g′′(�)− c

�

)
∂X(ζ−∂θζ−)(θ,X + cT )

+
(�
c
g′′(�)− c

�

)
∂X [∂θζ

+(θ,X − cT )ζ−(θ,X + cT )]

+
(�
c
g′′(�)− c

�

)
∂X [ζ+(θ,X − cT )∂θζ

−(θ,X + cT )]

− 2κε2

η
∂3X∂θζ

−(θ,X + cT ).

Noticing that ∂θζ
± is bounded in C ([0, θ±∗ ], H

s−3(R)) by a constant depending
only on M (since ε2 � η) and that the M norm of ∂θζ

± is also bounded by a
constant depending only on M (see the proof of Lemma 5.3), we infer once again
from Lemmas 5.2 and 5.3 that

sup
0�ηT,θ�min(T∗,θ+

∗ ,θ−
∗ )

‖∂θ[ρ̂1 + � c−1û1]‖Hs−5 � C(M) .
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Arguing similarly with ρ̂1 − � c−1û1, we deduce

sup
0�ηT,θ�min(T∗,θ+

∗ ,θ−
∗ )

‖(∂θρ̂1, ∂θû1)‖Hs−5 � C(M) .

It then follows that (ρ̂app, ûapp) is an approximate solution to (4.3) with initial
datum (ρ̂in, ûin) and a consistency error

‖(Errρ,Erru)‖Hs−5 � Cη (η + ε2) .

Proposition 5.4. Let σ and σ′ be two integers such that σ � 2 and 0 � σ′ � σ−2.
Assume that (ρ̃, ũ) ∈ C ([0, T̃ ], Hσ+1(R)×Hσ(R)) solves

(5.5)

⎧⎪⎪⎨
⎪⎪⎩

∂T ρ̃+ ∂X((�+ ηρ̃)ũ) = Errρ̃

∂T ũ+ η ũ ∂X ũ+ g′(�+ ηρ̃) ∂X ρ̃

= ε2∂X

[
K(�+ ηρ̃) ∂2X ρ̃+

η

2
K ′(�+ ηρ̃) (∂X ρ̃)

2
]
+ Errũ ,

where (Errρ̃,Errũ) ∈ L∞([0, T̃ ], Hσ′+1(R) × Hσ′
(R)). Let us denote by (ρ̂, û) ∈

C ([0, T̂ ], Hσ+1(R)×Hσ(R)) a solution of (EKε,η ) with (ρ̃, ũ)(0) as initial condi-
tion. Assume that M > 0 is such that (ρ̂, û)(T ) and (ρ̃, ũ)(T ) ∈ Bσ,ε(2M) as long

as 0 � T � min(T̃ , T̂ ). Then, for 0 � T � min(T̃ , T̂ ),

‖(ρ̃ − ρ̂, ũ− û, ε∂X(ρ̃− ρ̂))‖Hσ′

� C(σ, r,M)
√
η T eC(σ,r,M)ηT

×
(1
η
‖(Errρ̃,Errũ, ε∂XErrρ̃)‖L∞([0,min(T̃ ,T̂ )],Hσ′ ) + η + ε2

)
.

Proof. We shall prove the stability estimate by linearization around the exact

solution (ρ̂, û). The difference (ρ̌, ǔ)
def
= (ρ̂, û)− (ρ̃, ũ) satisfies the system

(5.6)

⎧⎪⎨
⎪⎩

∂T ρ̌+ ∂X((�+ ηρ̂)ǔ) + η ∂X(ρ̌û) = −Errρ̃ ,

∂T ǔ+ g′(�)∂X ρ̌+ η û ∂X ǔ+ η ǔ ∂X ũ+ ηg′′(�)ρ̂ ∂X ρ̌+ ηg′′(�)ρ̌ ∂X ρ̃

= ε2K(�) ∂3X ρ̌− Errũ +OL∞([0,min(T̃ ,T̂ )],Hσ−2)(η (ε
2 + η)) ,

with null initial condition. In the second equation, the error term contains the
remainder associated with the expansion of the nonlinearity g(� + ηρ̂), the term
ε2η∂X(K ′(� + ηρ̂)(∂X ρ̂)

2), the difference ε2∂X(K(� + ηρ̂)∂2X ρ̂) − ε2K(�)∂3X ρ̂ and
the corresponding terms with ηρ̃. Then, the complex vector field

ž
def
= ǔ+ iw̌,

with

w̌
def
= ε

√
K(�)

�+ ηρ̂
∂X ρ̂− ε

√
K(�)

�+ ηρ̃
∂X ρ̃ = ε

√
K(�)

�+ ηρ̂
∂X ρ̌+OHσ−1 (εη)
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is a solution, with zero initial datum, of

∂T ž + η ũ ∂X ž + η ǔ ∂X z̃ + iη (∂X ž)ŵ + iη (∂X z̃)w̌

+
1

ε
b�(�+ ηρ̂) w̌ +

1

ε

(
b�(�+ ηρ̂)− b�(�+ ηρ̃)

)
w̃

+ iε ∂X(a�(�+ ηρ̂)∂X ž) + iε ∂X ((a�(�+ ηρ̂)− a�(�+ ηρ̃)) ∂X z̃)

= −Errũ − iε

√
K(�)

�+ ηρ̂
∂XErrρ̃ ,

where

a�(ρ)
def
=
√
K(�)ρ , b�(ρ)

def
=

ρ(g′(�) + (ρ− �)g′′(�))
a�(ρ)

.

The terms ηǔ∂X z̃ and iη (∂X z̃)w̌ are easily estimated in Hσ′
, using (A.2), by

C(σ)η ‖ž‖Hσ′ ‖∂X z̃‖Wσ′,∞ � C(σ,M)η ‖ž‖Hσ′ ‖z̃‖Hσ � C(σ,M)η ‖ž‖Hσ′ ,

since σ′ + 2 � σ by assumption and by Sobolev embedding. We write similarly
that the Hσ′

norm of the term ε−1(b�(�+ ηρ̂)− b�(�+ ηρ̃))ŵ is

� C(σ, r) η ε−1‖ρ̌‖Hσ′ ‖w̃‖Wσ′,∞ � C(σ, r,M) η ‖ρ̌‖Hσ′ ‖∂X ρ̃‖Hσ

� C(σ, r,M) η ‖ρ̌‖Hσ′ .

By (A.3) and (A.1), since σ′ + 2 � σ,

‖iε∂X ((a�(�+ ηρ̂)− a�(�+ ηρ̃)) ∂X z̃)‖Hσ′

� C(σ, r) ε ‖(a�(�+ ηρ̂)− a�(�+ ηρ̃)) ∂X z̃‖Hσ′+1

� C(σ, r) εη ‖ρ̌‖Hσ′+1‖∂X z̃‖Hσ′+1 � C(σ, r,M) η ‖(ρ̌, ε∂X ρ̌)‖Hσ′ .

Therefore, ž is a solution of

∂T ž + η û ∂X ž + iη (∂X ž)ŵ +
1

ε
b�(�+ ηρ̂) w̌ + iε ∂X(a�(�+ ηρ̂) ∂X ž) = G ,

with zero initial datum and where, for 0 � T � min(T̃ , T̂ ),

‖G(T )‖Hσ′ � C(σ, r,M)
(‖(Errũ, ε∂XErrρ̃)‖Hσ′ + η (η + ε2) + η ‖(ρ̌, ε∂X ρ̌)‖Hσ′

)
.

Letting

E�
σ′(ρ̌, ž)

def
=

σ′∑
k=0

Ė�
k(ρ̌, ž) ,

where

Ė�
k(ρ̌, ž)

def
=

∫
R

1

2
ak� (�+ ηρ̂)

(
(�+ ηρ̂) |∂kX ž|2 + (g′(�) + g′′(�) ηρ̂) (∂kX ρ̌)

2
)
dX ,
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and arguing as in the proof of Proposition 2.7, we arrive at

d

dT
E�

σ′(ρ̌, ž) � C(σ, r,M) η E�
σ′(ρ̌, ž)

+ C(σ, r,M)

√
E�

σ′(ρ̌, ž)
∥∥(Errρ̃,Errũ, ε ∂XErrρ̃)

∥∥
Hσ′

+ C(σ, r,M)

√
E�

σ′(ρ̌, ž)
(
η (η + ε2) + η

√
E�

σ′ (ρ̌, ž)
)

� C(σ, r,M) η E�
σ′(ρ̌, ž)

+ C(σ, r,M)
(1
η

∥∥(Errρ̃,Errũ, ε∂XErrρ̃)
∥∥2
Hσ′ + η (η + ε2)2

)

for 0 � T � min(T̃ , T̂ ), since ∂X ẑ and ∂X ρ̂ are uniformly bounded in L∞ (σ > 3/2).
Indeed, there is only one place where we have to pay attention to the extra terms
in the first equation in (5.5), namely when we compute

d

dT

∫
R

1

2

[
g′(�) + ηρ̂ g′′(�)

]
ak� (�+ ηρ̂) (∂kρ̌)2 dX

and handle the term∫
R

1

2

[
g′(�) + ηρ̂ g′′(�)

]
ak� (�+ ηρ̂) ∂T [(∂

kρ̌)2] dX,

which produces the extra term∫
R

[
g′(�) + ηρ̂ g′′(�)

]
ak� (�+ ηρ̂) ∂kρ̂ ∂kErrρ̃ dX � C(σ, r,M)

√
E�

σ′(ρ̌, ž) ‖Errρ̃‖Hσ′ .

We complete the proof of Proposition 5.4 by a Gronwall-type argument. �

To complete the proof of Theorem 5.1 (2), we choose σ = s � 2 and σ′ = s−6 ∈
[0, σ − 2] in order to apply Proposition 5.4 (notice that the term ε∂XErrρ̃ induces
the loss of one more derivative). Therefore, for 0 � T � min(T∗, θ+∗ , θ

−
∗ )/η,

‖(ρ̂app − ρ̂, ûapp − û, ε∂X(ρ̂app − ρ̂))‖Hs−6 � C(σ, r,M)
(
η + ε2

)
,

and this concludes the proof in case (2).

Proof of Theorem 5.1 in case (1). We argue in a similar way and look for an
approximate solution under the form

ρ̂app(T,X)
def
= Z+(ηT,X − cT ) + Z−(ηT,X + cT ) + η ρ̂1(ηT, T,X)

and

ûapp(T,X)
def
=

c

�

(
Z+(ηT,X − cT )− Z−(ηT,X + cT )

)
+ η û1(ηT, T,X).
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Now, we include the dispersive terms in R instead of S, since we want to prove
a comparison result with Burgers equations. We thus define (ρ̂1, û1) as the solu-
tions of

0 = [∂T + c ∂X ] (ρ̂1 + � c−1û1)(θ, T,X) + 2
[
∂θZ

+ + ΓZ+∂XZ+
]
(θ,X − cT )

+
(�
c
g′′(�)− c

�

)
(Z−∂XZ−)(θ,X + cT )(5.7)

+
(�
c
g′′(�)− c

�

)
∂X [Z+(θ,X − cT )Z−(θ,X + cT )]

and

0 = [∂T − c ∂X ](ρ̂1 − � c−1û1)(θ, T,X) + 2
[
∂θZ

− − ΓZ−∂XZ−](θ,X − cT )

−
(�
c
g′′(�)− c

�

)
(Z−∂XZ−)(θ,X + cT )(5.8)

−
(�
c
g′′(�)− c

�

)
∂X [Z+(θ,X − cT )Z−(θ,X + cT )] .

It follows from the above arguments that

sup
0�ηT,θ�min(T∗,θ+

∗ ,θ−
∗ )

‖(ρ̂1, û1)‖Hs−1 � C(M)

and

sup
0�ηT,θ�min(T∗,θ+

∗ ,θ−
∗ )

‖(∂θρ̂1, ∂θû1)‖Hs−2 � C(M) .

This implies the following estimate for the consistency error

‖(Errρ,Erru)‖Hs−2 � C(η2 + ε2) .

Using Proposition 5.4 with σ = s � 2 and σ′ = s− 3 ∈ [0, s− 2], this finishes the
proof of Theorem 5.1 (1). �

6. The KP-I asymptotic regime

In one space dimension, we have obtained as asymptotic equations a single (KdV)
equation for well-prepared initial data, and two decoupled (KdV) equations for
more general initial data. In higher dimensions, if one considers a weakly transverse
perturbation, we expect to obtain Kadomtsev–Petviashvili (KP-I) type equations

(KP-I) ∂θζ + Γ ζ∂z1ζ = κ
ε2

η
∂3z1ζ −

c

2

δ2

η
Δz⊥∂

−1
z1 ζ .

Throughout this section, we shall assume that the vector field u is curl-free, which
is a natural hypothesis for the KP-I asymptotic regime.
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6.1. Main results

We replace the long wave ansatz (1.2) by the weakly transverse long wave ansatz

ρ(t, x) = �+ η ρ̂(T, z), u(t, x) = η (û1, δû⊥)(T, z) , T = εt , z = (εx1, εδx⊥) ,

where δ is another small parameter (we have changed X to z to keep in mind
that the scaling is now weakly transverse). Usually, we take η = ε2 = δ2 to
derive (KP-I), but we may consider weakly dispersive (KP-I) equations similar to
weakly dispersive (KdV) equation we have already obtained. Then, the Euler–
Korteweg system (EK) becomes

(6.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T ρ̂+ ∂z1((�+ ηρ̂)û1) + δ2∇z⊥ · ((�+ ηρ̂)û⊥) = 0

∂T û1 + η û1∂z1û1 + ηδ2û⊥ · ∇z⊥ û1 + g′(�+ ηρ̂)∂z1 ρ̂

= ε2∂z1

(
K(�+ ηρ̂)[∂2z1+δ

2Δz⊥ ] ρ̂+
η

2
K ′(�+ηρ̂)[(∂z1 ρ̂)

2 + δ2|∇z⊥ ρ̂ |2]
)

∂T û⊥ + η û1∂z1û⊥ + ηδ2û⊥ · ∇z⊥ û⊥ + g′(�+ ηρ̂)∇z⊥ ρ̂

= ε2 ∇z⊥

(
K(�+ηρ̂)[∂2z1+δ

2Δz⊥ ] ρ̂+
η

2
K ′(�+ηρ̂)[(∂z1 ρ̂)

2 + δ2|∇z⊥ ρ̂ |2]
)
.

We first state a result providing uniform bounds on the time scale T ≈ η−1

(that is t ≈ ε−1η−1) and need to define, for s � 0 and M > 0, the set

B̃s,ε,δ(M)
def
=
{
(ρ̂, û) ∈ Hs+1(Rd)× (Hs(Rd))d ;

‖(ρ̂, û, ε∂1ρ̂, εδ∇⊥ρ̂)‖Hs(Rd)×(Hs(Rd))d×Hs(Rd)×(Hs(Rd))d−1 �M
}
.

Theorem 6.1. Let s be an integer greater than 1 + d/2 and η ∈ (0, 1]. If � > 0,
g′(�) > 0, and (ρ̂in, ûin) ∈ B̃s,ε,δ(M), then there exists T∗ > 0, depending only on
M , s and d, such that the maximal solution to (6.1) such that (ρ̂, û)(0) = (ρ̂in, ûin)
exists at least on [0, T∗/η], and (ρ̂, û)(T ) ∈ B̃s,ε,δ(2M) for all T ∈ [0, T∗/η].

In this asymptotic regime, one might expect an approximation by the two
counter propagating waves described by the two uncoupled KP-I equations

(6.2)

⎧⎪⎪⎨
⎪⎪⎩

∂θζ
+ + Γ ζ+∂z1ζ

+ =
ε2

η
κ ∂3z1ζ

+ − c

2
· δ

2

η
Δz⊥∂

−1
z1 ζ

+,

∂θζ
− − Γ ζ−∂z1ζ

− = −ε
2

η
κ ∂3z1ζ

− +
c

2
· δ

2

η
Δz⊥∂

−1
z1 ζ

−,

instead of the two (KdV) equations. However, Lannes has shown in [20] that, in the
case η = ε2 = δ2 to fix ideas, the natural O(ε2) error estimate does not hold. This
is due to the singularity of the symbol associated with the operator Δz⊥∂

−1
z1 , unless

we impose the zero mass assumption
∫
R
A(z1, z⊥) dz1 = 0 for every z⊥ ∈ Rd−1,

which is not physical. This is the reason why Lannes and Saut have proposed in [22]
weakly transverse Boussinesq type systems for which we can prove the natural error
estimate and for which no zero mass assumption is made. This weakly transverse
Boussinesq type system is formally equivalent to the system of two uncoupled KP-I
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equations (6.2), and it can be shown to converge to (6.2) (without optimal error
estimates) under extra regularity and zero mass type hypothesis. In our context,
a natural weakly transverse Boussinesq type system is the following:

(Bε,δ,η)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂T ρ̂+ �∂z1 û1 + η∂z1(ρ̂ û1) + δ2∇z⊥ · ((�+ ηρ̂)û⊥) = 0,

∂T û1 + g′(�)∂z1 ρ̂+ η û1∂z1û1 + ηδ2û⊥ · ∇z⊥ û1 + ηρ̂g′′(�)∂z1 ρ̂

= ε2K(�)∂z1 [∂
2
z1 + δ2Δz⊥ ] ρ̂

∂T û⊥ + g′(�)∇z⊥ ρ̂+ η û1∂z1û⊥ + ηδ2û⊥ · ∇z⊥ û⊥ + ηρ̂g′′(�)∇z⊥ ρ̂

= ε2K(�)∇z⊥ [∂
2
z1 + δ2Δz⊥ ] ρ̂ .

Let us observe that system (Bε,δ,η) may be seen as a particular case of system (6.1)
when g is a quadratic polynomial and the capillarity K has constant value K(�).
The weakly transverse Boussinesq system (Bε,δ,η) may also be seen as the weakly
transverse analogue to the systems of the (a, b, c, d) class introduced in [9] and [10]
when a = b = d = 0 and c < 0.

Theorem 6.2. Let s be an integer such that s > 1 + d/2 and η ∈ (0, 1].

(i) If � > 0, g′(�) > 0, and (ρ̂in, ûin) ∈ B̃s,ε,δ(M), then there exists T∗ > 0,
depending only on M , s and d, such that the system (Bε,δ,η) with initial datum
(ρ̂in, ûin) has a unique solution (ρ̂, û) ∈ C ([0, T∗/η], Hs+1(Rd)×(Hs(Rd))d). More-
over, we have (ρ̂, û)(T ) ∈ B̃s,ε,δ(2M) for all T ∈ [0, T∗/η].

(ii) Assume that ζ±,in ∈ ∂z1H
s+7(Rd) and that Δz⊥ζ

±,in ∈ ∂2z1H
s+3(Rd).

Then, there exists θ∗ > 0, depending only on s, d and the initial data ζ±,in such
that the uncoupled system (6.2) has a unique solution ζ± ∈ C ([0, θ∗], Hs+6(Rd)) ∩
Lip([0, θ∗], Hs+3(Rd)). Moreover, one has ζ± ∈ L∞([0, θ∗], ∂z1Hs+6(Rd)). Let us
also assume that

(6.3)
1

2

(
ρ̂in ± �

c
ûin
1

)
= ζ±,in ,

�

c
ûin
⊥ = ∇z⊥∂

−1
z1 (ζ+,in − ζ−,in)

and that

(6.4) δ2 � η and ε2 � η .

Then, the following comparison estimate with the uncoupled system (6.2) holds as
η → 0:

sup
0�T�min(θ∗,T∗)/η

∥∥∥1
2

(
ρ̂+

�

c
û1

)
(T )− ζ+(ηT, · − cT )

∥∥∥
Hs−1(Rd)

→ 0

and

sup
0�T�min(θ∗,T∗)/η

∥∥∥1
2

(
ρ̂− �

c
û1

)
(T )− ζ−(ηT, ·+ cT )

∥∥∥
Hs−1(Rd)

→ 0 .

Remark 6.3. The properties of the solution ζ± to the (KP-I) equation given
in (ii) come from [28] and [24] and use (6.4). The compatibility condition (6.3)
on ûin

⊥ is natural since the vector field û is curl-free.
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Remark 6.4. Statement (i) is a consequence of Theorem 6.1 in the particular case
where g is quadratic and K ≡ K(�) is constant. An alternate approach would be
to use the result given in Theorem 1.1 of [25] with a = b = d = 0 > c. However,
this result is stated in the Boussinesq scaling and not the weakly transverse one.
It is plausible that the method of Saut and Xu extends to the weakly transverse
case, but we have not checked this fact.

Remark 6.5. The proof of Theorem 6.2 consists in constructing an approximate
solution and then proving that the error remains small. The first point requires to
be able to compare ε, δ and η, which is the reason for assuming (6.4).

Remark 6.6. In [11], we have proposed (in the case η = ε2 = δ2) another weakly
transverse Boussinesq system adapted to the case where one wave, say the left-
going one, is negligible. This system has the structure of a symmetrizable hyper-
bolic system plus a constant coefficient skew adjoint term – not affected by the
symmetrization, which is simpler than (Bε,δ,η). One may think that the dispersive
terms ε2δ2Δz⊥∂z1 ρ̂ and ε2δ2Δz⊥∇z⊥ ρ̂ in the last two equations in (Bε,δ,η) should
be removable in view of their formal order O(η2) behavior (by (6.4)). However,
our existence and uniqueness result relies on a nonlinear symmetrization type ar-
gument which breaks down without these terms. Moreover, our estimates provide
a uniform control on ρ̂, ε∂1ρ̂ and εδ∇z⊥ ρ̂ in Hs, so that the high order derivatives
of ε2δ2Δz⊥∂z1 ρ̂ and ε2δ2Δz⊥∇z⊥ ρ̂ are not that small.

Our last result gives a quantitative comparison estimate between system (6.1)
and the weakly transverse system (Bε,δ,η).

Theorem 6.7. Let s > 2+ d/2 (s integer), η, ε, δ ∈ (0, 1] and assume that � > 0,
g′(�) > 0, and let (ρ̂in, ûin) ∈ B̃s,ε,δ(M). Then, there exists T∗ > 0, depending only
on M , s and d, such that the two systems (6.1), resp. (Bε,δ,η), with initial datum
(ρ̂in, ûin) have a unique solution (ρ̂, û), resp. (ρ̃, ũ), in C ([0, T∗/η], Hs+1(Rd) ×
(Hs(Rd))d) and, for any T ∈ [0, T∗/η], (ρ̂, û) and (ρ̃, ũ) belong to B̃s,ε,δ(2M).
Then, there exists a constant C, depending only on s, d and M , such that, for
0 � T � T∗/η, we have

‖(ρ̂, û1, δû⊥)− (ρ̃, ũ1, δũ⊥)‖Hs−2(Rd) � C(η + ε) ,

and, for s > 3 + d/2,

‖(ρ̂, û1, δû⊥)− (ρ̃, ũ1, δũ⊥)‖Hs−3(Rd) � C(η + ε2) .

6.2. Uniform bounds in the weakly transverse scaling

Proof of Theorem 6.1. The complex vector field ẑ is now

(6.5) ẑ = (ẑ1, δẑ⊥) = û+ iŵ = (û1, δû⊥) + iε

√
K(ρ)

ρ
(∂1ρ̂, δ∇⊥ρ̂),
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and the assumption that the vector field û is curl free now reads

(6.6) ∂1û⊥ = ∇⊥û1.

The L2-type functional E0 becomes

E�
0[ρ̂, ẑ]

def
=

1

2

∫
Rd

ρ |ẑ1|2 + δ2ρ |ẑ⊥|2 + g′(ρ)ρ̂2 dz , ρ = �+ ηρ̂ ,

and the Hs-type functional Es becomes

E�
s[ρ̂, ẑ]

def
=

s∑
σ=0

Ė�
σ(ρ̂, ẑ) ,

where we have denoted

Ė�
σ[ρ̂, ẑ]

def
=

∑
α∈N

d
0,

|α|=σ

σ!

α!

∫
Rd

1

2
a(ρ)σ

(
ρ |∂αẑ1|2 + δ2ρ |∂αẑ⊥|2 + g′(ρ)(∂αρ̂)2

)
dz

with ρ = � + ηρ̂. Under the assumptions of Proposition 2.6 and setting ∇δ def
=

(∂1, δ∇⊥), we now have

c (‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖∇δρ̂‖2Hs) � E�
s[ρ̂, û] � C(‖û‖2Hs + ‖ρ̂‖2Hs + ε2‖∇δρ̂‖2Hs) ,

where c > 0 and C > 0 depend only on r, s, d (and the functions g, K).
The system (ESε,η) yields

(6.7) ∂T ẑ+ η (û · ∇δ)ẑ + iη (∇δ ẑ)ŵ +
1

ε
b(ρ) ŵ + iε∇δ(a(ρ)∇δ · ẑ) = 0 ,

and by applying the operator ∂α, where |α| � s, we obtain

(6.8) ∂T ∂
αẑ+η (û·∇δ)∂αẑ+iη (∇δ ẑ)∂αŵ+

1

ε
b(ρ)∂αŵ+iε∂α∇δ(a(ρ)∇δ ·ẑ) = R ,

where

R = (R1, δR⊥)
def
= η [û · ∇δ, ∂α] ẑ+

1

ε
[b(ρ), ∂α] ŵ + iη

(
(∇δ∂αẑ)ŵ − ∂α((∇δ ẑ)ŵ)

)
.

In view of (A.4), we have

‖(R1, δR⊥)‖L2 � C(r, s, d) ε2 ‖(∇ẑ,∇ρ̂)‖L∞

√
E�

s[ρ̂, ẑ],

since, recalling that δ2 � η � 1 and ε2 � η � 1 by (6.4),

η‖[û · ∇δ, ∂α] ẑ‖L2 �C(s, d) η
(‖∇û‖Hs−1‖∇δẑ‖L∞ + ‖∇δ ẑ‖Hs−1‖∇û‖L∞

)
�C(s, d) η ‖∇ẑ‖L∞

√
E�

s[ρ̂, ẑ] ,
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and

η
∥∥(∇δ∂αẑ)ŵ − ∂α((∇δ ẑ)ŵ)

∥∥
L2

� C(s, d)η
(‖∇ŵ‖Hs−1‖∇δẑ‖L∞ + ‖∇δẑ‖Hs−1‖∇ŵ‖L∞

)
� C(s, d)η‖∇ẑ‖L∞

√
E�

s[ρ̂, ẑ]

and, using that we have ‖ŵ‖Hs−1 � C(r, s, d)ε ‖ρ̂‖Hs � C(r, s, d)ε

√
E�

s[ρ̂, ẑ] and

‖ŵ‖L∞ � C(r, s, d)ε ‖∇δ ρ̂‖L∞ ,∥∥∥1
ε
[b(ρ), ∂α] ŵ

∥∥∥
L2

�C(r, s, d)
η

ε

(‖ŵ‖Hs−1‖∇ρ̂‖L∞ + ‖ŵ‖L∞‖∇ρ̂‖Hs−1

)
�C(r, s, d) η ‖∇ρ̂‖L∞

√
E�

s[ρ̂, ẑ] .

Then, following the same lines as in the proof of Proposition 2.7, but working with
the variables (6.5) and the operator ∇δ = (∂1, δ∇⊥), we infer

d

dT
Ė�

σ[ρ̂, ẑ] �C(r, s, d) η ‖(∇ρ̂,∇ẑ)‖L∞(1 + εη ‖∇ρ̂‖L∞)E�
s[ρ̂, ẑ] .

This completes the proof of Theorem 6.1. �

6.3. Proof of Theorem 6.2 (ii)

As already mentioned, the argument follows the lines of the proof of Theorem 1
in [22]. We briefly recall the ideas.

Construction of an approximate solution. We look for an approximate solu-
tion (ρ̂app, ûapp) to (Bε,δ,η) under the form

(6.9) (ρ̂app, ûapp)(T, z) = (ρ̂0, û0)(T, ηT, z) + η (ρ̂1, û1)(T, ηT, z) ,

where û0 and û1 are curl free. We set θ = ηT . Recall that δ2 � η and ε2 � η, and
we wish to construct an approximate solution so that the consistency error is o(η),
since we consider T � η−1. Notice that we simplify the computations by assuming
an expansion in powers of ε2, but an expansion in powers of ε is also possible
(see [22] in this case and also [11] if one considers only one wave propagating to
the right). Then we compute

Errρ
def
= ∂T ρ̂

app + � ∂z1 û
app
1 + η ∂z1(ρ̂

appûapp
1 ) + δ2 ∇z⊥ · ((�+ ηρ̂app)ûapp

⊥ )

=
(
∂T ρ̂

0 + � ∂z1û
0
)
+ η

(
∂T ρ̂

1 + � ∂z1û
1
1 + ∂θρ̂

0

+ ∂z1(ρ̂
0û0

1) + �(δ2/η)∇z⊥ · û0
⊥
)
+R ,

Err1
def
= ∂T û

app
1 + g′(�) ∂z1 ρ̂

app + ε2 ûapp
1 ∂z1 û

app
1 + ε4 ûapp

⊥ · ∇z⊥ û
app
1

+ ε2g′′(�) ρ̂app ∂z1 ρ̂
app − ε2K(�) ∂z1 [∂

2
z1 + ε2Δz⊥ ] ρ̂

app

=
(
∂T û

0
1 + g′(�)∂z1 û

0
1

)
+ S1

+ ε2
(
∂T û

1
1 + g′(�) ∂z1 û

1
1 + ∂θû

0
1 + û0

1∂z1 û
0
1 + g′′(�)∂z1 ρ̂

0 −K(�) ∂3z1 ρ̂
0
)
,
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and

Err⊥
def
= ∂T û

app
⊥ + g′(�)∇z⊥ ρ̂

app + ε2 ûapp
1 ∂z1 û

app
⊥ + ε4 ûapp

⊥ · ∇z⊥ û
app
1

+ ε2g′′(�)ρ̂app∇z⊥ ρ̂
app − ε2K(�)∂z1 [∂

2
z1 + ε2Δz⊥ ] ρ̂

app

=
(
∂T û

0
1 + g′(�) ∂z1 û

0
1

)
+ S⊥

+ ε2
(
∂T û

1
1 + g′(�)∂z1 û

1
1 + ∂θû

0
1 + û0

1∂z1 û
0
1 + g′′(�)∂z1 ρ̂

0 −K(�) ∂3z1 ρ̂
0
)
,

where the error terms R and S will be explicited later on. The point is that we are
not able to prove that û1

⊥ remains of order one on the time intervals we consider.
Cancellation of the terms of formal order η0 yields

∂T ρ̂
0 + � ∂z1 û

0
1 = ∂T û

0
1 + g′(�)∂z1 ρ̂

0 = 0 ,

with general solution (ρ̂0, � c−1û0
1)(T, θ, z) = Z+(θ, z1 − cT, z⊥)(1, 1) +Z−(θ, z1 +

cT, z⊥)(1,−1) for some functions Z±.
Cancellation of the terms of formal order η provides{
∂T ρ̂

1 + � ∂z1û
1
1 + ∂z1(ρ̂

0û0
1) + ∂θρ̂

0 + � (δ2/η)∇z⊥ · û0
⊥ = 0 ,

∂T û
1
1 + g′(�)∂z1 ρ̂

1 + ∂θû
0
1 + û0

1∂z1û
0
1 + g′′(�)∂z1 ρ̂

0 −K(�)(ε2/η) ∂3z1 ρ̂
0 = 0 .

Therefore, using the expressions for ρ̂0 and � c−1û0
1,

∂T

(
ρ̂1 +

�

c
û1
1

)
+ c ∂z1

(
ρ̂1 +

�

c
û1
1

)
= −∂θρ̂0 − �

c
∂θû

0
1 − ∂z1(ρ̂

0û0
1)− �(δ2/η)∇z⊥ · û0

⊥ − �

c
û0
1∂z1û

0
1

− �

c
g′′(�)ρ̂0∂z1 ρ̂

0 +
�

c
(ε2/η)K(�)∂3z1 ρ̂

0

=
(− 2∂θZ+− 2ΓZ+∂z1Z+− c(δ2/η)Δz⊥∂

−1
z1 Z++ 2κ(ε2/η)∂3z1Z+

)
(θ, z1−cT, z⊥)

+
(− 2(Γ−2c/�)Z−∂z1Z−+ c(δ2/η)Δz⊥∂

−1
z1 Z−+ 2κ(ε2/η)∂3z1Z−)(θ, z1+cT, z⊥)

−
( c
�
+ 2κ(ε2/η)

)
∂z1 [Z+(θ, z1 − cT, z⊥)Z−(θ, z1 + cT, z⊥)] .

Then, ρ̂1 + � c−1û1
1 solves a transport equation with source terms. Notice that

the first source term is a function of z1 − cT , thus is a solution to the associated
homogeneous transport equation. Therefore, it has to vanish in order to remove
secular growth (by the characteristic method). Hence,

∂θZ+ + ΓZ+∂z1Z+ +
c

2
(δ2/η)Δz⊥∂

−1
z1 Z+ − κ(ε2/η) ∂3z1Z+ = 0 ,

which is precisely the right-going (KP-I) equation: we then choose Z+ = ζ+. In a
symmetric way, we shall take Z− = ζ−. Recall that we assume Δz⊥ζ

±(θ = 0) ∈
∂2z1H

s+3(Rd). Therefore, we have ∂θζ
± ∈ L∞([0, θ∗], ∂z1Hs+3) and Δz⊥ζ

± ∈
L∞([0, θ∗], ∂2z1H

s+3), as it follows from the arguments in [23] (see (3.9) and (3.10)
there). Indeed, ∂θζ

± solves

∂θ(∂θζ
±) + Γ ∂z1(ζ

±(∂θζ±)) +
c

2
(δ2/η)Δz⊥∂

−1
z1 (∂θζ

±)− κ(ε2/η) ∂3z1(∂θζ
±) = 0



298 S. Benzoni-Gavage and D. Chiron

and

∂θζ
±(θ = 0) = −Γ∂z1((ζ

±)2(0)/2)−(cδ2/(2η))Δz⊥∂
−1
z1 (ζ±(0))+(κε2/η)∂3z1(ζ

±(0))

belongs to ∂z1H
s+3 by assumption. Hence,

F(∂θζ
±)(θ)

= exp
(−iθ(κ(ε2/η)ξ31 + c(δ2/η)|ξ⊥|2/(2ξ1))

)F(∂θζ
±(0))

− iΓξ1

∫ θ

0

exp
(−i(θ − θ̄)(κ(ε2/η)ξ31 + c(δ2/η)|ξ⊥|2/(2ξ1))

)F(ζ±(∂θζ±))(θ̄) dθ̄ ,

where F denotes the Fourier transform. Then, ∂θζ
± ∈ L∞([0, θ∗], ∂z1Hs+3) (and

the argument does not depend on the space dimension). Consequently, we may
rewrite the source term in the equation for ρ̂1 + � c−1û1

1 as a z1-derivative:

∂T

(
ρ̂1 +

�

c
û1
1

)
+ c ∂z1

(
ρ̂1 +

�

c
û1
1

)
= ∂z1

{
− (Γ− 2c/�)[ζ−]2(θ, z1 + cT, z⊥) + 2κ(ε2/η)∂2z1ζ

−(θ, z1 + cT, z⊥)

− (
c/�+ 2κ(ε2/η)

)
ζ+(θ, z1 − cT, z⊥)ζ−(θ, z1 + cT, z⊥)

+ c(δ2/η)Δz⊥∂
−2
z1 ζ

−(θ, z1 + cT, z⊥)
}
.

The characteristics method then yields(
ρ̂1 +

�

c
û1
1

)
(T, θ, z) =

(
ρ̂1,in +

�

c
û1,in
1

)
(z1 − cT, z⊥)

+
1

2c
(Γ− 2c/�)[ζ−]2(θ, z1 − cT, z⊥)

− 1

2c
(Γ− 2c/�)[ζ−]2(θ, z1 + cT, z⊥)

+
κ

c
(ε2/η)∂2z1ζ

−(θ, z1 + cT )− κ

c
(ε2/η)∂2z1ζ

−(θ, z1 − cT )(6.10)

−
( 1

2�
+
κ

c
(ε2/η)

)
∂z1

[
ζ+(θ, z1 − cT, z⊥)

∫ z1+cT

z1−cT

ζ−(θ, y, z⊥) dy
]

+
δ2

2η
Δz⊥∂

−2
z1 ζ

−(θ, z1 + cT, z⊥)− δ2

2η
Δz⊥∂

−2
z1 ζ

−(θ, z1 − cT, z⊥) .

All the terms in the second, third, fourth and sixth lines in (6.10) belong to
L∞([0, θ∗], Hs+3). For the term in the before last line, we do not use (as in [22])
Proposition 3.6 in [21] for an estimate by o(

√
T ), but write it under the form

−
( 1

2�
+
κ

c
(ε2/η)

)
× ∂z1

[
ζ+(θ, z1 − cT, z⊥)

(
∂−1
z1 ζ

−(θ, z1 + cT, z⊥)− ∂−1
z1 ζ

−(θ, z1 − cT, z⊥)
) ]
,(6.11)

to see that is is bounded in Hs+3 by a constant uniformly for 0 � θ, ηT � θ∗. This
allows us to derive the estimate

sup
0�T�θ∗/η

∥∥∥(ρ̂1 + �

c
û1
1

)
(T, ηT, ·)

∥∥∥
Hs+3

� C .
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In a similar way, we show that

sup
0�T�θ∗/η

∥∥∥(ρ̂1 − �

c
û1
1

)
(T, ηT, ·)

∥∥∥
Hs+3

� C ,

from which we deduce

(6.12) sup
0�T�θ∗/η

‖(ρ̂1, û1
1)(T, ηT, ·)‖Hs+3 � C .

As a consequence, the approximate solution (6.9) enjoys the estimate

(6.13) sup
0�T�θ∗/η

‖(ρ̂app, ûapp)(T )‖Hs � C .

The error termsR and S contain θ-derivatives of ρ̂1 and û1
1 that we wish to con-

trol. Let us observe that we have ∂θζ
± ∈ L∞([0, θ∗], ∂z1Hs+3)∩L∞([0, θ∗], Hs+6),

but the direct differentiation of (6.10) with respect to θ would require to have
∂θζ

± ∈ L∞([0, θ∗], ∂2z1H
s+2), or at least Δz⊥∂θζ

± ∈ L∞([0, θ∗], ∂2z1H
s+2). This is

by no way possible if d = 2 or 3 since the term Δz⊥∂
−1
z1 [(ζ±)2] appearing in ∂θζ

±

is meaningless. Indeed, (ζ±)2 ∈ L1 has a Fourier transform which is continuous
in Rd and positive at ξ = 0 (unless ζ± ≡ 0), but ξ1/|ξ⊥|2 is not integrable near the
origin for d = 2, 3. We thus proceed to the estimate for ∂θ(ρ̂

1, û1
1) by first rewriting

the term Δz⊥∂
−2
z1 ζ

−(θ, z1 + cT, z⊥) −Δz⊥∂
−2
z1 ζ

−(θ, z1 − cT, z⊥) in the right-hand

side of (6.10) under the form
∫ z1+cT

z1−cT Δz⊥∂
−1
z1 ζ

−(θ, y, z⊥) dy. Consequently, by

differentiation of (6.10) with respect to θ, we obtain by using (6.11),

∂θ

(
ρ̂1 +

�

c
û1
1

)
=

1

c

{− (Γ− 2c/�)ζ+∂θζ
+(θ, z1 + cT, z⊥) + (Γ− 2c/�)ζ−∂θζ−(θ, z1 − cT, z⊥)

+ κ(ε2/η) ∂2z1∂θζ
−(θ, z1 + cT, z⊥)− κ(ε2/η) ∂2z1∂θζ

−(θ, z1 − cT, z⊥)
}

−
( 1

2�
+
κ

c
(ε2/η)

)
∂z1∂θ

[
ζ+(θ, z1 − cT, z⊥)∂−1

z1 ζ
−(θ, z1 + cT, z⊥)

− ζ+(θ, z1 − cT, z⊥)∂−1
z1 ζ

−(θ, z1 − cT, z⊥)
]

+ c(δ2/η)

∫ +cT

−cT

Δz⊥∂
−1
z1 ∂θζ

−(θ, y + z1, z⊥) dy ,

thus the estimates on ζ± we have at hand and Proposition 3.6 in [21] for the last
term yield ∥∥∥∂θ(ρ̂1 + �

c
û1
1

)
(T, ηT, ·)

∥∥∥
Hs

� C + o(T ) = o(η−1) .

Since a similar estimate holds true for ∂θ(ρ̂
1 − � c−1û1

1), we deduce

(6.14) sup
0�T�θ∗/η

∥∥∂θ(ρ̂1, û1
1)(T, ηT, ·)

∥∥
Hs = o(η−1) .
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On the other hand, the formula (6.10) provides, since û1 is curl free,(
∇z⊥ ρ̂

1 +
�

c
∂z1û

1
⊥
)
(T, θ, z)

=
(
∇z⊥ ρ̂

1,in +
�

c
∂z1 û

1,in
⊥

)
(z1 − cT, z⊥)

+
1

2c

{
− (Γ− 2c/�) ∂z1∇z⊥

∫ z1+cT

z1−cT

[ζ−]2(θ, y, z⊥) dy

+ c(δ2/η) ∂z1

∫ z1+cT

z1−cT

Δz⊥∂
−2
z1 ζ

−(θ, y, z⊥) dy

+ 2κ(ε2/η) ∂2z1∇z⊥

[
ζ−(θ, z1 + cT )− ζ−(θ, z1 − cT )

]}
−
( 1

2�
+
κ

c
(ε2/η)

)
∂z1∇z⊥

[
ζ+(θ, z1 − cT, z⊥)

∫ z1+cT

z1−cT

ζ−(θ, y, z⊥) dy
]
,

and a similar equality holds for ∇z⊥ ρ̂
1 − � c−1∂z1 û

1
⊥. Thus, taking the difference

of the two equations and integrating in z1, we obtain

(6.15) sup
0�T�θ∗/η

‖û1
⊥(T, ηT )‖Hs � C + o(T ) = o(η−1) ,

using once again Proposition 3.6 in [21] for the terms involving
∫ z1+cT

z1−cT
.

Let us now write more explicitly

R = η2 ∂θρ̂
1 + η2 ∂z1(ρ̂

1û0
1 + ρ̂0û1

1) + δ2η∇z⊥ · (�û1
⊥ + ρ̂0û0

⊥)

+ η2δ2 ∇z⊥ · (ρ̂0û1
⊥ + ρ̂1û0

⊥) + η3δ2 ∇z⊥ · (ρ̂1û1
⊥) .

It follows from (6.12), (6.14) and (6.15) that

(6.16) sup
0�T�T∗/η

‖Errρ‖Hs � sup
0�T�θ∗/η

‖R‖Hs = o(η).

Similarly, from the explicit relations

S1 = η2 ∂θû
1
1 + η2 ∂z1(û

1
1û

0
1) + ηδ2 û0

⊥ · ∇z⊥ û
0
1 + η2g′′(�) ∂z1(ρ̂

1ρ̂0)

+ η3g′′(�) ρ̂1 ∂z1 ρ̂
1− ε2ηK(�)∂3z1 ρ̂

1− ε2δ2K(�)∂z1Δz⊥ ρ̂
0− η2δ2K(�)∂z1Δz⊥ ρ̂

1

+ η3 û1
1∂z1 û

1
1 + η2δ2 û1

⊥ · ∇z⊥ û
0
1 + η2δ2 û0

⊥ · ∇z⊥ û
1
1 + η3δ2 û1

⊥ · ∇z⊥ û
1
1 ,

we infer

(6.17) sup
0�T�T∗/η

‖Err1‖Hs = o(η) ,

and from

S⊥ = η2 ∂θû
1
⊥ + η2 û1

1∂z1û
0
⊥ + η2 û0

1∂z1 û
1
⊥ + ηδ2 û0

⊥ · ∇z⊥ û
0
⊥

+ η2g′′(�)∇z⊥(ρ̂
1ρ̂0)− ε2η K(�)∇z⊥∂

2
z1 ρ̂

1 − ε2δ2K(�)∇z⊥Δz⊥ ρ̂
0

+ η3 û1
1 ∂z1û

1
⊥ + η2δ2 û1

⊥ · ∇z⊥ û
0
⊥ + η2δ2 û0

⊥ · ∇z⊥ û
1
⊥

+ η3g′′(�) ρ̂1 ∇z⊥ ρ̂
1 − ε2δ2K(�)∇z⊥Δz⊥ ρ̂

1 + η3δ2 û1
⊥ · ∇z⊥ û

1
⊥ ,
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we deduce

(6.18) sup
0�T�T∗/ε2

‖εErr⊥‖Hs = o(η) .

Comparison estimate. We shall follow the lines of the proof of Proposition 5.4.
From (6.1) and the uniform bounds (ρ̂, û) ∈ B̃s,ε,δ(2M) for any 0 � T � T∗/η, we
infer that the difference

(ρ̌, ǔ)
def
= (ρ̂, û)− (ρ̂app, ûapp)

satisfies the system

(6.19)

⎧⎪⎨
⎪⎩
∂T ρ̌+∇δ · ((�+ ηρ̂)ǔ) + η∇δ · (ρ̌û) = −Errρ̃,

∂T ǔ+ g′(�)∇δ ρ̌+ η û · ∇δǔ+ ηǔ · ∇δũ+ ηg′′(�)ρ̂∇δ ρ̌+ ηg′′(�)ρ̌∇δ ρ̃

= ε2K(�)∇δ[∂2z1+δ
2Δz⊥ ]ρ̌− Errũ+OL∞([0,min(T∗,θ∗)/η],Hs+3)(η (η+ε

2)).

Similarly as in the proof of Proposition 5.4, we deduce that if 0 � T � min(T∗, θ∗)/η,
there holds

d

dT
E�

s−1(ρ̌, ž) � C(s, r, d,M) η E�
s−1(ρ̌, ž)

+ C(s, r, d,M)

√
E�

s−1(ρ̌, ž) ‖(Errρ̃,Errũ, ε∇δErrρ̃)‖Hs−1

+ C(s, r, d,M)

√
E�

s−1(ρ̌, ž) η (η + ε2) .

Gathering the consistency errors (6.16), (6.17), (6.18) we have established, we
finally arrive by the Gronwall lemma at

E�
s−1(ρ̌, ž) � C(s, r, d,M)(η + ε2 + o(1)),

as wished. �

6.4. Proof of Theorem 6.7

From (6.1) and the uniform bounds (ρ̂, û) ∈ B̃s,ε,δ(2M) for 0 � T � T∗/η, we infer
that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂T ρ̂+∇δ · ((�+ ηρ̂)û) = 0

∂T û+ η û · ∇δû+ g′(�)∇δ ρ̂+ ηg′′(�)ρ̂∇δ ρ̂− ε2K(�)∇δ[∂2z1 + δ2Δz⊥ ] ρ̂

= −(g′(�+ ηρ̂)− g′(�)− ηg′′(�)ρ̂
)∇δ ρ̂

+ε2∇δ
(
(K(�+ ηρ̂)−K(�))[∂2z1 + δ2Δz⊥ ] ρ̂+

ε2

2
K ′(�+ ηρ̂)|∇δ ρ̂ |2

)
= OL∞([0,T∗/η],Hs−3)(η (η + ε2)) and OL∞([0,T∗/η],Hs−2)(η(η + ε)).

The conclusion then follows from the same arguments as those used for proving
Theorem 6.2. Notice that here, the error Errρ vanishes. �
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Appendix

The estimates listed in the following proposition are rather standard for integer
regularity index (see, e.g., [27], chapter 13, § 3) and for fractional regularity index,
we can found: (A.1) in [19] (Lemma X4 in the appendix there) or in [4] (Lemma B.1
in the appendix there); (A.3) in [4] (Lemma B.4) in the appendix there); (A.4)
in [19] (Lemma X1 in the appendix there) or in [4] (Lemma A.2 in the appendix
there).

Proposition A.1. a) For s � 0, for all u, v ∈ Hs(Rd),

(A.1) ‖uv‖Hs � C(d, s)
(‖u‖L∞‖v‖Hs + ‖v‖L∞‖u‖Hs

)
.

b) For s ∈ N, for all u ∈ Hs(Rd), v ∈W s,∞(Rd),

(A.2) ‖uv‖Hs � C(d, s) ‖v‖W s,∞‖u‖Hs .

c) For s > 0, if F ∈W �s�,∞([−r, r]) vanishes at zero, for all v ∈ Hs(Rd) taking
values in [−r, r],
(A.3) ‖F (v)‖Hs � C(d, s, r) ‖F ′‖W �s�−1,∞([−r,r]) (1 + ‖v‖L∞)�s� ‖v‖Hs .

Here, �s� is the smallest integer m such that m � s.

d) For s > 0, for all u, v ∈ Hs(Rd), for α ∈ N
d such that |α| � s,

(A.4) ‖∂α(uv)− u∂αv‖L2 � C(d, s)
(‖∇u‖Hs−1‖v‖L∞ + ‖∇u‖L∞‖v‖Hs−1

)
.

This is also true when ∂α is replaced by Λs = (1−Δ)s/2.
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